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Abstract  

 
In this paper, a generalized ratio-type estimator based on ranked set sampling (RSS) is proposed for The 

applications of fuzzy analysis in data-oriented techniques are the challenging aspect in the field of applied 

operational research. The use of fuzzy set theoretic measure is explored here in the context of data 

envelopment analysis (DEA) where we are utilizing the fuzzy α-level approach in the three types of 

efficiency models. Namely, BCC models, SBM model and supper efficiency model in DEA. It was 

observed from the result that the fuzzy SBM model has good discrimination power over fuzzy BCC. On the 

other side, both the models fuzzy BCC and fuzzy SBM are not able to make the genuine ranking which is 

acceptable for all. So this weakness is overcome with the help of fuzzy super SBM model and all three 

models are applied to illustrate the types of decisions and solutions that are achievable when the data are 

vague and prior information is in imprecise. In this paper, we are considering that our inputs and outputs 

are not known with absolute precision in DEA and here, we using Fuzzy-DEA models based on an α-level 

fuzzy approach to assessing fuzzy data. 

 

Keywords: Fuzzy Set, Linear Parametrical Programming, Data Envelopment Analysis, 

Vague, Fuzzy Equalities, and Inequalities.  
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1. Introduction 

Since DEA was proposed in 1978 and after that it has been got comprehensive attention 

in both theories as well as in application. DEA becomes an important analysis tool and 

research way in management science, operational research, system engineering, decision 

analysis, and economics. Performance analysis has become a vital part of the 

management practices in the banking industry. There are numerous applications using 

DEA models to estimate efficiency in banking, and most of them assume that inputs and 

outputs are known with absolute precision. The different modification was in the 

mathematical approaches of DEA, namely mixed orientation approach of DEA was given 

Qaiser et al. (2016). Two-stage production processes with double frontier were given by 

Arif et al. (2017).  DEA as decision support system was given by Qaiser et al. (2017). But 

it is not always possible that our input and output data are known with absolute precision.  

DEA is based on the production process and the data of production processes cannot be 

precisely measured always since the uncertain theory has played an important role in the 

inputs and outputs. The fuzzy analysis is helpful for handling the different type of data, 

namely uncertainty data, interval data; identify the missing variable and high-frequency 

data. A possible path to handle input/output uncertainty in DEA relies on the use of 

probability distributions to model their inherent randomness. These distributions are 

subsequently employed in stochastic DEA models. However, these probability 

distributions require being somewhat estimable a priori or a posteriori, limiting the use of 

stochastic DEA models in cases where the event is unique or deterministic. Alternatively, 

however, uncertainty in input/output may be related to imprecision or vagueness, rather 

than to randomness. This being the case imprecision or vagueness in input/output values 

can be expressed by membership functions within the ambit of fuzzy logic. 

The α-level approach is possibly the most popular, given the numerous papers 

produced using its variations, despite the fact that their models are not computationally 

efficient. This is so because α-level models demand more linear programs to be solved 

for each α value (Soleimani-damaneh, Abbasbandy et al., and Jahanshahlooet al., 2006) 

within the α-level approach, the FDEA model is first converted into a pair of parametric 

programs so that the lower and upper bounds of the efficiency scores can be computed 

next for a given value of α in Emrouznejad and Tavana (2014). The rationale behind the 

selection of then α-level approach in this study is related to a number of aspects. First, 

when using this approach, fuzzy inputs and outputs may be expressed as crisp numbers 

representing the limiting bounds of the intervals for different α-levels in Chen et al. 

(2013), thus allowing the uncertainty of the data collected from Mozambican banks to be 

easily modelled as triangular fuzzy numbers. Second, in the situation of various α levels 

for the inputs and the outputs, Fuzzy DES may be translated into traditional DEA (crisp) 

models in light of the extension principle, thus making solving their respective linear 

programs simpler (Yager, 1981; Zadeh, 1965a; Zimmerman, 1976). Third, owing to the 

input and output data being fuzzy numbers, the efficiency scores are also fuzzy numbers 

in Puri and Yadav (2013). Moreover, as long as the efficiency values considered here are 

the upper and lower “crisp” bounds computed for various α levels, the membership 

functions for the true fuzzy efficiency cannot be reconstructed, which has a number of 

implications on how fuzzy efficiencies should be ranked in Chen et al.( 2013); Puri and 

Yadav (2013); Hsiao et al. (2011). These bounds, however, can be treated as crisp values 

and incorporated into statistical modelling as efficiency scores subjected to certain fixed 
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effects or treatments in order to properly assess the impact of different contextual 

variables. 

