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Abstract 

The main objective of this paper is to suggest and study a new exponentiated general class (EGC) of 

distributions. Maximum likelihood, Bayesian and empirical Bayesian estimators of the parameter of the 

EGC of distributions based on lower record values are obtained. Furthermore, Bayesian prediction of future 

records is considered. Based on lower record values, the exponentiated Weibull distribution, its special 

cases of distributions and exponentiated Gompertz distribution are applied to the EGC of distributions.   

Keywords: Lower record values, Maximum likelihood estimation, Bayesian estimation, 

empirical Bayesian estimation, Bayesian prediction.  

1.   Introduction 

Bayesian prediction of record values has a special interest, as the best approach found 

until now, in many fields such as clinical trials, insurance, industry, architecture, physics, 

marketing, geography, and other fields. Recently, few studies are concerned with 

Bayesian prediction and both Bayesian and classical inferences for record values. Among 

others are Hsieh (2001), Ali-Mousa (2001,2003), Ali-Mousa et al. (2002), AL-Hussaini 

and Ahmed (2003a,b), Jaheen (2003), Madi and Raqab (2004), Ahmadi et al. (2005), 

Ahmadi and Doostparast (2006), Abdel-Aty et al. (2007), Al-Aboud and Soliman (2008), 

Ahmadi and MirMostafaee (2009).  

 

A general form of the Burr X distribution is known as the exponentiated Weibull 

distribution. Sartawi and Abu-Salih (1991) and Jaheen (1995, 1996) considered the 

problem of Bayesian estimation in the one-parameter Burr X case. Ahmad et al. (1997) 

considered inference for the stress-strength reliability 𝑅 = 𝑃(𝑌 < 𝑋) where X and Y are 

independent Burr X random variables. While, Surles and Padget (1998) considered 

inference for 𝑅 = 𝑃(𝑌 < 𝑋) for the scaled Burr X distribution. Surles and Padgett (1998) 

considered inference for a scaled version of the Burr X distribution. Ali-Mousa (2001) 

obtained the maximum likelihood, minimum variance unbiased and Bayes estimators of 

the one parameter of the Burr X distribution. In addition, he presented the Bayesian and 
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non-Bayesian confidence intervals for the parameter in closed forms. Furthermore, he 

obtained a Bayesian prediction interval for the 𝑘𝑡ℎ future record in a closed form. For 

more details about exponentiated Weibull see (Nadarajah and Kotz (2006)).  

 

Raqab and Ahsanullah (2001) derived exact expressions for the single and product 

moments of order statistics from the generalized exponential distribution. They used 

these moments to obtain estimators of the location and scale parameters of the model. 

Raqab (2002) derived exact expressions for means, variances and covariances of record 

values from the generalized exponential distribution. Jaheen (2004) derived Bayesian and 

empirical Bayesian estimators for the unknown parameter of the generalized exponential 

distribution based on record values. He obtained the estimates based on the squared error 

and the LINEX loss function. Furthermore, he obtained the prediction bounds for future 

lower record values by using both Bayesian and empirical Bayesian techniques. He, also, 

gave a numerical example to illustrate the results. 

 

Ahmadi et al. (2009) studied the prediction of future k-record based on observed record 

which come from a general class of continuous distributions. They obtained the Bayes 

predictors of the sth future k-record under balanced type loss function. Nadar et al. (2012) 

reviewed and derived some results on record values for some well known distributions 

and based on m records from Kumaraswamy's distribution. They also obtained the 

estimators of the parameters and for the future sth record value, when the m past record 

values have been observed. They used the maximum likelihood and Bayesian 

approaches. Then, they illustrated the findings with actual and computer generated data. 

 

Describing the layout of the paper; Section 2 is devoted to the construction of the new 

EGC of distributions. ML, Bayesian and empirical Bayesian estimators of a new 

introduced parameter are obtained. In addition, Bayesian prediction of future records, 

based on lower record values, is found. Section 3 deals with the application of all the 

mathematical work done in Section 2. The exponentiated Weibull distribution (Burr X) is 

considered in details. Furthermore, same special cases of the exponentiated Weibull 

distribution and other distributions are also been applied. 

2.   Exponentiated General Class  

In this section the idea of the new EGC of distributions is displayed. ML, Bayesian and 

empirical Bayesian estimators based on lower record values are obtained. In addition, 

Bayesian predictions of future records are discussed. 

