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Abstract

In this paper, a generalized ratio-type estimator based on ranked set sampling (RSS) is proposed for The
applications of fuzzy analysis in data-oriented techniques are the challenging aspect in the field of applied
operational research. The use of fuzzy set theoretic measure is explored here in the context of data
envelopment analysis (DEA) where we are utilizing the fuzzy o-level approach in the three types of
efficiency models. Namely, BCC models, SBM model and supper efficiency model in DEA. It was
observed from the result that the fuzzy SBM model has good discrimination power over fuzzy BCC. On the
other side, both the models fuzzy BCC and fuzzy SBM are not able to make the genuine ranking which is
acceptable for all. So this weakness is overcome with the help of fuzzy super SBM model and all three
models are applied to illustrate the types of decisions and solutions that are achievable when the data are
vague and prior information is in imprecise. In this paper, we are considering that our inputs and outputs
are not known with absolute precision in DEA and here, we using Fuzzy-DEA models based on an a-level
fuzzy approach to assessing fuzzy data.

Keywords: Fuzzy Set, Linear Parametrical Programming, Data Envelopment Analysis,
Vague, Fuzzy Equalities, and Inequalities.
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1. Introduction

Since DEA was proposed in 1978 and after that it has been got comprehensive attention
in both theories as well as in application. DEA becomes an important analysis tool and
research way in management science, operational research, system engineering, decision
analysis, and economics. Performance analysis has become a vital part of the
management practices in the banking industry. There are numerous applications using
DEA models to estimate efficiency in banking, and most of them assume that inputs and
outputs are known with absolute precision. The different modification was in the
mathematical approaches of DEA, namely mixed orientation approach of DEA was given
Qaiser et al. (2016). Two-stage production processes with double frontier were given by
Arif et al. (2017). DEA as decision support system was given by Qaiser et al. (2017). But
it is not always possible that our input and output data are known with absolute precision.
DEA is based on the production process and the data of production processes cannot be
precisely measured always since the uncertain theory has played an important role in the
inputs and outputs. The fuzzy analysis is helpful for handling the different type of data,
namely uncertainty data, interval data; identify the missing variable and high-frequency
data. A possible path to handle input/output uncertainty in DEA relies on the use of
probability distributions to model their inherent randomness. These distributions are
subsequently employed in stochastic DEA models. However, these probability
distributions require being somewhat estimable a priori or a posteriori, limiting the use of
stochastic DEA models in cases where the event is unique or deterministic. Alternatively,
however, uncertainty in input/output may be related to imprecision or vagueness, rather
than to randomness. This being the case imprecision or vagueness in input/output values
can be expressed by membership functions within the ambit of fuzzy logic.

The a-level approach is possibly the most popular, given the numerous papers
produced using its variations, despite the fact that their models are not computationally
efficient. This is so because a-level models demand more linear programs to be solved
for each a value (Soleimani-damaneh, Abbasbandy et al., and Jahanshahlooet al., 2006)
within the a-level approach, the FDEA model is first converted into a pair of parametric
programs so that the lower and upper bounds of the efficiency scores can be computed
next for a given value of a in Emrouznejad and Tavana (2014). The rationale behind the
selection of then a-level approach in this study is related to a number of aspects. First,
when using this approach, fuzzy inputs and outputs may be expressed as crisp numbers
representing the limiting bounds of the intervals for different a-levels in Chen et al.
(2013), thus allowing the uncertainty of the data collected from Mozambican banks to be
easily modelled as triangular fuzzy numbers. Second, in the situation of various a levels
for the inputs and the outputs, Fuzzy DES may be translated into traditional DEA (crisp)
models in light of the extension principle, thus making solving their respective linear
programs simpler (Yager, 1981; Zadeh, 1965a; Zimmerman, 1976). Third, owing to the
input and output data being fuzzy numbers, the efficiency scores are also fuzzy numbers
in Puri and Yadav (2013). Moreover, as long as the efficiency values considered here are
the upper and lower “crisp” bounds computed for various a levels, the membership
functions for the true fuzzy efficiency cannot be reconstructed, which has a number of
implications on how fuzzy efficiencies should be ranked in Chen et al.( 2013); Puri and
Yadav (2013); Hsiao et al. (2011). These bounds, however, can be treated as crisp values
and incorporated into statistical modelling as efficiency scores subjected to certain fixed
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effects or treatments in order to properly assess the impact of different contextual
variables.

