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Abstract

In statistical literature, estimation of R = P(X < Y) is a commonly-investigated problem, and consequently,
there have been considerable number of studies dealing with its estimation of it under simple random
sampling (SRS). However, in recent years, the ranked set sampling (RSS) method have been widely-used in
the estimation of R. In this study, we consider the estimation of R when the distribution of the both stress and
strength are Weibull under the modification of RSS, which are extreme ranked set sampling (ERSS), median
ranked set sampling (MRSS) and percentile ranked set sampling (PRSS). We obtain the estimators of R using
the maximum likelihood (ML) and the modified maximum likelihood (MML) methodologies under these
modifications. Then the performances of proposed estimators are compared with the corresponding ML and
MML estimators of R using SRS via a Monte-Carlo simulation study.

Keywords: Stress-strength model, Extreme ranked set sampling, Median ranked set
sampling, Percentile ranked set sampling, Efficiency.

1. Introduction

In the context of reliability, making statistical inferences concerning R = P(X <Y) has
received considerable attention in the literature. In this sense, Y represents the strength of
a system which is subject to stress X. It is clear that, the system fails when stress exceeds
strength. Therefore, the stress-strength model R = P(X <Y) is a measure of system
reliability. In general, the problem of the estimation of R is studied under SRS data. For
example, Church and Harris (1970), Tong (1977), Constantine et al. (1986) and Kundu and
Gupta (2006) all discuss this problem when X and Y are two independent normal,
exponential, gamma and Weibull random variables; for more detailed information, see also
Kotz et al. (2003). Nevertheless, in recent years, several authors have considered the
estimation of R based ranked set sampling (RSS) using both parametric and non-parametric
methods. For example, Sengupta and Mukhuti (2008a, b), Mutlak et al. (2010), Dong et al.
(2013) and Akgiil and Senoglu (2017) tackled this problem using parametric methods.
Mahdizadeh and Zamanzade (2016a,b, 2017), Dastbaravarde and Zamanzadeh (2017)
discussed this problem using non-parametric methods.

The RSS method was first proposed by Mcintyre (1952) as a cost-effective and more
structural alternative approach to SRS. In RSS procedure, without any certain
measurement, sampling units can be ranked easily and cheaply with respect to
characteristic of interest. The efficiency of RSS according to SRS in different statistical
methods has been investigated by several researchers, see Takahasi and Wakimoto (1968),
Chen et al. (2004) and Noughabi (2017).
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While sampling units are constituted in the RSS method, due to not doing certain
measurements, the possibility of doing error in ranking increases. In order to overcome this
problem, various modifications of RSS have been suggested; see Samawi et al. (2017),
such as extreme ranked set sampling, ERSS (Samavi et al., 1996), median ranked set
sampling, MRSS (Multtlak, 1997), double ranked set sampling, DRSS (Al-Saleh and Al-
Kadiri, 2000), percentile ranked set sampling, PRSS (Muttlak, 2003), L ranked set
sampling, LRSS (Al-Nasser, 2007) and neoteric ranked set sampling, NRSS (Zamanzade
and Al-Omari, 2016). Besides these studies, several authors have considered the estimation
of the parameters of well-known distributions using RSS or modifications of it. For
example, the estimation of unknown parameters of exponential, extreme-value, logistic,
Weibull and Pareto distributions was studied by Lam et al. (1994), Bhoj (1997), Abu-
Dayyeh et al. (2004), Helu et al. (2010) and Abu-Dayyeh et al. (2013). Also, Shaibu and
Muttlak (2002, 2004) were based on RSS and its modifications.

In this paper, we estimate system reliability R under the ERSS, MRSS and PRSS methods
where stress X~Weibull(p, a,) and the strength Y~Weibull(p, o,) are both independent.
The reason for using these particular modifications is for illustration and brevity. Other
modifications may also be conducted in a similar manner.

The probability density function (pdf) and the cumulative density function (cdf) of two
parameter Weibull distribution with scale parameter o and shape parameter p are given as

shown below
P

f,p,0) =2xP"te”s ,x>0,p>0,0>0, Q)

and
xP
F(x,p,c)=1—e ¢ ,x>0,p>0,0>0, (2
respectively. Using these pdf and cdf, it is easy to obtain that the system reliability R is
derived as follows

(o]

R=PX<Y)= j Fy (D) f, (t)dt

0

‘ @\ p @
- j <1 —e ‘”>_tp‘1e oz dt
)

)

= (3)

o, + 0,

Similar to Akgiil and Senoglu (2014) and Akgiil (2015), we obtain the ML estimators of R
using two different approaches. First, the likelihood equations are solved using numerical
methods. Second, we solve the likelihood equations by using the methodology called as
modified maximum likelihood (MML), as proposed by Tiku (1967, 1968). This is based
on the idea of linearization of non-linear terms in likelihood equations by using the Taylor
series expansion around the expected values of the standardized order statistics. We then
compare the performances of the proposed estimators with the corresponding estimators of
R based on SRS using an extensive Monte Carlo simulation study. Mean square error
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(MSE) criterion is used in comparisons to determine the most efficient estimator and
sampling method.

The rest of the paper is organized as follows: In Section 2, we give brief descriptions
regarding modifications of RSS. We obtain the ML estimators of R based on ERSS, MRSS
and PRSS in Section 3. In Section 4, we derive the MML estimators of R based on the
modifications of RSS. Section 5 is devoted to the Monte-Carlo simulation study.
Comments and conclusions are given in the final section.

2. Descriptions of the modifications

In this section, we give brief descriptions of the ERSS, MRSS and PRSS methods.
Definitions of notations frequently used in this section and in the rest of the paper are given
as shown follows

m: set sizes,

r: number of cycles,

n: sample sizes.

2.1 ERSS Method

ERSS, first proposed by Samawi et al. (1996), is more efficient than SRS when underlying
distribution is symmetric. In addition, the usage of ERSS is more practical than the usage
of RSS, because we are only interested in selecting the smallest and largest observations
and measuring them.

We now present the procedure of ERSS as shown below
Step 1. Select m random sets via SRS, each of size m, called as a cycle.

Step 2. Rank the units with respect to variable of interest by virtual comparisons, expert
opinion or axillary variables.

Step 3. If set size m is odd,
i.  First, the smallest ranked unit is selected from the first (m — 1)/2 sets.
ii.  Then, the median ranked unit is selected from the next set.
iii.  Finally, the largest ranked unit is selected from the second (m — 1)/2 sets.
If set size m is even,

i.  The smallest ranked unit is selected from the first m/2 sets.
ii.  Then, the largest ranked unit is selected from the second m/2 sets.

Step 4. Repeat Steps 1-3 r times, until the sample size n = mr is obtained.

2.2 MRSS Method

The MRSS method was proposed by Muttlak (1997) to reduce the ranking error which is
encountered in the RSS method. It also increases the efficiency of the estimator for both
perfect and imperfect ranking.

The procedure of MRSS is exactly the same as the procedure of ERSS except for Step 3.
Therefore, we just give the definition of Step 3 for brevity:
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Step 3. If set size m is odd,
I.  The median ranked unit is selected from each ordered set.
If set size m is even,
I.  The (m/2)th smallest ranked unit is selected from the first m/2 sets.

ii.  Then, (m/2 + 1)th smallest ranked unit is selected from the second m/2
sets.

2.3 PRSS Method

The PRSS method was proposed by Muttlak (2003) to estimate the population mean. This
method has practical usage according to RSS, since we only select and measure the pth
and qth percentile of the sample. Here, 0 < p < 1 and g = 1 — p. Therefore, the PRSS
method reduces the ranking error compared to the RSS method.