 

AL-Hussaini and Ahmad (2003a) have introduced a general class denoted by (GC) of 

distributions. It includes the Weibull, compound Weibull, Pareto, beta, Gompertz and 

compound Gompertz among other distributions. The GC of distributions presents the 

populations with distribution function of the form 

> 0,  x,   )](exp[1)( xxF                   (1) 

where,     ,xx   is a non-negative function of x , such that   0,  x  as 
 0x  

and    ,x  as x  and γ is a known parameter or (vector of parameters). 
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The idea of the construction of the new EGC of distributions is to raise the cdf of the GC, 

presented in relation (1), to the power θ, where θ is assumed to be a positive parameter. 
That is, the cdf of the EGC of distributions is expressed in the form 

    .0,,exp1)(  


xxxF       (2) 

Thus, the density function is given by 

           1
exp1exp





 xxxxf ,      ,0, x     (3) 

where,     ,xx   is a non-negative continuous function of x and γ. We assume that γ 

is a known parameter or (vector of parameters). That is, the unique unknown parameter 

of the EGC of distribution is θ. Where,   0,  x  as 
 0x  and    ,x  as 

x . 

2.1  Estimation of the Parameter 

This subsection concerns with the ML and Bayesian and empirical Bayesian estimation 

of the parameter θ of the EGC of distributions, based on lower record values. 

Furthermore, Bayesian prediction of future records is explained.   
 

Suppose that 𝑚 lower record values, mmLLL xXxXxX  )(2)2(1)1( ,,,  , are observed 

from the distribution with cdf and pdf  given, respectively by (2) and (3). ML, Bayesian 

and empirical Bayesian estimators are obtained as follows. 

2.1.1 Maximum Likelihood Estimation 

The likelihood function is given by (see Arnold et al. (1998)) 

𝐿(𝜃|𝑥)=𝑓(𝑥𝑚) ∏ 𝑟(𝑥𝑖)𝑚−1
𝑖=0 , 

where,  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) and  𝑟(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
 ,  

It follows that, 

𝐿(𝜃|𝑥) = 𝜃𝑚 𝑒𝑥𝑝(−𝜃𝜂(𝑥𝑚)) 𝑢(𝑥) ,      (4) 

where,  

𝑢(𝑥) = ∏ 𝜆′(𝑥𝑖)𝑒−𝜆(𝑥𝑖)(1 − 𝑒−𝜆(𝑥𝑖))
−1

,
𝑚

𝑖=1
 

and     

𝜂(𝑥𝑚) = −𝑙𝑛(1 − 𝑒−𝜆(𝑥𝑚)).        (5) 

 

Assuming that the parameter 𝜃 is unknown, the ML estimator (MLE) of 𝜃 is given by 

𝜃𝑀𝐿 = 𝑚 𝜂(𝑥𝑚)⁄ ,         (6) 
where,  𝜂(𝑥𝑚) is expressed in (5). 
 

To study the properties of this estimator, the distribution of 𝜂(𝑥𝑚) is needed. The pdf of 

𝑋𝑚 is given by  

𝑓𝑋𝑚
(𝑥) =

1

𝛤(𝑚)
𝑓(𝑥)[−𝑙𝑛𝐹(𝑥)]𝑚−1. 

That is, 

𝑓𝑋𝑚
(𝑥) =

𝜃𝑚

𝛤(𝑚)
𝜆′(𝑥)𝑒−𝜆(𝑥)(1 − 𝑒−𝜆(𝑥))

𝜃−1
(𝜂(𝑥))

𝑚−1
, 𝑥 > 0,   (7) 

where, 𝜂(𝑥) is given by (5). 
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The pdf of  𝑍 = 𝑚
𝜂(𝑥𝑚)⁄  can be obtained by using simple transformation on (7) and is 

given as,  

𝑓𝑍(𝑧) =
(𝑚𝜃)𝑚

𝛤(𝑚)
𝑒−𝜃𝑚 𝑧⁄ (

1

𝑧
)

𝑚+1

,  >0  ,      (8) 

which is the inverted gamma distribution with parameters (𝑚, 𝑚𝜃).   
 