2. DEA with Fuzzy Sets

The two fundamental DEA models, CCR (Charnes Cooper Rhodes DEA-mode) and BCC
(Banker Charnes Cooper DEA-model) are based on the assumption of know, numerical,
and fixed value of inputs and outputs. But this type of input-output data are not always
possible, sometimes we are observing that our observed input-output data are imprecise
or vague. In such situations, the traditional DEA models fail to get any information from
such type of data. So, in order to overcome from such type of difficulties, we are making
the use of fuzzy theory. Sengupta (1992) was first introducing a fuzzy mathematical
programming approach into which fuzziness was incorporated into DEA methodology.
Let us assume the n—DMUsassessing the number of m different inputs to
produce s different outputs. Suppose that %;;(i=1,2,3,...,m) and ¥,;(r=123,...,s) are

respective fuzzy inputs and outputs of DMU;(j=12,3,...n). The multiplier and

envelopment form fuzzy CCR-model with input-oriented version can be formulated
mathematically as:
Multiplier CCR-model (input-oriented)

Max 6, = z Hy yrk
r=1
Sub to

v.X, =1 (2.1)

Zu,y”- —Zmlviiij <0;v(j=123,...,n)
i=1

r=1
u, ,v; 20;(i=12,3,...mand r=12,3,...,s)
Where "~"denotes the fuzziness of input and outputs.

The model (2.1) is an input-oriented fuzzy CCR model in multiplier form. Envelopment
form of the above model is more feasible to solve, which can convert by making the use
of duality theory. Thus envelopment form of model (2.1) is as:

2 'LMB

Min 6,
Sub to

le/ljiij <@X; Vi=123..,n 2.2)
J=

DAV =2V Vr=123..,s
j=1

2,20 Vj=123...n.

Where 6, is an efficiency value of k™ — DMU.The model (2.2) is envelopment form of

fuzzy CCR and can be solved by using the fuzzy linear programming and assumed in
case of constant returns to scale production processes only. If the convexity constraint is
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adjoined to model (2.1), then the model becomes the fuzzy BCC model and
mathematically formulation as:

Min 6,
Sub to

A%, <0%, Vi=123,..,n
=1

no_ (2.3)
DAY=V Vr=123..,s

=L

> A4;=1V2,20; j=123...n
j=1

The above model is the envelopment form of fuzzy BCC model and standard form of
model (2.3) is given as:
Min 6,

Sub to
D AKX+ =60%, Vi=123...n
j=1

DAV -s =Vu Vr=123..s @4
j=1

n A, =1V 1;20;j=123,...n
j=1
s, 20and s, >0;Vi,r

Where s, and s are the input and output slacks of j™ —DMU.. If 8, =1 and all slacks
are zero then the DMU, is said to be efficient but if one of the slack is non-zero, then
DMU, under evaluation is weakly efficient (i.e., you can improve the efficiency of
DMU, by reduce the current level of input or expend the outputs) and if &, =1then
DMU, is said to be inefficient. We can solve the above model into two phases, in phase-

I, we are estimating the feasible optimal solution of fuzzy BCC-model by using fuzzy
linear programming approaches after that we use the optimal value 6, in order to

calculate the values of the slack. Phase Il of fuzzy BCC-model is given below:

Min [isi‘ +is:j
i=1 r=1

Sub to 2.5)

> A%+ = 0% i=123,...,n
=

DAV —S =Y. Vr=123,...,s
j=1
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> 2,=1V2,20; j=123...n
j=1

ss>0and s, >0;Vi,r
Thus the model (2.4) and model (2.5) can represent a two-phase DEA process involved
input-orientation in given below:

Min 6, —g(zn:si‘ +isﬁj
i=1 r=1
Sub to

sziij+s;:9kikj Vi=123,...,n
= (2.6)

r

Z/%—Vrj -s; =y, Vr=123...s
i1

A, =1V 4,20, j=123,...n
j=1
s; 20and s, >0;Vi,r

3. Fuzzy Approaches in DEA

The application of fuzzy set theory in DEA categorized into four approaches available in
the literature which are discussed under as:

3.1. Tolerance approach

The Tolerance approach was one of the first fuzzy approaches in DEA and that was
introduced by Sengupta (1992) later the same approach was improved by Kahraman and
Tolga (1998). The main idea in this approach to incorporate with uncertainty input and
output data in DEA models by defining the tolerance levels on set if constraints
violations. This approach does not treat fuzzy coefficients directly but it is fuzzified the
inequality or equality signs. Although in most production processes fuzziness is present
both in terms of not meeting specific objectives and in terms of the imprecision of the
data, the tolerance approach provides flexibility by relaxing the DEA relationships while
the input and output coefficients are treated as crisp.