The procedure for the PRSS method is summarized as follows:
From the same reasons given in subsection 2.2, we will define the Step 3.

Step 3. If set size m is odd,

i.  First, the (p(m + 1))th the smallest ranked unit is selected from the first
(m—1)/2 sets

ii.  Then, the median ranked unit is selected from the following set.

iii.  Finally, the (q(m + 1))th the smallest ranked unit is selected from the
second (m — 1)/2 sets.

If set size m is even,
i. The (p(m + 1))th smallest ranked unit is selected from the first (m/2) sets.
ii. The (q(m + 1))th the smallest ranked unit is selected from the second
(m/2) sets.

Here, it should be noted that (p(m + 1)) and (q(m + 1)) represent the nearest integer
value of p(m + 1) and q(m + 1), respectively.

3. ML Estimators of R

In this section, we obtain the ML estimators of R based on the modifications of RSS namely
ERSS, MRSS and PRSS. As earlier stated, the stress X~Weibull(p, o;) and the strength
Y~Weibull(p, o,) are both independent. We also give a number of useful notations to be
used throughout the paper as shown below:

m, and m,,: the set sizes corresponding to X and Y, respectively.

7, and ,,: the number of cycles corresponding to X and Y, respectively.

n and m: sample sizes corresponding to X and Y, respectively.
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First of all, we obtain the likelihood equations for estimating the scale parameters o; and
o, and as well as the shape parameter p for the modifications of RSS separately.

Likelihood equations for ERSS:

Case 1: Odd set sizes.
Let

. m . my+1 . my+1 .
X(l)lCJl == 1, ey (m3;+1)ic,l = X X(mx)lc,l = ); + 1; -"mxac - 1' ...,Tx
and
. my—l . my+1 . my+1 o
Youwi=1.., (my+1>jl,] = . +1,.my,l=1,..,7%
2

be ERSS samples. Here, let Xy, X(’”X“)ic and X, yic be the smallest, median and
2

largest order statistics from the ith set of size m, of the cth cycle, respectively. Similarly,
let Yery i, Y(my;l)ﬂ and Y, y;; be the smallest, median and largest order statistics from the

jth set of size m,, of the Ith cycle, respectively.

Then, the likelihood function of the ERSS is shown below

mx 1
1_[ 1_[ fl mx(x(l)lc) l_lfmxﬂ x( mx+1 mx+1 )1_[ 1_[ fmx mx( (mx)w)
c=1 i= 2 ] mx_“

my—

Ty my

Ty —5 Ty
1_1[ 1_1[ fl:my (y(l)jl) Hfmg;ﬂ:my (y(mJ;H)mJ;Hl) 1_[ 1_[ fmy:my (y(my)ﬂ) Q)
=1 j= -

1=1 my+1

j="Y
where

frome (X)) = maf (x0y)[1 = 1*"(’6(1))]mx_1_1 (5)
Frime (Xamg) = Maf () [F ()] (6)

my—1 my—1

f"ﬁ“:mx(X<"%“>)=((%1')!)zf (xpzeey ) [ ()| © [1=F (xemy)] 0 @

2

see equations (1) and (2) for f(x) and F(x). Similarly, f1:my(Y(1)), finyim, (y(my)) and
fmy+1 (y(my+1)) are defined as in (5), (6) and (7), respectively.
z My T2

The ML estimators of the unknown parameters p, o, and o, are the solutions of the
following likelihood equations:
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T m' ™ m'
dIn L _n+m m,
3 Zzln X(1)ic — sz(l)lc Inx()ic + Z Z In X(n,ic
c 1i=1 c=1i=1 c=1i=m'+2
1 - x(m )ic In X(my)ic
x(m )ic In x(mx)w o1
c11m+2 Cllm"'ze(mx)lc -1
Ty m'' Ty m'
+Zzlny(1),z——zzy(1)ﬂ 1n3’(1)11+z 2 In Y (m, )t
1] 1 =1 j=1 =1 j=m'"+2
Ty My
Z Z 2 ny ~1 Y(my )it MY (my) 1
(my)jt (my)ll Z P
= jemz 02 =1 j=m'"+2 ey(my)”/az -1
m +1 & P
+ Z InX (' 1)ym’ v1c = G—Z X (on/ 4 1)m! +1c X (m' +1)m’ +1¢
c=1 1 c=1
’ "x 5P Inx "
m x(m’+1)m’+1c (m'+1)m'+1c
+O'_ /o + Z lny(m”+1)m”+1l
14 (m +1)m’+1c/ 1 _ 1 =1
ry
m” +1
Z y(m"+1)m”+1l InY(mr 4+ 1)m 411
5 VP 10 Y (4 10
m " " m ' +1)m "+
Lm (m""+1)m/" +11 —0, (8)
0'2 - y(mll+1)mll+1l/ 2 1
™ m'
dinL n 4 ZZ Z Z
= — — e X x
ao_l 1 < ll - (1)lC el m+2 (mx)lc
_ —12 Z X(myic L +1z p
2 2 "+1)m'+1
91 c=1i=m/+2€ (mx)ic/al -1 91 c=1 (m Fmee
m’ " xp 1 1
_m (m +1)m +1c _ 0’ (9)
o? x7 /o1
1 5e (m’+1)m’+1c -1
Ty m'
dinL m + m,, Z Z z Z
9o, 1] ly(l)ﬂ o2 o m”+2y(my)ﬂ
— 12 2 Y(my)ﬂ m” + 12
——2 Y(m" +1)m" +11
%2 1] m+2 e (my)ﬂ/az - 1 e
n ry y
_m_ (m"+1)m'" +11 —0, (10)

2 p
03 =1 ey(m"+1)m”+1l/02 -1

m,—1 m,—1
where m’' = "2 .m' = yz .
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Case 2. Even set sizes.

Let
. mx . mx
Xt =1, o U X(mx)ic,l == +1,.my; c=1,..,1
and

. m . m
Yayui =1, ...,Tyu Y(my)jl,] = Ty+ 1,.my;l=1,.,n

be ERSS samples. Here, X(1yic: X(m,)ic: Y(1);u and Y(my)ﬂ are defined as in Case 1. Then
the likelihood function based on ERSS is given by

nﬂflmx(x(l)w)l_[ 1_[ fmxmx(x(mx)w)

c=1 i= cll—

]_[ﬂflmy(ymﬂ)ﬂ 1_[ Fmyymy (Yomp)11)- (11)

]— y+1

See Case 1 for the definitions of fi., (X(yic)s fingm, (Xmypic)s fl:my(y(l)ﬂ) and
fmy:my (y(my)jl)'

REMARK: It should be noted that we do not give the likelihood equations here and in the
rest of the paper to avoid repetition. Therefore, we only give the likelihood functions for
the sampling procedure ERSS, MRSS and PRSS when the set sizes are odd and even. The
only exception is Section 4 (i.e., ERSS procedure, Case 1). The solutions of the likelihood
equations are given at the end of this section for the modifications of RSS, since the
likelihood equations for ERSS, MRSS and PRSS are more or the less the same in each case.
The main objective for doing this is for the sake of brevity. Likelihood equations for each
modification and case are available upon request from the first author of this paper.

Likelihood functions for MRSS:
Case 1. Odd set sizes.