The expected value of 𝜃𝑀𝐿is  

𝐸(𝜃𝑀𝐿) = 𝐸(𝑍) =
𝑚

𝑚−1
𝜃.        (9) 

 

Therefore, the MLE of 𝜃 is a biased estimator and the unbiased estimator is 

(𝑚 − 1) 𝜂(𝑥𝑚)⁄ . The variance of 𝜃𝑀𝐿 can be shown to be 

𝑉𝑎𝑟(𝜃𝑀𝐿) = 𝑉𝑎𝑟(𝑍) =
𝑚2

(𝑚−1)2(𝑚−2)
𝜃2      (10) 

2.1.2 Bayesian Estimation 

Under the assumption that the parameter 𝜃 is unknown, we can use the conjugate gamma 

prior with pdf  

𝑔(𝜃) =
𝛽𝛿

𝛤(𝛿)
𝜃𝛿−1𝑒−𝛽𝜃 ,     𝜃 > 0,   (𝛽, 𝛿 > 0).     (11) 

 

The posterior density function of 𝜃 given the data, denoted by 𝑞(𝜃|𝑥) is  

𝑞(𝜃|𝑥) =
[𝛽+𝜂(𝑥𝑚)]𝑚+𝛿

𝛤(𝑚+𝛿)
𝜃𝑚+𝛿−1𝑒−𝜃[𝛽+𝜂(𝑥𝑚)].     (12) 

 

Under the squared error loss function, the Bayesian estimator of 𝜃 (denoted by 𝜃𝐵𝑆) is the 

mean of the posterior density and given by 

  .ˆ
0

 dxqBS 


   

 

Therefore, 

𝜃𝐵𝑆 =
𝑚+𝛿

      [𝛽+𝜂(𝑥𝑚)]     
.         (13) 

 

Under the LINEX loss function, the Bayes estimator of 𝜃 (denoted by 𝜃𝐵𝐿) is given by  

𝜃𝐵𝐿 = −
1

𝑎
𝑙𝑛 (𝐸(𝑒−𝑎𝜃)). 

Hence, 

𝜃𝐵𝐿 =
𝑚+𝛿

𝑎
𝑙𝑛 (1 +

𝑎

𝛽+𝜂(𝑥𝑚)
), 𝑎 ≠ 0.       (14) 

2.1.3 Empirical Bayesian Estimation 

When the prior parameters 𝛽 and 𝛿 are unknown, we may use the empirical Bayesian 

approach to get their estimators. Here, we assume that the prior density (11) is belonging 

to a parametric family with unknown parameters. Such parameters are to be estimated 

using past samples. Applying the estimators of 𝜃 given, previously, by (13) and (14). We 

obtain the empirical Bayesian estimators of the parameter 𝜃 based on the squared error 
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and the LINEX loss functions, respectively. For more details on the empirical Bayesian 

approach, see Maritz and Lwin (1989).  

 

When the current (informative) sample is observed, suppose that 𝑛 past similar samples 

𝑋𝑗,𝐿(1), 𝑋𝑗,𝐿(2), … , 𝑋𝑗,𝐿(𝑚) , 𝑗 = 1,2, … , 𝑛 are available with past realization 𝜃1, 𝜃2, … , 𝜃𝑛 of 

the random variable 𝜃. Each sample is assumed to be lower record sample of size 𝑚 

obtained from the distribution with pdf given by (3). The likelihood function of the 𝑗𝑡ℎ 

sample is given by (4) with 𝑥𝑚 being replaced by𝑥𝑗,𝑚. For a sample j, j = 1, 2,., n  the 

MLE of the parameter 𝜃𝑗  can be rewritten by using (6). 

𝜃𝑗 = 𝑍𝑗 = 𝑚 𝜂(𝑥𝑗,𝑚)⁄ .       (15) 

 

The conditional pdf of  𝑍𝑗, j = 1,2,…, n, for a given 𝜃𝑗  is obtained from (8) in the form   

𝑓(𝑧𝑗|𝜃𝑗) =
(𝑚𝜃𝑗)

𝑚

𝛤(𝑚)
[

1

𝑧𝑗
]

𝑚+1

𝑒𝑥𝑝 − (𝑚𝜃𝑗 𝑧𝑗)⁄ ,     𝑧𝑗 > 0.    (16) 

 

Which is the inverted gamma distribution with parameters (m, m𝜃𝑗). The marginal pdf of 