3.2.  Fuzzy ranking approach

The fuzzy ranking approach is another and popular technique in fuzzy DEA was initially
developed by Guo and Tanaka (2001). In this approach, the main idea is to estimate the
fuzzy efficiency scores of the DMUs by using fuzzy linear programming which requires
ranking the fuzzy set. Besides this, the approach is based on the fuzzy DEA models in
which fuzzy constraints involves fuzzy equalities and fuzzy inequalities and converted
into crisp constraints by predefining and possibility level by comparison rule of fuzzy
numbers.
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3.3.  Possibility approach

The possibility approach is based on the fundamental principle of the possibility theory
was imitated by Zadah (1977) and it was related to the theory of fuzzy sets by defining
the concept of a possibility distribution as a fuzzy restriction which acts as an elastic
constraint on the values that may be assigned to a variable. More specifically, if F is a
fuzzy subset of a universe of discourse U = {u} which is characterized by its membership

function ., then a proposition of the form "X is F", where X is variable taking value
in U, induces a possibility distribution [T, which equates the possibility of X taking the
value u to x. (u)the compatibility of U with F. in this X becomes a fuzzy variable

which is associated with a probability distribution see (Zadah 1977).
The proposed possibility CCR model was developed by Lertworasirikul et al. (2003)
where they applied the concept of chance-constrained programming (CCP) and the
possibility of fuzzy events are represented by the following:

Max 6, = f

Sub to

3.1
vi=123,....m 3D

S m L

Zuryrj_zviiijj <0V j=123,...,n
r=1 i=1 o

u,v, 20, ¥ r,i

Where #€[0,1],a[0,1] and «, €[0,1] are predetermined admissible levels of

possibility. The envelopment from of the model (3.1) after using the CC-transformation
and then use of duality in the above model which required a form of fuzzy CRR is as:
Max 6,

Sub to
n U
[Z;/ljiij—ekiik] <0;Vi=123,...,m (3.2)
Jn Ual
{szyrk-yer >0;Vr=123,...,s
j=1 z

a;

4,20,V j=123,...,n

The extension of the model (3.2) was in Lertworasirikul et al. (2003) in case of VRS
case for developing fuzzy BCC which as:
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Max 6,
Sub to

U
n

Z/ljiu—ekiikJ <0;Vi=123,...,m (3.3)

j=t @

U

D 2 Vu _yer >0;Vr=123,...,s
j=1

a3

Z/lj}:l; VA, 20;(j=123...,n)
j=1

Where @, €[0,1] and @, [0, 1]are predetermined admissible levels of possibility.

3.4.  g-Level Approach

The a—level approach is the most used method in fuzzy DEA. This is evident by the
large number published reported work of FDEA based on o —level approach. The
mathematical idea in this approach is to convert the FDEA model into a pair of
parametric programming in order to find the lower and upper bounds of the « —level
membership functions of the efficiency score. Girod (1992) used the approach proposed
by Carlsson and Korhonen (1986) to formulate the fuzzy BCC and free disposal hull
(FDH) models which were radial measures of efficiency. In this model, the inputs could
fluctuate between risk-free (upper) and impossible (lower) bounds and the outputs could
fluctuate between risk-free (lower) and impossible (upper) bounds. The method was
approximately the membership function of the fuzzy efficiency measures by applying

the o —level approach. Then the extension of the same approach was done by Zadeh
(1976) and Zimmermenn (1996) and they transformed the fuzzy DEA model to a pair of
parametric mathematical programs and used the ranking fuzzy numbers methods
proposed by Chen and Klein (1997) for estimating the efficiency measures of DMUs.
The optimal solution of the fuzzy BCC model (7.5) can be estimated by using a two-
level Mmathematical model. The two levels are using to calculate the lower and upper

bounds of the fuzzy DEA model and efficiency scores for a specific « — level as follow:

) | W, =max D u, y, +U,
min r=1
Sub to
W )L B (Xij)lo_z < X;; < (Xij)ﬁ o (3.4)
kla — .
(yrj):; SYg S (yrj)i ;Vixik =1
Yi, j,r . N
DU Yy = D ViX; + U <0; V.
r=1 i=1

Similarly, upper bounds of fuzzy DEA model and efficiency scores for a specific
o — level as follow:
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s
:maxzuryrk +U0

max r=1
Sub to
e | O = = O 0 (35)
o (Yrj)lo_z <Yy s (yn‘)l{i Zvixik =1
Yi, j,r

ZU yrk Zvl ij SO’ vj

Where u,,v,>0Vr,j and [(xij); ,(xij)g] [(y”)a (V) ]are a—level a form of

the fuzzy inputs and fuzzy outputs respectively. The two-level mathematical model can
be simplified to the conventional one-level model as follows:

W), :maxzur(yrk)la_z + U,

r=1

Sub to

ZU (Ye)s ZV (i )e +Uo <0
ZU (Yy)o ZV ()5 +Uy <0 (3.6)

ZVi(xik)z =1, u.,v, >0,V r,i

Similarly, upper bounds of fuzzy DEA model are given as:

W,)s —maXZU (Ya)a +Ug

r=1

Sub to

ZU (yrk ZV (Xlk) +U0 < 0 (37)

Zu (¥q)a Zv (%) +U, <0

Zvi(xik)lo_z =1, U,V 20,V r,i

The above membership function is built by solving the lower and upper bounds
[(Wk); , (\Nk)z] of the a—level for each DMU using models see (Emrouznejad et al.

(2014)). Saati et al. (2002) developed a fuzzy CCR model on the base of a possibility
programming problem and later it was transformed into an interval programming

problem using the & — level approach the solution of interval programming can be solved
as crisp of a model for a given @ With some variable substitutions. The new developed
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DEA-model is derived for a particular case, where the inputs and outputs are triangular
fuzzy numbers is as given below:

Max W, = Zs: Vi

r=1
Sub to
y.— ) x: <0V j=123...,n
le : le ’ (3.8)
v, (oxi + (1~ a)x ) <X <vi(axi +(L-a)xg) Vi, ]
ur(ayrj +(1_a)yrj) < yrj < ur(ayrj +(1_a)yrj) v r,J
Zx,k =1L u,,v,>0vr=123,...,sand i=123,...m
Where X; = (x;, X, x;j) and y,; =(yy, Yy, ys)are the triangular fuzzy inputs and the

trlangular fuzzy outputs, xjand y;; are the decision variables obtained from variable

substitution used to transform the original fuzzy model into a parametric linear
programming model witha<(0,1). In Liu (2008) consider the relative importance of
inputs and outputs as:

%sﬁsh,5<q:2,3,...,m and ﬁgu—‘gsﬁ,5<q:2,3,...,s respectively.

v u
Iq q Iq oq q 0q
Then Liu (2008) proposed two parametric mathematical programs are as given below:

(Vvk)(l; =Maxzur (yrp)lo_t
r=1

Sub to
Zu (Ye)a Zv(xu) <0,V j,j=k
(3.9)
-v§+l(§qvq30,v5—livq£0, Vo<
~U; +0; U, <0,u; ~OJu, <0,V <q
Zv ()Y =Lu,,v, >0,V r,j.
W), MaxZu (Yo)a
Sub to
Zu (¥4)s ZV(X.,) <O,V j,j=k
(3.10)

-V, +I§vq£0 Vs =15V, <0, V& <q

—u, +0; Uy <0,y —O(‘,{]uqSO,V5<q

Zv (x,)- =Lu,,v, >0,V r,]j.
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L U L U .
Wherelb =—%% Y =Z1 Ol =% agnd O =—2. In this paper, we use the
“ U L % U *

5, iq 0q oq

only a—level gpproach for solving the fuzzy CCR and BCC DEA-models. Apart from
this we developed fuzzy slack based measure (FSBM), fuzzy super efficiency model
(FSFM) and fuzzy networking DEA-model (FNDEA) using «—level an approach
which is discussed in this upcoming sections.

4. Fuzzy slack-based measure (FSBM) measure of efficiency

Let x,;i=123.,m and y,;r=123..s be thei”—input and r""—outputof

j"=DMU ; j=123,..,n respectively. It is assumed that the data set is known and
strictly positive. In Tone (2001) proposed a non-oriented and non-radial DEA technique
called slack based (SBM) measure through which we can Minimizing the inefficiency
rate directly by make the user input and output slacks. The mathematical formulation of
SBM is given below:

. 1&S
Minz, =t——>»
Sub to
trly 3 (4.1)

S r=1 er

DA%+ =tx 5 i=1,2,3,...,m.
j=1

DAy, =S =ty ;r=1,2,3,..,s.
j=1

A
S, =ts; >0; S =ts” >0;t>0and }tj':TJZO

The above model is based on the assumption that input and output data are fixed, known
and strictly positive. This is not possible always in the real world. Sometimes input and
output data are known, positive but fuzzy type. In such situations, the model (4.1) is
unable to produce any veiled information regarding the efficiency of DMUs. Let us

assume X; are the i" fuzzy input i=1,23...,m and ¥ are r'"the fuzzy output

r=12.3,...,sof j" DMU j=12,3,...,n. In order to solve the fuzzy input and fuzzy
outputs, we are defining the corresponding membership functions M, and Hy, for X;

fuzzy inputs and Yy ; fuzzy outputs respectively. Then the mathematically model for fuzzy
inputs and fuzzy outputs on the bases of respective slacks are as:

490 Pak.j.stat.oper.res. Vol.XV No.2 2019 pp481-501



Fuzzy Data Envelopment Analysis with SBM using a-level Fuzzy Approach

L~ 1&,.S
Minz, =t—— )
‘ mgxik
Sub to
t+12?f =1
Sr:l yrk

X,

Al =S =tX,Vi=123,...,m
(4.2)

by

j=1

Zn: YA, +S =ty vVr=123..,s
j=1

>

j=1

A

Where p, fuzzy efficiency value of k™ —DMU . The optimal solution of the fuzzy SBM

model (4.2) can be estimated by using a two-level mathematical model. The two levels
are using to calculate the lower and upper bounds of the fuzzy DEA model and

efficiency scores for a specific « —level as follow:

Mint—lzs—i
M Xik
Sub to
tJFEZSr =1
Max St Y
L1065 < % < ()0 D XA+ ST =t Vi=123,...
(Tk)a L < < U j=1
(yrj)a - yrj - (yrj)a n
Vi, j.r D YA =S =ty, Vr=123,...
j=1
2,} =t;Vt>0
j=1
4,20V j=123,...,n
S/ 20and S; >0.
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Mint—l Se
M52 Xy
Sub to
t+lzSr =1
Mim S Yk
1065 < % < (%)% D XA+ S =t Vi=123..m
(Tk)a L U =1 (44)
(yrj)a Syrj S(yrj)ar n
i, j.r D oYAi =S, =ty Vr=123..s
j=1
A;=t;vt>0
j=1
4,20,V j=123,...,n
S/ >0and S; >0.

Where [(xij); ,(xij)ﬁ], [(yr,-); : (yr,-)l;’,] are o —level the form of the fuzzy inputs and
fuzzy outputs respectively.

5. Fuzzy SBM model for supper efficiency in DEA

The super-efficiency for n—DMUsusing m—inputs and s—outputs can define as let
X; and denotes i™ fuzzy inputi =1,2,3,...,m and r"™output r =1,2,3,...,s respectively
of the j" DMU (j =1,2,3,...,n). The super-efficiency can be calculated by using the
mathematical model as given below, under the assumption that DMU, should be

efficient.
Min 7, = — i(_'
M52 Xy
Sub to
Iv %
S yrk
%A +S =X Vi=123,..,m
j=1,j#1
Jid =S, =Y,V r=123...,s
j=1, j#1

492
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2,20,V j=123,...,n, j£Kk
% 2t%,, 0<y <ty
S, >0 and S >0.

The optimal solution of the SBM fuzzy Supper efficiency model (5.1) can be estimated
by using a two-level Mmathematical model. The two levels are using to calculate the lower

and upper bounds of fuzzy super efficiency of above model and an efficiency scores for a
specific o —level as foIIow:

=Min —Z

(Xm)

Sub to

(vr )L: _1

(yrk)

(). Al +S7 = (%) Vi=123,...,m

=k

w |
® LM

=

—

(Y, oA =S =(y) Vr=123...s (5.2)

M:

j=1, j=k

s B

/Ij':tVt>O

j=1, j=k

220V j=123..n, j=k
(X)" 2t (%), 0= (V) St(yrk)ii
S; 20 and S; >0.

Similarly, upper bounds of fuzzy Supper efficiency model in DEA and efficiency scores
for a specific o —level as follow:

= Min —z(

Il
[N

—~

=1 |k)
Sub to

Z(yrk

n 5.3
(%, ) A4S =(X)"vi=123,...,m (53)

j=1, j=k
(Va5 2y =87 = (¥)" V r=123...,5

j=1, j=k

> A =tvVit>0

j=1, j=k

Pak.j.stat.oper.res. Vol.XV No.2 2019 pp481-501 493



Qaiser F. Dar,Ahn Y. Hyo, Gulbadian F. Dar,Shariq A. Bhat,Arif M. Tali, Yasir H. Bhat
220V j=123..n, j=k

(X)” 2t (% )a, 0< (V)" <t(Y,),
S, >0 and S >0.