 

2.  DEA with Fuzzy Sets 

The two fundamental DEA models, CCR (Charnes Cooper Rhodes DEA-mode) and BCC 

(Banker Charnes Cooper DEA-model) are based on the assumption of know, numerical, 

and fixed value of inputs and outputs. But this type of input-output data are not always 

possible, sometimes we are observing that our observed input-output data are imprecise 

or vague. In such situations, the traditional DEA models fail to get any information from 

such type of data. So, in order to overcome from such type of difficulties, we are making 

the use of fuzzy theory. Sengupta (1992) was first introducing a fuzzy mathematical 

programming approach into which fuzziness was incorporated into DEA methodology. 

  Let us assume the DMUsn − assessing the number of m  different inputs to 

produce s different outputs. Suppose that ;( 1,2,3, , )ijx i m=  and ;( 1,2,3, , )rjy r s= are 

respective fuzzy inputs and outputs of ;( 1,2,3, )jDMU j n= . The multiplier and 

envelopment form fuzzy CCR-model with input-oriented version can be formulated 

mathematically as: 

Multiplier CCR-model (input-oriented) 
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(2.1) 

Where "" denotes the fuzziness of input and outputs. 

The model (2.1) is an input-oriented fuzzy CCR model in multiplier form. Envelopment 

form of the above model is more feasible to solve, which can convert by making the use 

of duality theory. Thus envelopment form of model (2.1) is as: 
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   (2.2) 

Where k is an efficiency value of .DMUk th − The model (2.2) is envelopment form of 

fuzzy CCR and can be solved by using the fuzzy linear programming and assumed in 

case of constant returns to scale production processes only. If the convexity constraint is 
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adjoined to model (2.1), then the model becomes the fuzzy BCC model and 

mathematically formulation as: 
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    (2.3) 

The above model is the envelopment form of fuzzy BCC model and standard form of 

model (2.3)  is given as: 
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Where +−

ri sands are the input and output slacks of s

th DMUj − . If 1=k  and all slacks 

are zero then the kDMU is said to be efficient but if one of the slack is non-zero, then 

kDMU  under evaluation is weakly efficient (i.e., you can improve the efficiency of 

kDMU by reduce the current level of input or expend the outputs) and if 1k then 

kDMU is said to be inefficient. We can solve the above model into two phases, in phase-

I, we are estimating the feasible optimal solution of fuzzy BCC-model by using fuzzy 

linear programming approaches after that we use the optimal value *

k  in order to 

calculate the values of the slack. Phase II of fuzzy BCC-model is given below: 
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Thus the model (2.4) and model (2.5) can represent a two-phase DEA process involved 

input-orientation in given below: 
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3. Fuzzy Approaches in DEA 

The application of fuzzy set theory in DEA categorized into four approaches available in 

the literature which are discussed under as:  

3.1. Tolerance approach  

The Tolerance approach was one of the first fuzzy approaches in DEA and that was 

introduced by Sengupta (1992) later the same approach was improved by Kahraman and 

Tolga (1998). The main idea in this approach to incorporate with uncertainty input and 

output data in DEA models by defining the tolerance levels on set if constraints 

violations. This approach does not treat fuzzy coefficients directly but it is fuzzified the 

inequality or equality signs. Although in most production processes fuzziness is present 

both in terms of not meeting specific objectives and in terms of the imprecision of the 

data, the tolerance approach provides flexibility by relaxing the DEA relationships while 

the input and output coefficients are treated as crisp. 

3.2.  Fuzzy ranking approach  

The fuzzy ranking approach is another and popular technique in fuzzy DEA was initially 

developed by Guo and Tanaka (2001). In this approach, the main idea is to estimate the 

fuzzy efficiency scores of the DMUs by using fuzzy linear programming which requires 

ranking the fuzzy set. Besides this, the approach is based on the fuzzy  DEA models in 

which fuzzy constraints involves fuzzy equalities and fuzzy inequalities and converted 

into crisp constraints by predefining and possibility level by comparison rule of fuzzy 

numbers. 
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3.3. Possibility  approach 

 The possibility approach is based on the fundamental principle of the possibility theory 

was imitated by Zadah (1977) and it was related to the theory of fuzzy sets by defining 

the concept of a possibility distribution as a fuzzy restriction which acts as an elastic 

constraint on the values that may be assigned to a variable. More specifically, if F is a 

fuzzy subset of a universe of discourse  uU =  which is characterized by its membership 

function F , then a proposition of the form "" FisX , where X is variable taking value 

in U , induces a possibility distribution X  which equates the possibility of X taking the 

value )(utou F the compatibility of U with F. in  this X becomes a fuzzy variable 

which is associated with a probability distribution see (Zadah  1977).  