𝑧𝑗  , 𝑗 = 1,2, … , 𝑛, is the compound distribution 

𝑓𝑍𝑗
(𝑧𝑗) = ∫ 𝑓(𝑧𝑗|𝜃𝑗) 𝑔(𝜃𝑗)

∞

0

 𝑑𝜃𝑗  , 

where  jjzf   and g  j  are given by (16) and (11), respectively, after indexing θ in 

(11) by j. That is, 

𝑓𝑍𝑗
(𝑧𝑗) =

𝛽𝛿𝑚𝑚

𝐵(𝑚,𝛿)
×

𝑧𝑗
𝛿−1

(𝑚+𝛽𝑧𝑗)
𝑚+𝛿   ,  𝑧𝑗 > 0.      (17) 

 

The method of moments estimators of the parameters 𝛽 and 𝛿 are given respectively by 

�̂� =
𝑚𝑠1

(𝑠2−𝑠1
2)(𝑚−1)

  and  𝛿 =
𝑠1

2

𝑠2−𝑠1
2 .      (18) 

 

Then, the empirical Bayesian estimators of the parameter 𝜃 under the squared error and 

the LINEX loss functions are given, respectively, by 

𝜃𝐸𝐵𝑆 =
𝑚+�̂�

�̂�+𝜂(𝑥𝑚)
,         (19) 

and 

𝜃𝐸𝐵𝐿 =
𝑚+�̂�

𝑎
 𝑙𝑛 (1 +

𝑎

�̂�+𝜂(𝑥𝑚)
),     𝑎 ≠ 0,      (20) 

where, 𝛿 and �̂� are the estimators of 𝛽 and 𝛿 given by (18). 

2.2 Bayesian Prediction of Future Records 

Suppose that we have m lower records 𝑋𝐿(1) = 𝑥1, 𝑋𝐿(2) = 𝑥2, … , 𝑋𝐿(𝑚) = 𝑥𝑚 from the 

distribution with cdf and pdf given, respectively, by (2) and (3). Based on such a record 

sample, Bayesian prediction is needed for the 𝑠𝑡ℎ lower record, 1 < m < s. The 

conditional pdf of Y given the parameter 𝜃 is given by  

𝑓(𝑦|𝜃) =
[𝐻(𝑦)−𝐻(𝑥𝑚)]𝑠−𝑚−1

𝛤(𝑠−𝑚)
×

𝑓(𝑦)

𝐹(𝑥𝑚)
   , 0 < y < 𝑥𝑚 < ∞,     (21) 

where H(.) = - ln F(.).  
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For the pdf of the EGC of distribution,  yf  in (21) takes the form 

𝑓(𝑦|𝜃) =
𝜃𝑠−𝑚𝜆′(𝑦)

𝛤(𝑠−𝑚)
[𝑙𝑛 (

1−𝑒−𝜆(𝑥𝑚)

1−𝑒−𝜆(𝑦) )]
𝑠−𝑚−1

[
1−𝑒−𝜆(𝑦)

1−𝑒−𝜆(𝑥𝑚)]
𝜃

𝑒−𝜆(𝑦)

1−𝑒−𝜆(𝑦),   (22) 

0 < y < 𝑥𝑚 < ∞.  
 

The Bayes predictive density function of  𝑌 = 𝑋𝐿(𝑠) given the past m lower records is  

𝑓∗(𝑦|𝑥) = ∫
𝜃

 𝑓(𝑦|𝜃) 𝑞(𝜃|𝑥) 𝑑𝜃,       (23) 

 

Where  yf  and  xq   are given by (22) and (12), respectively. Therefore, the result 

of the integral in (23) is 

𝑓∗(𝑦|𝑥) =
𝜆′(𝑦)

𝐵(𝑠−𝑚,𝑚+𝛿)
[𝑙𝑛 (

1−𝑒−𝜆(𝑥𝑚)

1−𝑒−𝜆(𝑦) )]
𝑠−𝑚−1

𝑒−𝜆(𝑦)

1−𝑒−𝜆(𝑦)

[𝛽+𝜂(𝑥𝑚)]𝑚+𝛿

[𝛽+𝜂(𝑦)]𝑠+𝛿 , 0 < 𝑦 < 𝑥𝑚 < ∞  (24) 

 

Hence, the Bayesian prediction bounds 𝑌 = 𝑋𝐿(𝑠), are obtained by evaluating 

𝑃(𝑌 ≥ 𝑡|𝑥), for some positive t. It follows, from (24) that 

𝑃(𝑌 ≥ 𝑡|𝑥)  = ∫ 𝑓∗𝑥𝑚

𝑡
(𝑦|𝑥) 𝑑𝑦. 