It is not easy to determine the ranking through model (5.2) and model (5.3), because the
outcome of the above models is also fuzzy numbers and different from the outcomes of
the conventional DEA models. Then Chen and Klien (1997) proposed the area
measurement method to rank the fuzzy numbers at unknown membership function. Thus
we are using the « —level approach to obtain the ranking of DMUs. Our aim is to split

the area into m. where m is equal to infinity by using ¢, = m; i=0L2,...,m ,wherehis
m

the maximum height of membership function. Then we can obtain the rank of the DMUs
having fuzzy inputs and fuzzy outputs using the following equation:

- = Zm:[(fk )lon, - C]
|<Tk , R): r|n|LrO]O ~ = :
Sk e S, -]

Wherec = Min; , {(z,), § d =Max; , {(z, ).. {, if I('fk, F~2)is higher than the represented

i

the k™ DMU ranking is higher.
6. Fuzzy SBM models in case of three-stage network structure

Suppose we have n—DMUs, where eachDMU; (j=1,2,3,..,n) is assessing m-fuzzy
inputs in the form of X; (i=1,2,3,...,m)in order to produce the final s fuzzy outputs in
the formy, (r=12.3,...,s). Where the production operations of DMU are passing

through in three stages namely as input, intermediate and output stage connected in
series. While as in the intermediate has two sub-stages A and B which are connected
parallel in the processing system as shown in Figure 6.1.

Stage- |

W

Figure 6.1: Network Structure
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For better understanding of the distribution of inputs for each stage and sub stage, let x;
be the input for stage one in the above diagram to produce the output w, ; and w, ; which

in turn represent inputs for sub-stages A and B under stage two. Additionally, the output
V,; and v, ; of sub-stage A and B represent as inputs for stage three to generate the final
outputy,;.

m

1
7 )overall =Mint—— ) —
) mgx

Sub to

LlpSy

S r=1 yrk

Z/l’x +S =t%, ; i=123 .,m

S0, -5 =ty T=12.38

=

J_Z:/ij =J_Z:,ﬂ}lwkl,-+jzn=;u W, k. k, k. (6.1)
Zn:%'zznlu Zu Zn,—t Vvt >0

j=L

;20,4 >0, y’2>0 and 7,20V j=123...,n

J
S, >0and S >0.
We can use of o —level the fuzzy approach for estimating lower and upper bounds of

networking fuzzy SBM model. In all the above-mentioned approaches of handling the
fuzzy data in DEA, the role of the fuzzy arithmetic is very much important in DEA
terminology. The fuzziness in DEA crates complexity in order to use fuzzy equalities and
fuzzy inequalities i.e. (<,=,>).

7. Numerical illustration

In this section, we present a numerical example based on 24 banks as DMUs using
Assets, Expense, and Deposit as inputs while as fees, amount of loans, and amount of
investments are used as output. In order to illustrate the use of the methodology proposed
here like fuzzy BCC, fuzzy SBM and fuzzy Super SMB. We treat the two outputs amount
of loans and investments are as fuzzy items and analyze the efficiency of the banking
sector with triangles fuzzy functions from the fuzzy theory. The data are taken from (Li,
2003), and recorded in Table 1.
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Table 1: Inputs and Output of 24 DMUs

Asset

Expens

Banks s o Deposit | Fees Amount of loans Amount of investments
DMU1 | 25026 | 7358 1050019 3815 | [904559, 921046, 937533] [203%8'358]3176’
128733 [1063486, 1079681, [330262, 330262,
DMU2 | 23601 | 8888 1% | 7960 1005376] Sa6300]
131837 [1047592, 1063761, [301602, 316244,
DMU3 | 23000 | 9078 7| 6654 1075930] 223712]
DMU4 | 1319 | 1432 | 29834 | 314 | [83867, 85570, 87273] [171?23'5;2?588’
128929 [1191878, 1203917, [286645, 312260,
DMUS | 14887 | 8718 2% | 7030 1215950) 21260]
DMU6 | 3807 | 1043 | 152379 | 362 | [129055, 132053, 135051] |  [5072, 7103, 10286]
DMU7 | 3785 | 1965 | 240894 | 783 | [191531, 194883, 198235] | [6866, 12479, 13603]
110024 | 2466 [345454, 345454,
DMUS | 35017 | 12143 ) 0% | [792452, 803948, 815444] 116233]
105551 [371145, 371145,
DMU9 | 27656 | 6485 1| 6434 | [754371, 765703, 777035] 107658]
DMU1L [135195, 139419,

W1 113261 | 5753 | 835647 | 9488 | [654397, 662278, 670159] 148389]
DMUL 1 14734 | 6263 | 945385 | 2333 | [824971, 843270, 861569] [109295, 109295,