The proposed possibility CCR model was developed by Lertworasirikul et al. (2003) 

where they applied the concept of chance-constrained programming (CCP) and the 

possibility of fuzzy events are represented by the following: 
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(3.1) 

Where  1,0 ,  1,0  and  1,00   are predetermined admissible levels of 

possibility. The envelopment from of the model (3.1) after using the CC-transformation 

and then use of duality in the above model which required a form of fuzzy CRR is as: 
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  (3.2) 

The extension of the model (3.2) was in Lertworasirikul et al. (2003) in case of VRS 

case for developing fuzzy BCC which as:   
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Where  1,01    and  1,02  are predetermined admissible levels of possibility. 

 
3.4. α-Level Approach 

 

 The level−  approach is the most used method in fuzzy DEA. This is evident by the 

large number published reported work of FDEA based on level− approach. The 

mathematical idea in this approach is to convert the FDEA model into a pair of 

parametric programming in order to find the lower and upper bounds of the  level−  

membership functions of the efficiency score. Girod (1992) used the approach proposed 

by Carlsson and Korhonen (1986) to formulate the fuzzy BCC and free disposal hull 

(FDH) models which were radial measures of efficiency. In this model, the inputs could 

fluctuate between risk-free (upper) and impossible (lower) bounds and the outputs could 

fluctuate between risk-free (lower) and impossible (upper) bounds. The method was 

approximately the membership function of the fuzzy efficiency measures by applying 

the level−  approach. Then the extension of the same approach was done by Zadeh 

(1976) and Zimmermenn (1996) and they transformed the fuzzy DEA model to a pair of 

parametric mathematical programs and used the ranking fuzzy numbers methods 

proposed by Chen and Klein (1997) for estimating the efficiency measures of DMUs. 

The optimal solution of the fuzzy BCC model (7.5) can be estimated by using a two-

level mathematical model. The two levels are using to calculate the lower and upper 

bounds of the fuzzy DEA model and efficiency scores for a specific level− as follow:   
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Similarly, upper bounds of fuzzy DEA model and efficiency scores for a specific 

level− as follow: 
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Similarly, upper bounds of fuzzy DEA model are given as: 
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The above membership function is built by solving the lower and upper bounds

 U

k

L

k WW  )(,)(  of the level−  for each DMU using models see (Emrouznejad et al. 

(2014)). Saati et al. (2002) developed a fuzzy CCR model on the base of a possibility 

programming problem and later it was transformed into an interval programming 

problem using the level−  approach the solution of interval programming can be solved 

as crisp of a model for a given   with some variable substitutions. The new developed 
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DEA-model is derived for a particular case, where the inputs and outputs are triangular 

fuzzy numbers is as given below: 
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triangular fuzzy outputs, ijx and rjy  are the decision variables obtained from variable 

substitution used to transform the original fuzzy model into a parametric linear 

programming model with )1,0( . In Liu (2008) consider the relative importance of 

inputs and outputs as: 
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1 ,, . In this paper, we use the 

only level− approach for solving the fuzzy CCR and BCC DEA-models. Apart from 

this we developed fuzzy slack based measure (FSBM), fuzzy super efficiency model 

(FSFM) and fuzzy networking DEA-model (FNDEA) using level−   an approach 

which is discussed in this upcoming sections.  

4.  Fuzzy slack-based measure (FSBM) measure of efficiency 

Let mixij ,..,3,2,1; =   and sryrj .,..,3,2,1; =  be the outputrandinputi thth −− of 

;DMUj th −  nj .,..,3,2,1=  respectively. It is assumed that the data set is known and 

strictly positive. In Tone (2001) proposed a non-oriented and non-radial DEA technique 

called slack based (SBM) measure through which we can Minimizing the inefficiency 

rate directly by make the user input and output slacks. The mathematical formulation of 

SBM is given below: 

1 0

1 0

0

1

0

1

1

1

; 1,2,3,..., .

; 1, 2,3,..., .

m
i

k

i i

s
r

r r

n

j ij i i

j

n

j rj r r

j

S
Min t

m x

Sub to

S
t

s y

x S tx i m

y S ty r s







−

=

+

=

−

=

+

=

= −

+

 + = =

 − = =









      (4.1) 

0; 0; 0 0
j

i i r r jS ts S ts t and
t


− − + + =  =   =   

The above model is based on the assumption that input and output data are fixed, known 

and strictly positive. This is not possible always in the real world. Sometimes input and 

output data are known, positive but fuzzy type. In such situations, the model (4.1) is 

unable to produce any veiled information regarding the efficiency of DMUs. Let us 

assume ijx~  are the thi  fuzzy input mi ,,3,2,1 =  and rjy~  are thr the fuzzy output 

sr ,,3,2,1 = of thj  DMU nj ,,3,2,1 = . In order to solve the fuzzy input and fuzzy 

outputs, we are defining the corresponding membership functions 
ijx~  and 

rjy~ for ijx~  

fuzzy inputs and rjy~ fuzzy outputs respectively. Then the mathematically model for fuzzy 

inputs and fuzzy outputs on the bases of respective slacks are as: 
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   (4.2) 

Where k
~ fuzzy efficiency value of DMUk th − . The optimal solution of the fuzzy SBM 

model (4.2) can be estimated by using a two-level mathematical model. The two levels 

are using to calculate the lower and upper bounds of the fuzzy DEA model and 

efficiency scores for a specific level− as follow:  
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  (4.4) 

Where    U

rj

L

rj

U

ij

L

ij yyxx  )(,)(,)(,)(  are level−  the form of the fuzzy inputs and 

fuzzy outputs respectively. 