 

That is, 

𝑃(𝑌 ≥ 𝑡|𝑥) = 1 −
1

𝐵(𝑚+𝛿,𝑠−𝑚)
𝐼𝐵𝜀(𝑚 + 𝛿, 𝑠 − 𝑚).     (25) 

And 

𝜀 =
𝛽+𝜂(𝑥𝑚)

𝛽+𝜂(𝑡)
 < 1. 

 

For the special case, when s=m+1, which is practically of special interest. The Bayesian 

prediction for a future lower record value 𝑋𝑚+1 can be obtained by using (25) as 

𝑃(𝑋𝑚+1 ≥ 𝑡1|𝑥) = 1 − [
𝛽+𝜂(𝑥𝑚)

𝛽+𝜂(𝑡1)
]

𝑚+𝛿

.     (26) 

 

A 100 τ% Bayesian prediction interval for 𝑌 = 𝑋𝑚+1 is  

𝑃[𝐿𝐿(𝑋) < 𝑌 < 𝑈𝐿(𝑋)] = 𝜏,  

where 𝐿𝐿(𝑋) and 𝑈𝐿(𝑋) are the lower and upper limits satisfying the following 

equations 

𝑃(𝑌 > 𝐿𝐿(𝑋)|𝑥) = (1 + 𝜏) 2⁄ ,       (27) 

and 

𝑃(𝑌 > 𝑈𝐿(𝑋)|𝑥) = (1 − 𝜏) 2⁄  .      (28) 

 

It follows from (26), (27) and (5) that 

𝜆 (𝐿𝐿(𝑋)) = −𝑙𝑛 {1 − 𝑒𝑥𝑝 [𝛽 − (𝛽 + 𝜂(𝑥𝑚)) (
1−𝜏

2
)

−1 𝑚+𝛿⁄

]}.   (29)  

 

Similarly, from (26), (28) and (5), it can be shown that 

𝜆 (𝑈𝐿(𝑋)) = −𝑙𝑛 {1 − 𝑒𝑥𝑝 [𝛽 − (𝛽 + 𝜂(𝑥𝑚)) (
1+𝜏

2
)

−1 𝑚+𝛿⁄

]}.   (30) 
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3.   Applications 

In this section, we apply the exponentiated Weibull distribution to the classical Bayesian 

and empirical Bayesian estimation of the parameter 𝜃 of the EGC of distributions based 

on lower record values. In addition, Bayesian prediction of the future records is applied. 

However, the application of some special cases of the exponentiated Weibull distribution 

and the exponentiated Gompertz distribution are presented in Table 1 and Table 2. 

3.1 Maximum Likelihood Estimation 

The cdf and the pdf of a random variable having the exponentiated Weibull distribution 

are given, respectively, by 

       𝐹(𝑥) = [1 − exp (−(𝜇𝑥)𝛼)]𝜃,         𝑥 > 0 , 𝜇 > 0 , 𝛼 > 0  𝑎𝑛𝑑 𝜃 > 0  (31) 

and 

𝑓(𝑥) = 𝜃𝛼𝜇𝛼𝑥𝛼−1𝑒−(𝜇𝑥)𝛼
[1 − exp(−(𝜇𝑥)𝛼)]𝜃−1, 𝑥 > 0, 𝛼 > 0, 𝜇 > 0 𝑎𝑛𝑑 𝜃 > 0  (32) 

 

Where, 𝜃 𝑎𝑛𝑑 𝛼 are shape parameters and µ is a scale parameter. 

 

Suppose that the   lower record values, 𝑋𝐿(1) = 𝑥1, 𝑋𝐿(2) = 𝑥2, … , 𝑋𝐿(𝑚) = 𝑥𝑚, are  from 

the exponentiated Weibull distribution with cdf and pdf given respectively by (31), (32). 