Let
X(m,;“)ic,i =1,...,my,c=1,..,1r and Y(m3;+1)ﬂ,j =1,..,my,l=1,.,75

be the MRSS samples. Then the likelihood function is shown below

anmx'H x( mt1) )E[Hfmyﬂ ( my+1)jl). (12)

For the pdf of the ( ) th order statistics, see equation (7).
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Case 2. Even set sizes.
Let

. my . my . _
X(mx)l.c,l =1, ""TUX(%H)' L= +1,.my; c=1,..,1

c

Y(?)]l"] = 11 "-J% U Y(?‘l‘l)]l’] = %"l’ 1, ---my; l == 1, ...,Ty,

be the MRSS samples. Then the likelihood function is given by

ﬂﬂfmx (] | ﬂ fossam, (o)

c=1 i= c= 11_
anﬂmy( ﬂ)ﬂ l_y[ fm y+1my<( )ﬂ> (13)
B =—2+1

where s N

Feom (v29) = iz () e )] [1-rlom)]” a9

and

Srisim, (x(%l)) = mffﬁf (X(%H)) [F (x(%ﬂ))r [1 -F (x(gﬂ))]?l (15)

are the pdfs of the (%) th and the (% + 1) th order statistics, respectively.
f%:my (y(%» and f%ﬂ:my (y(%ﬂ)) are defined similarly as shown in (14) and (15),

respectively.

Likelihood functions for PRSS:
Case 1. Odd set sizes.
Let

. my—1 . mx+1 my+1
Xapiol =1, .., (mx+1)ic’l = UXpicl = +1,.my; c=1,..,7
2
and
. my—1 my+1
Y(ay)jl'] =1,..,—Z (my+1) = U Y(b )ﬂ,] =241, e My,; =1, e Ty
2
be PRSS samples The likelihood functlon is
rx Tx My
L= 1_[ 1_[ fax My (x(ax)lc fmx_“:mx (x(mx_“)mxﬂc) r fbx:mx (x(bx)ic)
c=1 i= E:I g 2 2 ‘c‘=‘1‘i=mx+‘[+1
My—l 2
2 S oMy
1—[ 1—[ faym, (y(ay)ﬂ) fmy—ﬂ:my (y(my—“)my—“l) r foym, (y(by)ﬂ) (16)
=1 =i 11— 5 1 1

2 =1 . my+i
=12
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where0 <p<1,qg=1-panda, = (p(m, + 1)), by = (q(m, + 1)); a, = (p(my +
1)) and b, = (q(my + 1)) ay, by, ay, and by, represent the nearest integer value. Here,
fowm (@) = g (K@) [F ()] ™ [1 = Flx)] ™™ @7)

(mx—1)!(ax
x! by—1 My—Dby
foim(%w0) = i e [F ()] [1=Flxwp)l ™ (18)
are the pdfs of the (a,)th and the (b,)th order statistics. Similarly, fo .m, (y(ay)) and
fby:my ()’(by)) are defined as in (17) and (18), respectively.

Case 2. Even set sizes.
Let

Xapiol =1, ,% UXpicl = % +1,.my; c=1,..,1
and

Yl =1 % UY ()00 = % +1,.my; L=1,..,7,

be PRSS samples. Then the likelihood function is shown below

mx
Tx 2z e Mx
L= 1_[ faximx (x(ax)ic) fbx:mx (x(bx)ic)
t=1 iz =1 oy
my 2
Doz oy
1_[ 1_[fay:my (y(ay)jl) fo,m,, (y(by)jl)' (19)
=1 j=1 ‘lh=1‘j=hn—y;r1
2

ML estimation based on ERSS, MRSS and PRSS:

The solutions of the likelihood equations given for each modification and for each case are

the ML estimators of the unknown parameters p, o; and o,. However, these equations do

not have explicit solutions because of the non-linear functions, h,(x) = Inx, h,(x) = xP
P P

and hs(x) = ex,,’/c—al_l; hi(y) =Iny, hy,(y) = yP and hs(y) = eyp}/’—UZ—l Therefore, we

resort to iterative methods.

The ML estimators of the unknown parameters p, g, and o, are represented by p, ; and
d,. By incorporating these estimators into (3), we obtain the ML estimators of R based on
ERSS, MRSS and PRSS as shown below

) 82ML ERSS

Ruverss = 3 P , (20)
1MLERSS " “2ML,ERSS

) 6ZML,MRSS

RML,MRSS =3 5 ) (21)
1MLMRSS " “2ML,MRSS

o) 62ML PRSS

Ruiprss = > P ) (22)
1ML PRSS T “2ML,PRSS

respectively.
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4. MML Estimators of R

In the previous section, we obtain the ML estimators of R based on the modifications of
RSS using iterative methods. In this section, explicit estimators of R are obtained using the
MML methodology for each corresponding modification. The cases of odd end even set
sizes are considered separately as before.

MML methodology is applied to distributions belonging to the location-scale family.
Therefore, we take the logarithm of the Weibull random variable and obtain the Extreme
Value (EV) random variable which belongs to the location-scale family. In other words, if
the random variable X has Weibull distribution, then U = In X has EV distribution with the
following pdf and cdf

fulu,p,m) = —e< >,—oo <u<o (23)

and
u—p

Fy(u,u,n) = 1—e‘e( ! ),—00<u<oo (24)
where 1 € R is the location parameter and n € R™ is the scale parameter.

The parameters of the EV distribution can be expressed in terms of the parameters of the
Weibull distribution as shown below

1 1
,u-;lnaandn—;. (25)

It is clear from these equalities that after obtaining the estimators of the location and the
scale parameters of the EV distribution, the scale and the shape parameters of the Weibull
distribution are obtained using the following inverse transformations

oc=elfPandp = %, (26)
respectively.
In the context of the stress-strength model, if both the random variables X and Y are

Weibull, then their logarithms U =InX and V =1InY have EV distribution which is
denoted by U~EV (u4,n) and V~EV (u,,1n), respectively.

MML Estimators of the EV parameters based on ERSS:

In this section, we derive the MML estimator of p,, u, and n under ERSS when the set
sizes are both odd and even.

Case 1. Odd set sizes.

Let

Uil =1, ---:m (m"Tﬂ)ic’i = mx+1 U Umyic b = Dt +1,.myc=1,.,1
and

Ve = 1,0, = U Vimytsy ) = Ty i) = L my =1,

be the ERSS samples. Here, it should be noted that the order of the observations in the
ERSS sample may not be perfect. Therefore, we order them from the smallest to the largest
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to eliminate the effect of imperfect ranking. It is known that total sums are invariant to
ordering, i.e.,, XiL; a; = XiL, a¢y. Similar statements can also be made for the MRSS and
ERSS. We therefore do not mention it later in the paper for brevity.

The likelihood function can be written as follows

mx 1
n+m1_[1_[f1mx(z(1)1c nfmxﬂ x( mx+1\mx+1 )1_[ 1_[ fmxmx (mx)w)
c=1 i= i mx—+1
my-1
Ty 72

1 my(W(l)jl) nfmy“ ( m’y+1 my+1 )1_[ 1_[ fmy my (m )]l) (27)

=1 j=1 j my+1

Here,
zic = ((wyic —ma)/m) i =1, ...,mxT_l, c=1..,7
Z(mx_ﬂ)mx_ﬂc = ((u(mx_ﬂ)mx_ﬂc - M1)/77>, ¢c=1,..,r, and
2

2 2 2
Zampic = ((Uangic —ma)/m), i = +1,..,myc=1,..,1 (28)
are the standardized the smallest ordered statistic, median and the largest ordered statistic,
respectively. Moreover, w(q)j;, w(my+1)my+1l and W(m,) are defined similarly as in (28).
2 2

my+1

Then, the Iikelihood equations are obtained as follows

™ m’

dlnL
3 = ——Z Z gl(Z(l)lc) + zz gZ(Z(l)lC) — —z z gl(z(mx)ic)
1 c=1i= c= 11 c=1i=m'+2
Tx My
m, —1
- n Z Z gB(Z(mx)ic) - _Z 91 Z(m’+1)m’+1c)
c=1i=m'+2
Z 92 \Z(m'+1)m’ +1c Z 93 Z(m +1)m' +1c) =0, (29)
ry m'’ Ty m'’