5. Fuzzy SBM model for supper efficiency in DEA 

The super-efficiency for DMUsn − using inputsm−  and outputss −  can define as let  

ijx~  and denotes thi fuzzy input mi ,,3,2,1 =  and thr output sr ,,3,2,1 = respectively 

of the ),,3,2,1( njDMUj th = . The super-efficiency can be calculated by using the 

mathematical model as given below, under the assumption that kDMU should be 

efficient. 
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The optimal solution of the SBM fuzzy Supper efficiency model (5.1) can be estimated 

by using a two-level mathematical model. The two levels are using to calculate the lower 

and upper bounds of fuzzy super efficiency of above model and an efficiency scores for a 

specific level− as follow:  
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 (5.2) 

Similarly, upper bounds of fuzzy Supper efficiency model in DEA and efficiency scores 

for a specific level− as follow: 
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It is not easy to determine the ranking through model (5.2) and model (5.3), because the 

outcome of the above models is also fuzzy numbers and different from the outcomes of 

the conventional DEA models. Then Chen and Klien (1997) proposed the area 

measurement method to rank the fuzzy numbers at unknown membership function. Thus 

we are using the level−  approach to obtain the ranking of DMUs. Our aim is to split 

the area into m. where m is equal to infinity by using mi
m

ih
i ,,2,1,0; ==  , where h is 

the maximum height of membership function. Then we can obtain the rank of the DMUs 

having fuzzy inputs and fuzzy outputs using the following equation: 
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kkikki MaxdMinc


 ,, , == , if ( )RI k

~
,~ is higher than the represented 

the thk DMU ranking is higher. 

6. Fuzzy SBM models in case of three-stage network structure 

Suppose we have ,DMUsn−  where each ).,..,3,2,1( njDMU j =  is assessing m-fuzzy 

inputs in the form of ).,..,3,2,1(~ mixij = in order to produce the final s fuzzy outputs in 

the form ),,3,2,1(~ sryrj = . Where the production operations of DMU are passing 

through in three stages namely as input, intermediate and output stage connected in 

series. While as in the intermediate has two sub-stages A and B which are connected 

parallel in the processing system as shown in Figure 6.1. 

 

Figure 6.1:  Network Structure 
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For better understanding of the distribution of inputs for each stage and sub stage, let ijx~

be the input for stage one in the above diagram to produce the output jkjk wandw
21

~~ which 

in turn represent inputs for sub-stages A and B  under stage two. Additionally, the output 

jljl vandv
21

~~  of sub-stage A and B represent as inputs for stage three to generate the final 

output rjy~ .  
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We can use of level− the fuzzy approach for estimating lower and upper bounds of 

networking fuzzy SBM model. In all the above-mentioned approaches of handling the 

fuzzy data in DEA, the role of the fuzzy arithmetic is very much important in DEA 

terminology. The fuzziness in DEA crates complexity in order to use fuzzy equalities and 

fuzzy inequalities i.e. ( =
~

,~,
~

). 

7. Numerical  illustration  

In this section, we present a numerical example based on 24 banks as DMUs using 

Assets, Expense, and Deposit as inputs while as fees, amount of loans, and amount of 

investments are used as output. In order to illustrate the use of the methodology proposed 

here like fuzzy BCC, fuzzy SBM and fuzzy Super SMB. We treat the two outputs amount 

of loans and investments are as fuzzy items and analyze the efficiency of the banking 

sector with triangles fuzzy functions from the fuzzy theory. The data are taken from (Li, 

2003), and recorded in Table 1.  
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Table 1: Inputs and Output of 24 DMUs 

Banks 
Asset

s 

Expens

e 
Deposit Fees Amount of loans Amount of investments 

DMU1 25026 7358 
105019

0 
3815 [904559, 921046, 937533] 

[203176, 203176, 

250329] 

DMU2 23601 8888 
128733

0 
7960 

[1063486, 1079681, 

1095876] 

[330262, 330262, 

346398] 

DMU3 23000 9078 
131837

1 
6654 

[1047592, 1063761, 

1079930] 