1 129384]
DMZU1 2032 | 1162 | 130526 | 461 | [110392, 112496, 114600] | [26993, 33004, 33004]
D'\gm 6847 | 4316 | 158200 | 1392 | [113777,119955,126133] | [2730, 2773, 14283]
D'\ﬂm 8564 | 2562 | 286768 | 2274 | [202733, 207697, 212661] | [55026, 73313, 80389]
DMU1L [117013, 160938,

A1 1 9075 | 6063 | 811336 | 4744 | [596510, 608249, 619988] 257140]
DMU1L [141648, 157706,

AL | 12497 | 3441 | 621534 | 3993 | [512517,517119, 521721] e
DMU1L [22989, 22989,

WL | 2066 | 2780 | 273644 | 1404 | [237782, 240963, 244144] 21420 o71)
D'\"8U1 16748 | 7077 | 730199 | 8427 | [553686, 564928, 576170] | [60778, 69933, 72253]
D|v|9u1 2474 | 2104 | 281299 | 2265 | [220223, 225754, 231285] | [27526, 31041, 31041]
DI\/I0U2 2086 | 2642 | 240961 | 2883 | [215084, 219272, 223460] | [21755, 21755, 30946]
D'V'luz 3750 | 1232 | 209383 | 1086 | [181589, 186207, 190825] | [37699, 40444, 43115]
DMZUZ 9393 | 2774 | 320084 | 2228 | [273626, 278783, 283940] | [34529, 36961, 38520]
DI\/I3U2 5168 | 1775 | 214344 | 1894 | [161365, 168898, 176431] | [15310, 17665, 25309]
DMU2 199865 [1716538, 1745691, [162436, 162436,

4 | 33864 11836 4 | 3801 1774844] 164595]

From the analysis, it was observed that out 24 DMUs (Banks) only 13 DMUs are
performer efficiently are having efficiency scores equal to 1: DMUs 4, 5, 6, 8, 9, 10, 12,
16, 17, 19, 20, 21, and 24. While as 11 DMUs are performing inefficiently and having
efficiency scores less than (>1): DMUs 1, 2, 3,7, 11, 13, 14, 15, 18, 22, and 24 under the
fuzzy BCC model on the different levels of « from (0 to 1).
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Table 2: Lower Bounds of inefficient DMUs by FBCC with « — level Approach

(W, )" = Lower limits of Fuzzy BCC efficiency on different levels of & .

DMUs
a=0 0=0.1 0=0.2 o0=03 o0=04 o=0.5 0=0.6 0=0.7 0=0.8 o=0.9 o=1.0

DMUL1l | 0902 0904 0907 0910 0912 00915 0917 0920 0.923 0.925 0.928
DMU2 | 0927 0929 0931 0934 0.936 0938 0.941 0944 0948 1.000 1.000
pDMu3 | 0.856 0.858 0.861 0.864 0.866 0.870 0.875 0.880 0.885 0.890 0.895
DMU7 | 0816 0819 0.821 0.824 0.827 0.830 0.832 0.835 0.838 0.840 0.843
DMU11 | 0932 0935 0.938 0.941 0.944 00948 0.951 0954 0.957 0.961 0.964
DMU13 | 0.488 0.488 0.488 0.488 0.488 0.488 0.488 0.489 0.494 0500 0.505
DMU14 | 0.757 0.760 0.762 0.765 0.768 0.771 0.773 0.776 0.779 0.782 0.784
DMU15 | 0.857 0.858 0.860 0.861 0.863 0.868 0.875 0.882 0.888 0.895 0.902
DMuU18 | 0.850 0.852 0.854 0.856 0.858 0.861 0.863 0.866 0.868 0.871 0.874
DMU22 | 0.857 0.859 0.862 0.865 0.867 0.870 0.872 0.875 0.877 0.880 0.883
DMU23 | 0971 0971 0971 0971 0971 0971 0971 0971 0971 0971 0971

Table 2: shows the lower bounds of inefficient DMUs under FBCC at different levels of
o . Table 3: shows the upper bounds results of FBCC model at ten different levels of o
from 0 to 1, for inefficient DMUs.