Recall equation (2), one can see that ),(,)()(    xx , and 1)(   xx .  The 

likelihood function is 

𝐿(𝜃|𝑥) = (𝜃𝛼𝜇𝛼)𝑚𝑒𝜃𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼
) ∏

𝑒−(𝜇𝑥𝑖)
𝛼

1−𝑒−(𝜇𝑥𝑖)
𝛼

𝑚
𝑖=1 𝑥𝑖

𝛼−1.    (33) 

 

Assuming that the parameter 𝜃 is unknown, the MLE of 𝜃 is given by (6), which can be 

rewritten as 

𝜃𝑀𝐿 =
𝑚

−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼
)
 .        (34) 

 

To study the properties of this estimate the distribution of 𝜂(𝑥𝑚) is needed. Applying 

equation (7) the pdf of 𝑋𝑚 is then given by 

𝑓𝑥𝑚
(𝑥) =

𝜃𝑚𝛼𝜇𝛼

Γ(𝑚)
𝑥𝛼−1𝑒−(𝑥𝜇)𝛼

(1 − 𝑒−(𝜇𝑥)𝛼
)

𝜃−1
(−𝑙𝑛(1 − 𝑒−(𝜇𝑥)𝛼

))
𝑚−1

,  x > 0. (35) 

 

Hence, the pdf of  𝑍 = 𝑚
𝜂(𝑥𝑚)⁄  is given by (8).Which is the inverted gamma 

distribution with parameters (𝑚, 𝑚𝜃). That is, the expected value and the variance of ML̂  

are given respectively, by (9) and (10). 

3.2 Bayesian Estimation 

Under the assumption that the parameter 𝜃 is unknown, we can use the conjugate gamma 

prior with pdf which is given by (11). The posterior density function of 𝜃 given the data, 

denoted by 𝑞(𝜃|𝑥), can be obtained by using (11) and (33) as 

𝑞(𝜃|𝑥) =
[𝛽−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼

)]
𝑚+𝛿

𝛤(𝑚+𝛿)
𝜃𝑚+𝛿−1𝑒−𝜃[𝛽−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼

)].   (36) 
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Under a squared error loss function, the Bayesian estimator of 𝜃, 𝜃𝐵𝑆 is given by  

𝜃𝐵𝑆 =
𝑚+𝛿

[𝛽−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼
)]

.        (37) 

 

Under the LINEX loss function, the Bayesian estimator of 𝜃, 𝜃𝐵𝐿 is given by  

𝜃𝐵𝐿 =
𝑚+𝛿

𝑎
𝑙𝑛 (1 +

𝑎

𝛽−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼
)
), 𝑎 ≠ 0.    (38) 

3.3 Empirical Bayesian Estimation 

When the prior parameters 𝛽 and 𝛿 are unknown, we may use the empirical Bayesian 

approach to get their estimates. Since the prior density (11) belongs to a parametric 

family with unknown parameters, such parameters are to be estimated using past samples. 

Applying these estimates in (37) and (38), we obtain the empirical Bayes estimate of the 

parameter 𝜃 based on the squared error and the LINEX loss functions, respectively.  
 

When the current (informative) sample is observed, suppose that 𝑛 past similar samples 

𝑋𝑗,𝐿(1), 𝑋𝑗,𝐿(2), … , 𝑋𝑗,𝐿(𝑚) , 𝑗 = 1,2, … , 𝑛 are available with past realization 𝜃1, 𝜃2, … , 𝜃𝑛of 

the random variable 𝜃. Each sample is assumed to be lower record sample of size 𝑚 

obtained from the distribution with pdf given by (32). The likelihood function of the 𝑗𝑡ℎ 

sample is given by (33) with 𝑥𝑚 being replaced by 𝑥𝑗,𝑚. For a sample j, j = 1, 2,…, n , the 

MLE of the parameter 𝜃𝑗  can be written by using (15) as 

𝜃𝑗 = 𝑍𝑗 =
𝑚

−𝑙𝑛(1−𝑒
−(𝜇𝑥𝑗,𝑚)

𝛼

)

.       (39)  

 

The conditional pdf of  𝑍𝑗 , j = 1,2,…, n , for a given 𝜃𝑗  is given by (16).Which is the 

inverted gamma distribution with parameters (m , m𝜃𝑗). The marginal pdf of 𝑧𝑗  , 𝑗 =

1,2, … , 𝑛, is given by (17). 