[301602, 316244, 

323712] 

DMU4 1319 1432 29834 314 [83867, 85570, 87273] 
[171508, 180588, 

180588] 

DMU5 14887 8718 
128929

0 
7030 

[1191878, 1203917, 

1215956] 

[286645, 312260, 

312260] 

DMU6 3807 1043 152379 362 [129055, 132053, 135051] [5072, 7103, 10286] 

DMU7 3785 1965 240894 783 [191531, 194883, 198235] [6866, 12479, 13603] 

DMU8 35017 12143 
110024

3 

2466

1 
[792452, 803948, 815444] 

[345454, 345454, 

416233] 

DMU9 27656 6485 
105551

8 
6434 [754371, 765703, 777035] 

[371145, 371145, 

402658] 

DMU1

0 
13261 5753 835647 9488 [654397, 662278, 670159] 

[135195, 139419, 

145389] 

DMU1

1 
14734 6263 945385 2333 [824971, 843270, 861569] 

[109295, 109295, 

129384] 

DMU1

2 
2932 1162 130526 461 [110392, 112496, 114600] [26993, 33004, 33004] 

DMU1

3 
6847 4316 158200 1392 [113777, 119955, 126133] [2730, 2773, 14283] 

DMU1

4 
8564 2562 286768 2274 [202733, 207697, 212661] [55026, 73313, 80389] 

DMU1

5 
9075 6063 811336 4744 [596510, 608249, 619988] 

[117013, 160938, 

257146] 

DMU1

6 
12497 3441 621534 3993 [512517, 517119, 521721] 

[141648, 157706, 

157706] 

DMU1

7 
2266 2789 273644 1404 [237782, 240963, 244144] 

[22989, 22989, 

31440.571] 

DMU1

8 
16748 7077 730199 8427 [553686, 564928, 576170] [60778, 69933, 72253] 

DMU1

9 
2474 2104 281299 2265 [220223, 225754, 231285] [27526, 31041, 31041] 

DMU2

0 
2986 2642 240961 2883 [215084, 219272, 223460] [21755, 21755, 30946] 

DMU2

1 
3759 1232 209383 1086 [181589, 186207, 190825] [37699, 40444, 43115] 

DMU2

2 
9393 2774 329084 2228 [273626, 278783, 283940] [34529, 36961, 38520] 

DMU2

3 
5168 1775 214344 1894 [161365, 168898, 176431] [15310, 17665, 25309] 

DMU2

4 
33864 11836 

199865

4 
3801 

[1716538, 1745691, 

1774844] 

[162436, 162436, 

164595] 

From the analysis, it was observed that out 24 DMUs (Banks) only 13 DMUs are 

performer efficiently are having efficiency scores equal to 1: DMUs 4, 5, 6, 8, 9, 10, 12, 

16, 17, 19, 20, 21, and 24. While as 11 DMUs are performing inefficiently and having 

efficiency scores less than (>1):  DMUs 1, 2, 3, 7, 11, 13, 14, 15, 18, 22, and 24 under the 

fuzzy BCC model on the different levels of  from (0 to 1).  
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Table 2: Lower Bounds of inefficient DMUs by FBCC with level− Approach 

DMUs 

L

kW )(  = Lower limits of Fuzzy BCC efficiency on different levels of . 

 α =0  α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9     α=1.0 

DMU1 0.902 0.904 0.907 0.910 0.912 0.915 0.917 0.920 0.923 0.925 0.928 

DMU2 0.927 0.929 0.931 0.934 0.936 0.938 0.941 0.944 0.948 1.000 1.000 

DMU3 0.856 0.858 0.861 0.864 0.866 0.870 0.875 0.880 0.885 0.890 0.895 

DMU7 0.816 0.819 0.821 0.824 0.827 0.830 0.832 0.835 0.838 0.840 0.843 

DMU11 0.932 0.935 0.938 0.941 0.944 0.948 0.951 0.954 0.957 0.961 0.964 

DMU13 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.489 0.494 0.500 0.505 

DMU14 0.757 0.760 0.762 0.765 0.768 0.771 0.773 0.776 0.779 0.782 0.784 

DMU15 0.857 0.858 0.860 0.861 0.863 0.868 0.875 0.882 0.888 0.895 0.902 

DMU18 0.850 0.852 0.854 0.856 0.858 0.861 0.863 0.866 0.868 0.871 0.874 

DMU22 0.857 0.859 0.862 0.865 0.867 0.870 0.872 0.875 0.877 0.880 0.883 

DMU23 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 

Table 2: shows the lower bounds of inefficient DMUs under FBCC at different levels of  

  . Table 3: shows the upper bounds results of FBCC model at ten different levels of 
from 0 to 1, for inefficient DMUs. 