ZEQZ(W(I)]I) Z Z 91 W(my)]z

dinlL 1 ( )+
= —— E E WAy
a‘u2 n gl (1)]1

=1 j= 1 =1 jemT 42
-1
Z Z g3 (my)ﬂ zgl W(m”+1)m”+1l)
=1 j=m'"+2
ry
z 9> (W(m”+1)m”+1l Z K] W(m”+1)m”+1l) 0, (30)
Tx m' > m'
dinL n+m
a == - _Z Z gl (Z(l)lc Z(l)lC (Z(l)lc) Z(l)lC
1 c=1i= c=11i=
I RLA
_ _Z Z gl(Z(mx)lc) Z(m,)ic — Z Z g3 (Z(mx)iC)Z(mx)ic
c=1i=m'+2 c=1i=m'+2
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Ty m' 1 Ty m'
- —Z Z gl(W(l)]l) W)ji + Z Z 92 (W(l)ﬂ)W(l)ﬂ
11 1 1=1 j=1
_1 Ty —my
__Z Z 91 W(my)}l) W(my)jt — Z Z g3 (W(my)ﬂ) W(my)jt
1] =m'"+2 =1 j=m'"+2

Ty

m
- _z g1 Z(m +1)m' +1c) Z(m +1)m' +1c T Z 92 Z(m +1)m' +1c) Z(m +1)m'+1c

- mTZ 93 (Z(m’+1)m’+1c) Z(m'+1)m'+1c ~ ﬁz 91 (W(m”+1)m”+1l) W(im' +1)m" +11
Ty
Z 92 W(m”+1)m”+1l) Wim'" +1)m" +11
Ty

m
- TZ 93 (W(m”+1)m”+1l) W' +1)m" +11 = 0. (31)
=1

"o_ my—l
>

where m’ = 2=

These equations do not admit explicit solutions because of the non-linear functions:

_ (Z(k)w) _ f(z(k)zc) _ f(z(k)ic) 4 Mytl .
91(Zaoyic) = Fzuoic  92(Z0ic) = T F(zgoie)’ 95 (Z40ic) = Flzaow) L—=—my,
f (W(k)/l) fwaoj1) F(Wao 1) my+1
Wiil) = > Wil ) = —————= Wiy ) = ——<k=1—,m,.
91( (k)]l) Fwaon)” 92( (k)ﬂ) 1=F(wao 1)’ 93( (k)ﬂ) F(weo 1) 2 y
(32)
To obtain the MML estimators, we linearize these non-linear functions as below
91(zaoic) = aly — Bikzaoicr 92(Zaoic) = @i + BYeZaoics
my+1 .
93(2aic) = ¥ — BZaoic: k = 1,5, my;
gl(W(k)jl) = ajy — PLkWo) s gZ(W(k)jl) = agy + BW)jis
my+1
93s(Waoji) = afi — Bewaou, k = 1,——,my, (33)

by using the first two terms of the Taylor series expansion around the expected values of
the kth standardized ordered statistics, i.e., tf = E(zgic), k = 1,m"7+1,mx and ty =

E(wgon) k = 1,722 m,,. Here,
ap =1-— etk +tye tk’ Bii = et}‘tv

u u u
az, = etk —tietk, By = ek,

Fe etie=1)f(e)F(t) +£ (eh)”
gy = thg + Baictic, Bi = () Fk(tkl)zk =
=In (—1n (1 - mfﬂ)), k=1"2m, (34)
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(@ Bix), (@¥y, B3x) and (a3, BY,) are exactly the same as in (34) except that t; are
replaced by t7. t;f and ¢t} are obtained from the following equations

% f@)dz = =~ ke = 1,7 m, and
ty k +1
S fwydw = —— k= 1,72—,m,, (35)

respectively.

By incorporating equations (33) in equations (29)-(31), modified likelihood equations are

obtained. The solutions of these equations are the following MML estimators
Al A ~ Az A

M1iymLErss = K, — m_lnMML,ERSSv H2mmLERss = K, — m_anML,ERSS
A __ —B+VB2+4AC (36)
NIMMLERSS = — ntm)

where

61 =Bi1 + (me — VP31, 63 = ﬁfm + (my — 1)ﬁ’gmx’
oy = (T 1) Biimeer + (== 1) Bymes + Bimees, o =T (B2 (51 + 6%) + 6],

my— Z
u 2 uyrx yMx uvrx
&1 2 =1 UY@ict%2 LI 2, My+1 Ulmy)ict 63 Yoz U my+1\my+1
i=—%—+1 —5 )5 ¢
K, = 2
1 g ,

11i 0(%1 - (mx - 1)(1%11 Au = allim + (mx - 1)agmx

5= (mx__l) alimxT“ - (mx 1) al mx+1 + a¥ mx+1, A =1 [mx L (A% + AY) + Au]

2

51} = Bfl + (my - 1)ﬁ§11 = ﬁlm + (my 1)ﬁ3my’
my—1 my—1 my—

53 = (2 )BmyHJr( y )ﬁmyﬂwmy“, my =1, [0 (67 + 63) + 3]
vyTY YT_I v’y ey vy'Y
STXZ Xj=1 Yitt82 N2 X myar Y(my)ji 03 By, Vymy+1ymy+1

. Rt e,

2= m, )

AY =aly —(my, —1)a¥;, AY= Aim,, + (my — 1)a§my,

05 = (%5 apmen = (% )“Z_’”YH +amyn, b =Ty [P (8% + a%) + 3],
2 2 2

2 2
A=n+m,
Tx mxT_l Tx Tx
B=8 ) > (uaye = Ki) +0% ). Z (Uompie =K + 8 ) (umesymens, — K;)
c=1 i=1 c=1;= mx+1+1 c=1 2 z
my—
+Av Z Z (v(l)]l Kz + Av Z Z (U(my)Jl Kz) + A3 Z ( (my+1)my+1l — Kz)
=1 j=1
my—1
Tx 2
C=85 ) > (e — Ki)” + 8 Z (e~ k)’
c=1 i=1 c=1 mx+1
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my 1
Tx
+813‘Z<u(mx+1)mx+1 —K1> +51Z Z (v(l)]l Kz
c 1 =1 ]
2
+5vz Z Vmy )it — 2) + 8¢ (v(myﬂ)l —Kz) . (37)
y+1 =1 2

Case 2. Even set sizes.

Let
Uier 8 = 1, o, 2 U Unyyic i = 22+ 1, mys € = 1,073
and
. my .
Vool =1 .., UV(m Yivd —7+1,...my,l= 1.7

be ERSS samples Then the likelihood function can be written as follows

n+m1_[1_[f1 mx(Z(l)w)l_[ 1_[ fnemy (Zmyic)

c=1 i= cll_mx+1

Ty T Ty My
[ ] [Am®ad [T [T frm (wmn): (38)
=1 j=1 =1 j=ﬂ+1

where z(p);c and zy ;. are the standardized smallest and the largest ordered statistics.
Furthermore, w(y);; and W (m,)ji are defined similarly.