 

Then, the empirical Bayesian estimates of the parameter 𝜃 under the squared error and 

the LINEX loss function are given by (19) and (20), respectively, as 

𝜃𝐸𝐵𝑆 =
𝑚+�̂�

�̂�−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼
)
,        (40) 

and  

𝜃𝐸𝐵𝐿 =
𝑚+�̂�

𝑎
 𝑙𝑛 (1 +

𝑎

�̂�−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼
)
),     𝑎 ≠ 0,     (41) 

where, �̂� and  𝛿 are the moment estimates of 𝛽 and 𝛿  given by (18). 

3.4 Bayesian Prediction of Future Records 

Suppose that we have m lower records 𝑋𝐿(1) = 𝑥1, 𝑋𝐿(2) = 𝑥2, … , 𝑋𝐿(𝑚) = 𝑥𝑚 from the 

distribution with cdf and pdf are given respectively by (31) and (32). based on such a 

record sample, Bayesian prediction is needed for the 𝑠𝑡ℎ lower record, 1 < m < s. The 

conditional pdf of Y given the parameter 𝜃 is given by (22), it can be written as 

𝑓(𝑦|𝜃) =
𝜃𝑠−𝑚𝛼𝜇𝛼𝑦𝛼−1

Γ(𝑠−𝑚)

𝑒−(𝜇𝑦)𝛼

1−𝑒−(𝜇𝑦)𝛼 [𝑙𝑛 (
1−𝑒−(𝜇𝑥𝑚)𝛼

1−𝑒−(𝜇𝑦)𝛼 )]
𝑠−𝑚−1

[
1−𝑒−(𝜇𝑦)𝛼

1−𝑒−(𝜇𝑥𝑚)𝛼]
𝜃

 ,  0 < y < 𝑥𝑚 < ∞ (42) 



Inference for Exponentiated General Class of Distributions Based on Record Values 

Pak.j.stat.oper.res.  Vol.XIII  No.3 2017  pp575-587 583 

The Bayes predictive density function of  𝑌 = 𝑋𝐿(𝑠) given the past m lower records is 

given by (24), it can be written in the form 

𝑓∗(𝑦|𝑥) =
𝛼𝜇𝛼𝑦𝛼−1

Β(𝑠−𝑚,𝑚+𝛿)
[𝑙𝑛 (

1−𝑒−(𝜇𝑥𝑚)𝛼

1−𝑒−(𝜇𝑦)𝛼 )]
𝑠−𝑚−1

𝑒−(𝜇𝑦)𝛼

1−𝑒−(𝜇𝑦)𝛼

[𝛽−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼
)]

𝑚+𝛿

[𝛽−𝑙𝑛(1−𝑒−(𝜇𝑦)𝛼
)]

𝑠+𝛿  ,  

0 < y < 𝑥𝑚 < ∞.         (43) 

 

Bayesian prediction bounds 𝑌 = 𝑋𝐿(𝑠), are obtained by evaluating 𝑃(𝑌 ≥ 𝑡|𝑥), for some 

positive t. Which is given by (25). 

 

For the special case, when s=m+1, which is practically of special interest. The Bayesian 

prediction for a future lower record value 𝑋𝑚+1 can be obtained by using (26) as 

𝑃(𝑋𝑚+1 ≥ 𝑡1|𝑥) = 1 − [
𝛽−𝑙𝑛(1−𝑒−(𝜇𝑥𝑚)𝛼

)

𝛽−𝑙𝑛(1−𝑒−(𝜇𝑡1)𝛼
)

]

𝑚+𝛿

.    (44) 

 

A 100 τ% Bayesian prediction interval for 𝑌 = 𝑋𝑚+1 is such that 

𝑃[𝐿𝐿(𝑋) < 𝑌 < 𝑈𝐿(𝑋)] = 𝜏, 

where 𝐿𝐿(𝑋) and 𝑈𝐿(𝑋) are the lower and upper limits satisfying (27) and (28), it 

follows by using (29) that 

𝐿𝐿(𝑋) =
1

𝜇
{𝑙𝑛 {1 − 𝑒𝑥𝑝 [𝛽 − (𝛽 − 𝑙𝑛(1 − 𝑒−(𝜇𝑥𝑚)𝛼

)) (
1−𝜏

2
)

−1
𝑚+𝛿⁄

]}

−1

}

1
𝛼⁄

 (45) 

 

Similarly, from (30), one can find that  

𝑈𝐿(𝑋) =
1

𝜇
{𝑙𝑛 {1 − 𝑒𝑥𝑝 [𝛽 − (𝛽 − 𝑙𝑛(1 − 𝑒−(𝜇𝑥𝑚)𝛼

)) (
1+𝜏

2
)

−1
𝑚+𝛿⁄

]}

−1

}

1
𝛼⁄

  (46) 

3.5 Special cases of the Exponentiated Weibull Distribution and the Exponentiated 

Gompertz Distribution 

This subsection concerns with some special cases of the exponentiated Weibull 

distribution and the exponentiated Gompertz distribution. The ML, Bayesian and 

empirical Bayesian estimation, based on lower record values, of the parameter of each of 

the considered special cases and the exponentiated Gompertz distribution are obtained. In 

addition, Bayesian prediction of future records are found.  