Table 3: Upper Bounds of inefficiency DMUs by FBCC with level− Approach 

DMUs 

U

kW )(  = Upper limits of Fuzzy BCC efficiency on different levels of . 

α=0 α=0.1    α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=0.1 

DMU1 0.954 0.952 0.949 0.946 0.944 0.941 0.938 0.936 0.933 0.930 0.928 

DMU2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

DMU3 0.974 0.968 0.960 0.951 0.940 0.927 0.921 0.914 0.908 0.901 0.895 

DMU7 0.871 0.868 0.865 0.862 0.860 0.857 0.854 0.851 0.849 0.846 0.843 

DMU11 0.996 0.993 0.990 0.987 0.983 0.980 0.977 0.973 0.970 0.967 0.964 

DMU13 0.561 0.555 0.550 0.544 0.539 0.533 0.527 0.522 0.516 0.511 0.505 

DMU14 0.811 0.808 0.806 0.803 0.800 0.798 0.795 0.792 0.790 0.787 0.784 

DMU15 1.000 1.000 1.000 1.000 0.989 0.970 0.956 0.942 0.929 0.915 0.902 

DMU18 0.900 0.897 0.895 0.892 0.889 0.887 0.884 0.882 0.879 0.876 0.874 

DMU22 0.908 0.905 0.903 0.900 0.898 0.895 0.893 0.890 0.888 0.885 0.883 

DMU23 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 0.971 

From fuzzy BCC model, it was observed 13 DMUs are efficient, however, in fuzzy SBM, 

only 11 DMUs are identified as efficient. DMU6 and DMU12 are excluding from the 

efficient class of DMUs under the Fuzzy SBM model.  

Table 4: Lower Bounds of inefficiency DMUs by Fuzzy SBM with level− Approach 

DMUs 

L

k  )(  = Lower limits of Fuzzy SBM efficiency on different levels of . 

α=0 

  

α=0.1 

  

α=0.2 

  

α=0.3 

α=0.

4 

α=0.

5 

α=0.

6 

α=0.

7 

  

α=0.8 

  

α=0.9 

α=0.

1 

DMU1 0.56 0.568 0.570 0.572 0.574 0.576 0.578 0.579 0.581 0.583 0.585 
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6 

DMU2 

0.83

3 
0.838 0.843 0.847 0.852 0.857 0.862 0.868 0.886 1.000 1.000 

DMU3 

0.72

6 
0.730 0.733 0.737 0.740 0.744 0.747 0.750 0.754 0.758 0.766 

DMU6 

0.99

9 
0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.978 0.989 0.989 

DMU7 

0.08

9 
0.096 0.103 0.111 0.118 0.125 0.132 0.140 0.147 0.154 0.161 

DMU1

1 

0.47

0 
0.471 0.473 0.474 0.476 0.479 0.481 0.484 0.486 0.489 0.491 

DMU1

2 

0.98

9 
0.999 0.999 0.999 0.997 0.999 0.999 0.999 0.988 0.989 0.989 

DMU1

3 

0.01

9 
0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.020 

DMU1

4 

0.37

0 
0.380 0.389 0.398 0.407 0.416 0.425 0.434 0.443 0.451 0.459 

DMU1

5 

0.63

8 
0.652 0.666 0.679 0.692 0.704 0.716 0.728 0.739 0.751 0.761 

DMU1

8 

0.38

5 
0.391 0.398 0.404 0.411 0.417 0.423 0.430 0.436 0.443 0.449 

DMU2

2 

0.29

3 
0.295 0.298 0.300 0.303 0.306 0.308 0.311 0.313 0.316 0.319 

DMU2

3 

0.31

4 
0.319 0.324 0.330 0.335 0.340 0.345 0.350 0.355 0.360 0.366 

 

 

 

Table 5: Upper Bounds of inefficiency DMUs by Fuzzy SBM 

DMUs 

U

k  )(  = Upper limits of Fuzzy SBM efficiency on different levels of . 

α=0 

 

α=0.1 

α=0.

2 

α=0.

3 

   

α=0.4 

  

α=0.5 

  

α=0.6 

  

α=0.7 

   

α=0.8 

α=0.