Following the same steps as in Case 1, we obtain the MML estimators of u;, u, and n as
in equation (36). We did not reproduce the details for the sake of brevity. We, therefore,
just give the equalities given below. Here,

61 = By + (my — DBy, 63 = .Biimx + (my — 1):B§me’

mx
o 5u2¢ 121 1u(1)1c+52 Zc 1 :njfcnx_'_l (my)ic
_ TxMyx oy u _
my =—7— (61 +63), Ky = 2 )

myq

Tym
1 =af; —(my —Daz;, A7 = ailmx + (my — 1)a§lmxv A = %(Alll + A%),

87 = Bty + (my — )l 8% = B, + (my — 1)Bhm,
m
T -5 T m
rymy, 511;215121'11”(1)]'1"'512]21112].:}7]11_3/“”(1113/)}'1
my; =-—= (67 +67), K, = 2 ,

my

r,m
11) = afl - (my - 1)“511 IZJ = afmy + (my - 1)01137my, A, = %(AI{ + Ag),

A=n+m,
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B =AY X5 X2 (ayic — Ka) + A3 X0, B (Umyic — K1)
2
My

T — r
+A11J Zlil Z]’Z:l(v(l)jl - KZ) + A127 13=}1 j= my+ (v(my)jl KZ)’

my

C= 61 Z i= 1(u(1)LC Kl)z + 6% 2?:1 Zr:gn_x+1(u(mx)ic - Kl)z
2
my

T - T m
7 N7, 3 W~ KD 4 8552 Xy Dyt~ K2 (39)
2

Note: It is easy to see that the MML estimators have closed forms and are easy to compute.
Moreover, the MML estimators are highly efficient even for small sample sizes. For the
asymptotic properties of the MML estimators, see Vaughan and Tiku (2000) and Tiku and
Akkaya (2004).

MML Estimators of the EV parameters based on MRSS:

We now obtain the MML estimators of u,, 1, and n based on MRSS paying attention to
the odd and even set sizes. For the sake of simplicity, we only give the MML estimators of
the unknown parameters without giving the details of the derivations. Since the procedure
used here is more or less the same as the procedure given in ERSS.

Case 1. Odd set sizes.

Let
U(m9;+1) ,Ji=1,..,m,c=1,..,nand V(myT-I—l)jl,j =1..,my,l=1,.,7

be MRSS samples Then the likelihood function based on MRSS is given by

Ty My

- 1_[ 1_[ fcer,, (= m,gﬂ)ic) g ]1:1[ frr,, (w(myTH)ﬂ). (40)

c=1 i=

By taking the derivatives of the log-likelihood functions with respect to the unknown

parameters and equating them to zero we obtain the likelihood equations as aal:l: =0,

1
Ol _ g and 2L = o, By linearizing non-linear functions in the likelihood equations
dlny, dlnn

and incorporating them into the likelihood equations, we obtain modified likelihood
dlnL* dlnL* dlnL*

equations as =0, =0 and = 0. The solutions of these modified
d1lnpuq dlnpu,
likelihood equations are the following MML estimators
. Ay 4 . Ay o
M1iymimrss = K, —— TIMML MRSS) H2pmimrss = K, — _ZUMML MRSS
~ —B+VB2+4A
NMMLMRSS = T 2mm) (41)

where,

81 = Bmens + ("57) Bimens + ("57) Bymess
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Suz x :n3§U(mx+1)iC
m; = rxmxé‘%l K, = 2 )
mq
my—1 my—1
Y=« m,;+1 + ( 5 )a;lm3;+1 - ( > )a:m3;+1, A = r,m,AY
my,—1 m,—1
61’7 = ,B:my+1 + ( J; ),B:my+1 + ( 3; ),B:my+1,
2 2
5{ ZLZF}; 17<my+1)
m, = rymy61, K, = —_ )
v my—1 v my—1 v
= Ollmy+1 + ( 2 )a2m3;+1 - ( 2 )a3m3;+1, Al =nm,
A=n+m
B A?Z Zl 1( (mx+1) Kl) + A?Z;LZ}Z( (my+1> - KZ)
2 2
u x x |- m
€= 81572, 5 (g 1) + ST (g =K 2
Case 2. Even set sizes.
Let
My — My . =
U(%)w,l =1,.. TU U(%+1)ic’ = +1,...my;c=1,..,1
and
P— _3’ L] =
V(%)ﬂ,] =1,..,—2U V( y+1)]l,] + 1, ...,my,l =1..,n
be MRSS samples. Then, the likelihood functlon is shown below
Tx % rx
p— 1 ] [ ]
b= | 1] [, ()| | ﬂ s som, ()i
c=1 i=1 c=1 l—_+1
my
Ty = ] Ty My
F‘f?:my (W(%)jl) | | f%ﬂ;my (W(%ﬂ)jl) . (43)
=1 ]=1 l j= y+1

Following the same MML estimation procedure shown in Case 1, we obtain the MML
estimators of the parameters u,, u, and n as in (41), where

8t = Bime + (5 = 1) Byme + () Bl
2= 'Bf%+1 + (%) '8;%+1 +

mx
uyrx 2
h Zc:l Zi=1

gyt I

(% B 1) ﬁ:%ﬂ

my u
.My (mx )
i=—%+1 5 +1)ic

my :rx%(51u+52u)l K; =

mq
m m
}‘zamx+(—x—1)a2ﬂ—(—x)a3ﬂ,
2 2 2 2 2
u g My _(mx _ My au o u
AZ —a1%+1+(2)a2%+1 (2 1)(1 mx+1,A1 129 > (Al +A2),
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5t = B+ (3 1) (3)
my my

65:ﬁ:?+1+(2)’82 y+1+(?_ )ﬁ3ﬂ+1’

m
y
vy'Y v 2 v my
PP (my) +83%,2 Zj_myﬂv(mﬂ)ﬂ
2 2

My ¢ ov v 2

my, =1,— (6] +6;), K, =
2 y2(1 2), Ky p— )

m m
b=y (- )~ ()

m m m
Ay =a” (—y)a” —(—y— )a” A, =1, 2 (AY + A}
2 1?+1+ 2/ 222 2 32241 T2 T (AT +42).
A=n+m,

B =41 Zr’; S (e = K1) + A3 20 5%, ot (Wesnyie = K1)
my/2
+A7 Z] 2 (17( i Kz) + 437 Zl 121 =m,/2+1 (U(%+1)jl - KZ)’
2
c=681yx (u(%)ic - Kl) +83 %0, Z?;xmx/zﬂ (u(%ﬂ)ic - Kl)
2 2
T m, /2 m

+5f lil ijyl (v(%)jl - Kz) + Sv Z] ym y/2+1 (‘U(%_ﬂ)ﬂ - Kz) . (44)
MML estimator of the EV parameters based on PRSS:
Similar to the previous sections, we obtain the MML estimator of the unknown parameters
of the EV distributions based on PRSS as shown below.
Case 1. Odd set sizes.

Let
U(ax)iC'i = 1, .

and

my—1 . mx+1
(mx+1)ic’ L=
2

My+1

U U(bx)w, +1,.my; c=1,..,1

; my-1 . _ my+l . my+1 o
V(ay)jll] = 1; T V) V(myT'l-l)]l,] = T V) V(by)jl'] = T + 1, ...my, l= 1, ...,T'y

be PRSS samples. Here, a, and b,; a, and b,, are define as in Section 3. The likelihood
function based on PRSS is given below

mxl

Tx My
- prtm 1_[ 1_[ fax mx(Z(ax)lC nfmxﬂ My ( mx“)mx_ﬂc) l_[ l_[ fbx:mx(z(bx)ic)
c=1 i=1 2 z c=1 ;-IMxtl o
my— z
2
1_[ fay my W(ay)jt nfmy“ ( my“ my“ ) l_[ l_[ fby my (by)]l) (45)
=1 j=1 y+1

As mentioned earlier, we did not give the details of the MML estimation procedure since
the procedure is approximately the same as for ERSS and MRSS.