• Some special cases of the exponentiated Weibull distribution can be seen as follows: 

1. When the parameters α and µ equal the value 1, the exponentiated Weibull 

distribution reduces to the  generalized exponential distribution with density 

function 

  1
1)(

 


 xx eexf ;  .0,0  x  
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2. When the parameter µ equals 
2

1
 and the parameter α is 2, the exponentiated 

Weibull distribution reduces to the exponentiated Reyleigh with density function 

given by 
1

2

1

2

1

2

22

1)(










































xx

eexxf ;  .0,0  x  

3. When the parameter µ is equal 


1
 and the parameter α is 2, the exponentiated 

Weibull distribution reduces to the Burr X distribution with density function 

given by 
1

2

22

1
2

)(












































xx

eexxf ;  .0,0  x  

Table 1 represents the cdf, ),(x  ,ˆ
ML ,ˆ

BS  ,ˆ
BL  and the Bayesian prediction, lower and 

upper limits of future records of the above special cases of the exponentiated Weibull 

distribution. 

• One can write the cdf of the exponentiated Gompertz distribution as follows 

𝐹(𝑥) = (1 − 𝑒−𝑐(𝑒𝑎𝑥−1))𝜃; .0,,,0  cax  
 

Since, the exponentiated Gompertz distribution is a member of the EGC of distributions, 

we write 

 1)(  xaecx . 

 

The ML estimator of the parameter   is 

  
.

1ln

ˆ
1

 xaecML
e

m
  

 

However, the Bayesian estimators of the parameter  under the squared error loss 

function and the LINEX loss function are given , respectively, by 

  
,

1ln

ˆ
1


 xaecBS

e

m




  

and 

  
.

1ln
1lnˆ

1 



















 xaecBL
e

a

a

m




  

 

Finally, Bayesian prediction lower and upper limits of future records of the exponentiated 

Gompertz distribution are given by 

    ,
2

1
1lnexp1ln)(

1

1






































 










m

ec r
eXLL

xa
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and 

    .
2

1
1lnexp1ln)(

1

1






































 










m

ec r
eXUL

xa

 

The results can be used to estimate parameters of other exponentiated distaributions that 

can be written as (2).  

Table 1: Estimators and Bayesian prediction of the parameter   of the special 

cases of the exponentiated Weibull distribution 

 Generalized exponential Exponentiated Reyleigh Burr X 

Cdf  xexF  1)(     )1()(
2

2
1 x

exF


  
   )1()(

2x

exF


  

)(x  X 

2

1
2












x
 

2












x
 

ML̂  

 mx
e

m


 1ln
 

 











2

2
1

1ln 
mx

e

m
 

 











2

1ln 
mx

e

m
 

BS̂  

 mx
e

m






1ln


 

 













2

2
1

1ln 


mx

e

m
 

 













2

1ln 


mx

e

m
 

BL̂  

 













 mx

e

a

a

m

1ln
1ln




 



a

m 
 

 































2

2
1

1ln

1ln

mx

e

a  




a

m 
 

 































2

1ln

1ln

mx

e

a
 

Lower 

limit 
))1ln((exp[1ln{ mx

e


   

         1

2
1 ]}

1  


  m  

   


 m
1

2
1exp[1{ln{  

 
2

1
2

2
1

}))]}1ln(( 1
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mx

e  

   


 m
1

2
1exp[1{ln{  

 
2

1
2

}))]}1ln(( 1
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mx

e  

Upper 

limit 
))1ln((exp[1ln{ mx

e


   

         1

2
1 ]}

1  


  m  

   


 m
1

2
1exp[1{ln{  

 
2

1
2

2
1

}))]}1ln(( 1
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mx

e  
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
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2
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