9 

  

α=0.1 

DMU1 

0.65

4 
0.645 

0.63

7 

0.62

9 
0.623 0.616 0.610 0.604 0.598 

0.59

1 
0.585 

DMU2 

1.00

0 
1.000 

1.00

0 

1.00

0 
1.000 1.000 1.000 1.000 1.000 

1.00

0 
1.000 

DMU3 

0.91

4 
0.896 

0.87

8 

0.86

3 
0.846 0.825 0.799 0.788 0.781 

0.77

4 
0.766 

DMU6 

1.00

0 
1.000 

1.00

0 

1.00

0 
1.000 1.000 1.000 1.000 1.000 

1.00

0 
1.000 

DMU7 

0.19

4 
0.191 

0.18

7 

0.18

4 
0.181 0.177 0.174 0.171 0.168 

0.16

4 
0.161 

DMU1

1 

0.57

2 
0.561 

0.55

4 

0.54

6 
0.539 0.531 0.523 0.515 0.507 

0.49

9 
0.491 

DMU1

2 

1.00

0 
1.000 

1.00

0 

1.00

0 
1.000 1.000 1.000 1.000 1.000 

1.00

0 
1.000 

DMU1

3 

0.09

8 
0.090 

0.08

3 

0.07

5 
0.067 0.059 0.051 0.043 0.036 

0.02

8 
0.020 

DMU1

4 

0.51

0 
0.505 

0.50

0 

0.49

5 
0.490 0.485 0.479 0.474 0.469 

0.46

4 
0.459 

DMU1

5 

1.00

0 
1.000 

1.00

0 

1.00

0 
0.878 0.861 0.843 0.824 0.804 

0.78

4 
0.761 

DMU1 0.47 0.475 0.47 0.46 0.466 0.463 0.461 0.458 0.455 0.45 0.449 
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8 8 2 9 2 

DMU2

2 

0.35

4 
0.350 

0.34

6 

0.34

3 
0.339 0.335 0.332 0.328 0.325 

0.32

2 
0.319 

DMU2

3 

0.48

9 
0.477 

0.46

5 

0.45

3 
0.441 0.429 0.417 0.404 0.391 

0.37

9 
0.366 

Efficient but performing weakly. In other words, we can say that there is a chance to 

improve efficiency by reducing the input and output slacks of DMU 6 and 12 

respectively. Thus it was clear that fuzzy SBM has good discrimination power over fuzzy 

BCC.  The results of Table 3 are the lower bounds of efficiency scores in fuzzy SBM 

model at different levels of . Table 4 shows the upper bounds of fuzzy SBM model at 

different levels of . In addition, we also observed that DMU2 is full efficient at  =1, 

but when  =0 it showing inefficiency. Thus in conventional DEA DMU2 is fully 

efficient, however, Bank 2 is not affected by its overdue loans ratio, and as such, its 

efficiency score is an overestimation. 

Table 6: Lower Bounds of Supper efficiency DMUs by Fuzzy Supper SBM. 

DMUs 

L

k  )~(  = Lower limits of Fuzzy Super -SBM efficiency on different levels of . 

α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=0.1 

DMU4 3.466 3.467 3.469 3.470 3.472 3.473 3.475 3.476 3.478 3.479 3.481 

DMU5 1.155 1.142 1.155 1.165 1.174 1.181 1.190 1.198 1.206 1.212 1.217 

DMU8 1.304 1.305 1.306 1.307 1.307 1.308 1.309 1.310 1.311 1.312 1.313 

DMU9 1.081 1.083 1.085 1.087 1.089 1.091 1.092 1.094 1.096 1.098 1.100 

DMU10 1.065 1.066 1.066 1.067 1.068 1.068 1.069 1.070 1.071 1.071 1.072 

DMU16 1.037 1.038 1.040 1.041 1.042 1.043 1.045 1.046 1.047 1.049 1.050 

DMU17 1.041 1.043 1.044 1.045 1.046 1.048 1.049 1.050 1.051 1.053 1.054 

DMU19 1.103 1.105 1.106 1.108 1.109 1.111 1.112 1.114 1.115 1.116 1.118 

DMU20 1.073 1.074 1.075 1.077 1.078 1.079 1.081 1.109 1.083 1.084 1.086 

DMU21 1.076 1.078 1.080 1.081 1.083 1.085 1.087 1.089 1.091 1.093 1.095 

DMU24 1.108 1.108 1.109 1.110 1.111 1.112 1.112 1.113 1.114 1.115 1.115 

 

 

Table 7: Upper Bounds of Supper efficiency DMUs by Fuzzy Supper SBM. 

DMUs 

U

k  )~( = Upper limits of Fuzzy Super -SBM efficiency on different levels of . 