The MML estimators of p1;, u, and n based on PRSS are denoted by iy, »rsss B2yimr prss
and 71 prss respectively:
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~ Ay A ~
H1pmrprss = K — _77MML PRSS» H2pmi,prss
A _ —B+VB2+4A
NMMLPRSS = — 5 < m)
where,
u u u u
61 - ﬁlax + (ax - 1)32(1,5 + (mx - ax)ﬁ3ax’

67 = Bip, + (by = B3y, + (My — by) B3,

Az,\

=K; — 77MML PRSS

(46)

e | (8% + 63 + 6%,

u _ pu my—1 my—1 u

63 = ,Blm,;+1 + ( ),B mx+1 + ( ),83m,;+1, mq
My—1
511.2 Zl f u(ax)w+82 2 Z _mxt1, u(bx)ic+6§‘22’=€1u(mx+1)mx+1c

K — 2 2 2

1 my
AT = A%ax + (ay — 1)A%ax — (my — ax)A%axv
AIZL = ATibe + (bx - 1)Agbx - (mx bx)Agbx,

my—1 my—1 my—1

A% = (T) C(ilim,;+1 - ( > )a:m,;+1 + Clgm;;H, Al =T [ 5 (A% + A%) + Ag],
6] = Bfay + (ay - 1)Bgay + (my - ay)ﬁgay’
6%7 = be + (by - 1).ng + (my - by)ﬁgby’

53 = (M 1)ﬁmy+1+("‘y 1)/3my+1+/3my+1, my =1, [2= (87 + 87) + 63,

my— m

v y vy
51 Zz 121 1 U(ay)Jl+8221 12j_my+1+1v(by)jl+53Zz=1”<my+1)my+1l
=2 >

2

o= my

85 = 8, + (= Dk, + (my — )0,

Ay =AYy + (by — 1)A3, + (my, —by)AY,

85 = (55 myn = (B mas ¥ s 0= [P 01 4 0 4 03]
A=n+m,

BoAVyTE YT e —
= 1252121':1 (u(ax)lc

-1

+AY XL, (u(mx_ﬂ)mx_ﬂc - K1) +ATY Y j=21

2 2

+A Z

Kl) + A%Z Z mx+1 (u(bx)ic -

(U(ay)n - Kz)
T
; my+1 Ve~ K) + A58, (v(myTH)myTHl - KZ)’

K1)
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my—1
—5— 2 2
C= 81{ 2?;1 2i=21 (u(ax)ic - Kl) + 832 Z mx+1 (u(bx)ic - Kl)
-1

I myT 2
+8% Xty U(matiymett, = K, + i Zz 1 (”(a it~ KZ)

2 2

2
T- m T
+812J 13=71 j=ym3;+1+1 (v(by)jl - KZ) + 813{ Zlil (U(m3;+1)m3;+1l - Kz) . (47)
Case 2.
Let

Uapicrt = 1, '% U Uwpyic L = % +1,.my; c=1,..,1,
and
. m B m
V(ay)jl'] =1, ’Ty V) V(by)jl’] = Ty +1, My =1, s Ty

be PRSS samples. The likelihood function based on PRSS is given below

Tl+ml_[l_[faxmx( (ax)Lc)l_[ 1_[ fbxmx( (bx)lc)

c=1 i= c= 11—_+1

_y
Ty

Ty My
1_[ fa,m, (ay)jl)l_[ 1_[ fo,m, (W(by)jl)' (48)
=1 ;=04

]=

By applying the MML procedure for the estimators of the unknown parameters, we obtain
the MML estimators of u,, 1, and n similar to (46), where

1= .Bilax + (ay — 1).Bgax + (m, — ax)ﬁgaxi
65 = :Bilbx + (by — 1)ﬁgbx + (my — bx)ﬁgbxi

my
m 8uzc 121 1u(ax)w+522 E mx+ U(by)ic
_ X
m1—rx7(5fl+6§t), K, = )

mq

AT = 1ilax + (ax — 1)A2ax (m, ax)A3ax
Ay =AY, + (by — DAY, — (my — b)AY, , Ay =1, 22 (A} + AY),
51) = ﬂfay + (ay - 1)ﬁ§ay + (my - ay)ﬁgayi

g = ﬁfby + (by - 1)ﬁgby + (my - by)ﬁgby’
T ﬂ T m
my ) LEONEAEN V(ay)it+82 %2 Zl'jnTy“ Y(by)jt
m2=r (61 +52) Kz— ’

m;

Y= ’{ay + (ay - 1)A’2’ay + (my - ay)A'gfay,
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m
A3 =AYy, + (by — 1)A5,, + (my = by)A3, , Ay =1, -2 (A] +4),

A=n+m,
X X 2 X
B = Au Zr e (u(ax)lc Kl) + Au :nmx/2+1(u(bx)ic - K;)
my/z my,
+A1 Z] 1 (v(ay)]l KZ) +43 1= 12] =m,/2+1 (v(by)]l KZ),

X x 2 x 2
C=06f Zr— e / (u(ax)lc Kl) + Suz :nmx/2+1(u(bx)ic B Kl)

m

m /2 2
+87 32, %; yl (”<ay)ﬂ—’<z) + 855,20 2 (v, — K2) - (49)

MML estimator of R based on ERSS, MRSS and PRSS:

In this section, we obtain the MML estimators of u;, u, and n under ERSS, MRSS and
PRSS, respectively. Using the inverse transformation given in equation (26), we derive the
following MML estimators of the Weibull parameters g, o, and p which are denoted by
01, G, and p, respectively;

6-\1 = eﬁﬁl, 6-\2 = eﬁﬁz and ﬁ (50)

:;)I»—\

By incorporating these estimators into (3), we obtain the MML estimators of the system
reliability R based on ERSS, MRSS and PRSS as given below

5 &ZMML ERSS

Rymi erss = > 5 , (51)
1MML,ERSS ' “2MML,ERSS

O2MMLMRSS

Rumimrss = 5 > ) (52)
IMMLMRSS " “2MML,MRSS

5 020 ML PRSS

RymL,prss = = ) (53)

91MML,PRSS +6—2MML,PRSS
respectively.

5. Simulation Study

We perform an extensive Monte-Carlo simulation study in order to compare the
performances of the ML and the MML estimators of R based on RSS, ERSS, MRSS and
PRSS with the corresponding estimators of R based on SRS.

RE (relative efficiency) is defined below
__ MSE(Ry)
RE = MSE(R,)’ (54)

where R, and R, are two different estimators of R and MSE(R) = E(R — R)”. It is known

that, if the value of RE in (54) is greater than 1 this means that R, is more efficient than R,
and vice versa. In the comparisons, we use the following RE's

RE. = MSE (R, srs) _ MSE(Ryy,srs) _ MSE(Ryysrs) _ MSERuy,srs)
1 MSE (Ry,pss)’ 2 MSE (Ryy grss)’ 3 MSE (Rypmrss)’ 47 MsE (RuLprss)’
RE. = MSE (Rym1,srs) __ MSERumwsrs) __ MSE(Rymysrs) __ MSERumwsrs)
5 MSE (Rymirss)’ 6™ MSE (RumiErss)’ 7 MSE (Rymimrss)’ 8 MSE Ry, prss)’
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MSE (R MSE (R MSE (R MSE (R
RE, = ( 1WML,R55), RE,, = ( AMML,ERSS)’ RE,, = ( AMML,MRSS), RE,, = ( 1V1ML,PRSS).
MSE (Ryy,rss) MSE (Ruy grss) MSE (Ry,mrss) MSE (Ruy,prss)

(55)

Itis clear that RE,, RE,, RE5 and RE, compare the MSEs of the ML estimators of R based
on RSS and its modifications to the MSE of the corresponding estimator of R based on
SRS. Similarly, REs, RE¢, RE, and REg compare the MSEs of the MML estimators of R
based on RSS, ERSS, MRSS and PRSS to the MSE of the MML estimator of R based on
SRS. In addition, REy, RE;,, RE;; and RE;, compare the ML and the MML estimators of
R with respect to RSS, ERSS, MRSS and PRSS.

Monte-Carlo simulations are applied for the different set sizes (mx, my) and different
number of cycles (7, 7,), i.e.,

r. =1, = 1= (my,my,) =(55), (5,10), (15,15), (15,20), (20,20),
n =1, =5= (my,m,) =(2,2), (2,3), (2,4), (3,4), (4,4,

and
re =1, = 10 = (m,,my) =(2,2), (3,3), (4,4).

Sample sizes corresponding to X and Y are determined by n = m,r, and m = m, 7. Itis
clear that when r,, = 7, = 1, samples sizes reduce to the set sizes.

In the simulation study, we present the REs for the parameter values o, =1, g, =1, 2, 3
and p =1.5, 3, 6 consistent with other studies given in the literature. All the simulations
are conducted using Matlab R2013a for [100,000/ min(n, m)] Monte-Carlo runs. Here,
[. ] represents the greatest integer value. Simulation results are reported in Table 1.

Note that the bias values are not reproduced in Table 1, since R has negligible bias for all
estimators, sampling methods and parameter values.

It is clear that, RSS and its modifications become equivalent when the set sizes
(mx,my) =(2,2). Similarly, ERSS and PRSS samples reduce to RSS when the set sizes

(mx, my) =(2,3) or (3,3).
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Table 1: REs of the estimators based on RSS, ERSS, MRSS and PRSS

p=15
Efficiency
=7 (my,m,) RE;, RE, RE; RE, REs REs; RE, REgy RE; RE,, RE; REj
op=10,=1
(5,5) 287 285 263 278 269 308 243 241 101 088 1.03 1.09
(5,0) 342 3.09 331 356 305 353 267 342 109 086 121 1.02
1 (15,15) 723 492 758 767 6.83 6.02 732 751 1.04 0.80 1.02 1.00
(15,20) 792 5.08 847 878 738 6.07 746 875 106 0.82 112 0.99
(20,20) 950 551 990 104 9.04 670 857 106 104 081 114 0.97
(2,2) 150 150 150 150 134 134 134 134 109 109 1.09 1.09
(2,3) 161 161 159 161 134 134 135 134 118 118 115 1.18
5 (2,4) 160 161 159 167 115 146 110 113 138 110 143 146
(3,4) 194 189 200 202 175 197 154 176 109 095 129 113
(4,4) 218 206 226 254 209 230 195 244 103 088 114 1.03
(2,2) 139 139 139 139 126 126 126 126 108 108 1.08 1.08
10 (3.3) 191 191 196 191 179 179 170 179 106 106 114 1.06
(4.4) 226 213 228 253 215 240 196 242 105 089 116 1.04
o=10,=2
(5,5) 272 273 244 265 252 285 226 229 103 092 103 111
(5,10) 323 281 289 318 288 289 222 304 108 094 126 101
1 (15,15) 6.87 495 533 6.85 627 464 520 653 108 105 101 1.03
(15,20) 762 485 580 741 691 407 465 737 109 118 123 0.99
(20,20) 8.26 526 6.20 858 750 438 464 857 109 119 133 0.99
(2,2) 13 13 135 13 119 119 119 119 111 111 111 111
(2,3) 155 155 156 155 135 135 138 135 113 113 111 1.13
5 (2,4) 163 158 166 163 129 156 122 125 124 100 133 1.28
(3.4) 191 180 193 190 174 164 147 172 108 1.09 129 1.09
(4.4 214 204 214 241 19 190 182 227 109 107 117 105
(2,2) 137 137 137 137 116 116 116 116 116 116 116 1.16
10 (3,3) 173 173 179 173 152 152 151 152 114 114 119 114
(4.4) 225 213 232 255 202 167 194 237 111 127 119 107
g =10,=3
(5,5) 264 269 225 248 242 265 211 216 106 099 1.04 112
(5,10) 3.14 278 259 3.04 277 246 199 285 109 108 125 1.02
1 (15,15) 575 456 383 539 512 330 376 509 112 137 101 1.05
(15,20) 6.67 463 412 6.36 581 278 323 624 113 164 126 1.00
(20,20) 755 526 437 756 6.72 302 308 742 112 173 141 101
(2,2) 137 137 137 137 113 113 113 113 119 119 119 1.19
(2,3) 152 152 156 152 132 132 139 132 113 113 110 1.13
5 (2,4) 158 152 162 155 132 142 126 129 118 106 126 1.19
(3.4) 199 186 186 193 176 149 145 174 111 123 126 1.09
(4,4 216 215 204 238 181 159 168 213 118 135 121 111
(2,2) 142 142 142 142 111 111 111 111 127 127 127 1.27
10 (3,3) 160 160 163 160 128 128 137 128 125 125 118 1.25
(4,4 214 208 211 242 175 116 165 208 121 179 127 116
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Table 1. (continued),

p=3
Efficiency
=1 (my,m,) RE; RE, RE; RE, RE; RE; RE, REg REy RE,, RE,; REj,
o0=10,=1
(5,5) 283 282 262 280 266 3.07 242 243 101 087 102 1.09
(5,10) 343 315 3.23 355 3.09 359 261 3.39 108 086 121 1.03
1 (15,15) 7.60 5.14 7.94 817 715 622 7.66 7.92 104 081 102 1.01
(15,20) 7.87 519 8.40 866 738 619 7.39 8.63 105 083 112 0.99
(20,20) 9.35 560 10.01 1031 887 6.78 862 1046 104 082 115 0.98
(2,2) 140 140 140 140 125 125 125 125 1.09 109 109 1.09
(2,3) 161 161 158 1.61 132 132 133 132 120 120 117 1.20
5 (2,4) 161 159 158 164 114 143 109 113 140 111 144 145
(3.4) 195 193 207 2.06 178 204 158 181 108 094 130 1.13
4,4 221 210 232 254 213 240 199 244 1.03 087 115 1.03
(2,2) 136 136 1.36 1.36 121 121 121 121 112 112 112 1.12
10 3,3 178 178 1.92 1.78 169 169 166 1.69 1.05 105 115 1.05
(4,4 207 196 217 241 200 221 189 231 103 089 114 104
o, =1,0,=2
(5,5) 272 270 235 260 253 283 218 225 103 091 103 110
(5,10) 3.18 286 2.83 317 282 293 216 3.02 109 094 126 1.01
1 (15,15) 6.58 493 5.14 6.65 6.08 459 503 641 1.07 106 101 1.02
(15,20) 7.20 491 5.70 715 652 4.04 456 7.12 109 120 123 0.99
(20,20) 857 531 6.36 899 7.89 443 471 9.04 108 119 134 0.99
(2,2) 140 140 140 140 121 121 121 121 113 113 113 1.13
(2,3) 159 159 161 1.59 1.39 139 144 139 111 111 109 111
5 (2,4) 164 161 168 164 129 156 124 127 124 101 133 1.27
3.4 199 189 196 1.96 1.80 1.75 149 177 1.09 107 130 1.09
4,4 214 206 2.16 2.49 198 193 179 236 1.08 106 119 1.05
(2,2) 136 136 1.36 1.36 116 116 1.16 1.16 116 116 116 1.16
10 3.3) 1.79 179 185 1.79 163 163 160 1.63 1.09 109 116 1.09
4,4 216 205 214 240 189 161 176 2.20 114 127 121 1.09
0,=10,=3
(5,5) 260 260 2.23 247 239 259 210 214 106 098 104 1.12
(5,10) 313 276 258 307 275 243 198 286 1.09 109 125 1.03
1 (15,15) 6.04 4.73 3.84 560 544 338 376 537 110 139 101 1.04
(15,20) 6.69 4.78 4.00 6.31 587 286 316 6.14 112 164 124 1.01
(20,20) 7.24 495 4.23 737 650 280 3.03 7.20 111 176 139 1.02
(2,2) 140 140 140 140 115 115 115 115 120 120 120 1.20
(2,3) 160 160 1.65 160 139 139 147 140 113 113 111 1.12
5 (2,4) 165 159 1.69 1.63 1.35 147 129 133 120 105 128 1.20
(3,4) 190 178 179 184 167 140 141 167 112 126 126 1.09
(4,4 210 205 201 2.29 182 156 1.65 207 115 130 121 1.10
(2,2) 137 137 137 1.37 1.10 110 1.10 110 124 124 124 124
10 3.3) 157 157 162 1.57 131 131 132 131 120 120 122 120
(4,4 228 226 211 2.52 181 124 168 217 126 182 125 1.16
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Table 1. (continued).