α=0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 α=0.1 

DMU4 3.535 3.529 3.524 3.518 3.513 3.508 3.502 3.497 3.492 3.486 3.481 

DMU5 1.227 1.226 1.225 1.224 1.223 1.222 1.221 1.220 1.219 1.218 1.217 

DMU8 1.399 1.388 1.378 1.368 1.357 1.346 1.335 1.324 1.319 1.316 1.313 

DMU9 1.131 1.128 1.125 1.122 1.119 1.116 1.113 1.109 1.106 1.103 1.100 

DMU10 1.079 1.078 1.078 1.077 1.076 1.075 1.075 1.074 1.073 1.073 1.072 

DMU16 1.060 1.059 1.058 1.057 1.056 1.055 1.053 1.053 1.052 1.051 1.050 

DMU17 1.066 1.065 1.064 1.063 1.061 1.060 1.059 1.058 1.056 1.055 1.054 

DMU19 1.132 1.131 1.129 1.128 1.126 1.125 1.124 1.122 1.121 1.119 1.118 

DMU20 1.099 1.098 1.097 1.095 1.094 1.093 1.091 1.090 1.088 1.087 1.086 

DMU21 1.116 1.114 1.112 1.110 1.107 1.105 1.103 1.101 1.099 1.097 1.095 
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DMU24 1.123 1.122 1.121 1.121 1.120 1.119 1.118 1.118 1.117 1.116 1.115 

 

The results of fuzzy BCC model and fuzzy SMB model are having the same shortcoming 

and we cannot rank the DMUs, because in both the models the efficiency is denoted as 1. 

Therefore, I order to overcome from this weakness, we are using fuzzy supper efficiency 

model based on the slacks. Fuzzy supper SBM excludes all inefficient DMUs and rank all 

those efficient DMUs, whose efficiency score is equal to unity in the fuzzy SBM model. 

Such that all those DMUs will be rank easily. In Table 6, we are showing the supper 

efficiency lower bounds of efficient DMUs at different levels of  and supper efficiency 

upper bounds at same levels  are present in the Table8. 

 Table 8: Ranking as per Fuzzy Efficiency Scores 

Fuzzy  
DM

U 
1 2 3 4 5 6 7 8 9 10 11 12 

 BCC 

EFF 
0.84

2 

0.90

8 

0.77

7 

1.00

0 

1.00

0 

1.00

0 

0.68

4 

1.00

0 

1.00

0 

1.00

0 

0.90

4 

1.00

0 

Ran

k 
17 15 19 1 1 1 22 1 1 1 16 1 

SBM 

EFF 
0.58

5 

0.89

2 

0.76

0 

1.00

0 

1.00

0 

1.00

0 

0.15

4 

1.00

0 

1.00

0 

1.00

0 

0.49

6 

1.00

0 

Ran

k 
17 14 15 1 1 13 23 1 1 1 18 12 

 Sup. 

SBM 

EFF 
0.16

8 

0.27

4 

0.22

5 

0.98

3 

0.33

8 

0.27

9 

0.04

5 

0.37

4 

0.31

0 

0.30

0 

0.14

4 

0.27

9 

Ran

k 
17 14 16 1 3 13 23 2 6 9 18 12 

Fuzzy  
DM

U 
13 14 15 16 17 18 19 20 21 22 23    24 

 BCC 

EFF 
0.08

1 

0.57

4 

0.79

0 

1.00

0 

1.00

0 

0.74

2 

1.00

0 

1.00

0 

1.00

0 

0.75

7 

0.94

4 

1.00

0 

Ran

k 
24 23 18 1 1 21 1 1 1 20 14 1 

 SBM 

EFF 
0.04

0 

0.44

4 

0.74

5 

1.00

0 

1.00

0 

0.43

3 

1.00

0 

1.00

0 

1.00

0 

0.31

4 

0.38

3 

1.00

0 

Ran

k 
24 19 16 1 1 20 1 1 1 22 21 1 

 Sup. 

SBM 

EFF 
0.01

1 

0.13

0 

0.23

6 

0.29

4 

0.29

5 

0.12

5 

0.31

3 

0.30

4 

0.30

7 

0.08

9 

0.11

4 

0.31

2 

Ran

k 
24 19 15 11 10 20 4 8 7 22 21 5 

The ranking through fuzzy BCC and fuzzy SBM models are not genuine ranking which is 

acceptable for all. While as the ranking by making the use of fuzzy supper SBM model is 

genuine and generally acceptable to all.  From the above analysis, it was observed that 

DMU 4 is top-ranked DMU (Bank) on the other said DMU13 is bottom ranked DMU. 

7. Conclusions 

DEA has wide application to evaluate the relative efficiency in the set of DMUs by using 

multiple inputs to produce multiple outputs. Evaluating performance in many activities 

by a traditional DEA approach requires precise input-output data. However in the real 

world, it is not always possible, in many empirical studies inputs and outputs are volatile, 
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hybrid and complex to deal such type of inputs and outputs fuzzy set theory has been 

proposed a way quantify imprecise and vague data in DEA models.   

In this paper, three kinds of fuzzy DEA models are proposed for evaluating the 

relative efficiencies of DMUs having fuzzy data and it was concluded that the proposed 

fuzzy DEA models are more powerful and general approach forms where uncertainty, 

interval, high frequency and hybrid data can be handled easily.  
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