p==6
Efficiency
=1 (my,m,) RE;, RE, RE; RE, REs RE; RE, REj RE, RE,, RE;; RE;,
o0=10,=1
(5,5) 283 282 262 280 266 307 242 243 101 087 1.02 109
(5,10) 343 315 323 355 309 359 261 339 108 086 121 103
1 (15,15) 7.60 514 794 817 7.15 6.22 7.66 7.92 1.04 081 1.02 1.01
(15,20) 781 496 847 845 737 594 748 848 1.05 0.82 1.12 0.99
(20,200 9.26 529 985 103 882 645 858 1053 1.04 081 114 0.97
(2,2) 141 141 141 141 127 127 127 127 108 108 1.08 1.08
(2,3) 162 161 160 161 134 134 136 134 118 118 116 1.18
5 (2,4) 166 163 163 168 120 149 114 116 137 1.09 143 144
3,4 194 189 204 204 175 197 157 178 110 095 129 114
(4,4) 227 214 241 263 216 238 205 251 104 089 117 1.04
(2,2) 140 140 140 140 126 126 126 126 110 110 110 1.10
10 3,3 186 186 186 18 171 171 162 171 108 1.08 115 1.08
(4,4 210 206 217 255 199 229 18 238 105 090 117 107
o, =1,0,=2
(5,5) 279 278 247 269 256 291 230 231 104 091 103 111
(5,10) 324 285 290 322 289 295 223 307 108 093 126 101
1 (15,15) 6.49 486 522 6.61 599 471 507 635 107 1.02 1.02 1.03
(15,20) 721 464 569 723 653 382 453 722 1.09 120 124 0.99
(20,20) 848 523 6.24 887 782 435 472 890 1.08 119 131 0.99
(2,2) 142 142 142 142 121 121 121 121 114 114 114 114
(2,3) 155 155 159 155 13 135 140 135 112 112 111 112
5 (2,4) 163 158 166 163 129 156 122 125 124 100 133 128
(3,4) 191 180 193 190 174 164 147 172 108 109 129 1.09
4,4 214 204 214 241 19 190 182 227 109 107 117 105
(2,2) 137 137 137 137 116 116 116 116 116 116 1.16 1.16
10 (3,3 173 173 179 173 152 152 151 152 114 114 119 114
4,4 225 213 232 255 202 167 194 237 111 127 119 107
0,=10,=3
(5,5) 253 261 222 243 237 259 208 211 106 098 1.04 112
(5,10) 313 276 258 307 275 243 198 286 109 109 125 103
1 (15,15) 6.04 473 384 560 544 338 376 537 110 139 101 1.04
(15,20) 6.69 478 400 631 587 286 316 6.14 112 164 124 101
(20,200 7.88 527 442 755 701 3.04 320 733 112 173 137 1.02
(2,2) 139 139 139 139 117 117 117 117 119 119 119 1.19
(2,3) 151 151 154 151 132 132 138 132 113 113 110 113
5 (2,4) 163 156 165 158 132 144 125 129 121 106 128 1.20
(3,4) 193 183 188 191 171 145 148 172 112 124 125 110
(4,4 217 210 210 243 187 154 175 219 116 136 120 111
(2,2) 138 138 138 138 1.07 1.07 107 107 129 129 129 129
10 3.3) 180 180 174 180 141 141 142 141 127 127 122 127
(4,4 210 201 199 231 179 118 166 208 116 169 119 110
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5.1 Comparison of SRS with the RSS and its Modifications

According to RE,, RE,, RE; and RE, values, the ML estimators of the system reliability
R based on RSS and its modifications are more efficient than their counterpart estimator
based on SRS. In terms of REs, RE,, RE, and REg, the MML estimators of R based on all
four methods are superior to the MML estimator of R based on SRS.

In the case of n, =7, =1, 0y =0, =1 and (m,,m,) are small, and RSS and its
modifications are more efficient than SRS. However, efficiencies of the RSS and its
modifications are close to each other. When (m,,m,) are moderate or large all methods
are more efficient than SRS, but ERSS is the least efficient among the others. When ¢; =
1,0, =2 and g, = 1,0, = 3, the ML and MML estimators of R, based on ERSS and
MRSS, are less efficient than their counterparts based on RSS and PRSS.

It is clear from the simulation results presented in Table 1 that in the case of , =7, = 5
and r, =7, = 10 the set sizes are vary between (2,2) and (4,4). The efficiencies of RSS

and its modifications are extremely similar to each other. It should be realized that RE's are
not particularly affected by an increase in the number of cycles. As in a small number of
cycles, the proposed estimators are more efficient than their counterpart estimator, based
on SRS.

Simulation studies are repeated for several other shape parameters p. However, it can be
seen from Table 1 that p values do not have an influence on the efficiencies of the
estimators of system reliability R.

5.2 Comparison of ML and the MML Estimators based on RSS and its Modifications

ML and MML estimators of R based on RSS and its modifications, are compared using the
REy, REq, REy; and RE;,. When r,, =1, = 1 and g, = o, = 1 efficiencies of the ML
and MML estimators of R, based on PRSS, are more or less the same as the set sizes
(my,my) increases. Ry, grss is more efficient than Ry grss. In addition, Ry mrss
performs better than Ry mrss-

When the number of cycles r, = r, = 5 and r,, = 1, = 10 and the set sizes (mx, my) are
small the ML estimators are more efficient than the MML estimators as excepted.

6. Conclusion

In this paper, we obtain the ML and the MML estimators of R, based on ERSS, MRSS and
PRSS, where X and Y are independent Weibull random variables. We then compare the
performances of the proposed estimators and their counterparts based on RSS to the ML
and the MML estimators of R based on SRS. It is clear from the simulation results that the
use of RSS and its modifications are highly efficient when compared to SRS for estimating
the system reliability R using the ML and the MML estimators.

If we are interested in comparing the estimators, with respect to their efficiency, then the
ML and the MML estimators based on RSS are preferable. On the other hand, if our focus
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is to reduce the ranking error, then we should use the estimators based on ERSS, MRSS
and PRSS.
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