Table 3: Upper Bounds of inefficiency DMUs by FBCC with « —level Approach

DMUs

(W, )Y = Upper limits of Fuzzy BCC efficiency on different levels of & .

a=0  0=0.1 0=0.2 0=03 o0=04 0a=0.5 0=0.6 0=0.7 0=0.8 0=0.9 a=0.1
DMU1 | 0954 0952 0949 0.946 0.944 0941 0938 0936 0933 0.930 0.928
DmMu2 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
DMuU3 | 0974 0968 0.960 0.951 0.940 0.927 0921 0.914 0.908 0.901 0.895
pmMu7 | 0871 0868 0.865 0.862 0.860 0.857 0.854 0.851 0.849 0.846 0.843
DMU11 | 0.996 0993 0.990 0.987 0.983 0.980 0.977 0973 0970 0.967 0.964
DMU13 | 0.561 0555 0.550 0.544 0.539 0.533 0.527 0.522 0516 0.511 0.505
DMU14 | 0.811 0.808 0.806 0.803 0.800 0.798 0.795 0.792 0.790 0.787 0.784
DMU15 | 1.000 1.000 1.000 1.000 0.989 0.970 0.956 0942 0.929 0.915 0.902
DMU18 | 0.900 0.897 0.895 0.892 0.889 0.887 0.884 0.882 0.879 0.876 0.874
DMU22 | 0.908 0905 0.903 0.900 0.898 0.895 0.893 0.890 0.888 0.885 0.883
DMU23 | 0971 0971 0971 0971 0971 0971 0971 0971 0971 0971 0971

From fuzzy BCC model, it was observed 13 DMUs are efficient, however, in fuzzy SBM,
only 11 DMUs are identified as efficient. DMU6 and DMU12 are excluding from the
efficient class of DMUs under the Fuzzy SBM model.

Table 4: Lower Bounds of inefficiency DMUs by Fuzzy SBM with « —level Approach

(7, )'{; = Lower limits of Fuzzy SBM efficiency on different levels of ¢ .

DMUs

o=0. o=0. 0=0. 0=0. o=0.

0=0 0=0.1 0=0.2 0a=0.3 4 5 6 7 0=0.8 0=0.9 1
DMU1 ‘ 0.56 0.568 0.570 0.572 0574 0576 0578 0579 0581 0.583 0.585
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6

083 0g3s 0843 0847 0852 0857 0862 0868 0886 1000 1.000
DMU2 | 3
omus | e’ 0730 0733 0737 0740 0744 0747 0750 0754 0758 0766
omus | o0 0999 0999 0999 0999 0999 0999 0999 0978 0989 0989
omu7 | 0 0096 0103 0111 0118 0125 0132 0140 0147 0154 0161
MUt 0'6‘7 0471 0473 0474 0476 0479 048l 0484 0486 0489 0491
DMUL 1 0% 0999 0999 0999 0997 0999 0999 0999 0988 0989 0.989
DMUL 1 090 0019 0019 0019 0019 0019 0019 0019 0019 0019 0.020
DMUL 1057 0380 0380 0308 0407 0416 0425 0434 0443 0451 0.459
DMUL | 083 0652 0666 0679 0692 0704 0716 0728 0739 0751 0761
DMUL 1 038 0391 0308 0404 0411 0417 0423 0430 0436 0443 0.449
DMUZ 1 029 0205 0208 0300 0303 0306 0308 0311 0313 0316 0319
DMUZ 1031 0319 0304 0330 0335 0340 0345 0350 0355 0360 0.366

Table 5: Upper Bounds of inefficiency DMUs by Fuzzy SBM

(7, )z = Upper limits of Fuzzy SBM efficiency on different levels of ¢ .
DMUs o=0. 0=0. 0=0.

0=0 0=0.1 2 3 0=0.4 0=0.5 0=0.6 0o=0.7 0a=0.8 9 0=0.1
ovot | OS> oeas 0% 082 o023 o616 0610 0604 0598 %77 0585
ovuz | 0% wooo R0 M0 1000 1000 1000 1000 1000 9% 1000
onmus | an 0sos 05T 0% ogis 0g25 0700 o788 o7e1 %[T 0766
ovus | o0 1000 M0 M0 1000 1000 1000 1000 1000 OO 1000
onur | Ca¥ oaen 98 018 oag 0177 o174 o o1es %% oael
DMUL 1 057 ose1 9% O 0530 0531 0523 0515 0507 %57 0491
DMUL 1190 1000 +2% 199 1000 1000 1000 1000 1000 2% 1000
DMUL 1099 0000 920 07 0067 0050 0051 0043 0036 9% 0.2
PMUL 1051 o505 020 049 9490 045 0479 0474 0as0  O7°  0.450
DMUL 1100 1000 100 100 078 0861 0843 0824 0804 */° o761
DMUL | 047 0475 047 046 0466 0463 0461 0458 0455 045 0449
498 Pak.j.stat.oper.res. Vol.XV No.2 2019 pp481-501



Fuzzy Data Envelopment Analysis with SBM using a-level Fuzzy Approach

8 8 2 9 2
SMUZ 0'25 0.350 0'54 0'334 0339 0335 0332 0328 0325 0'232 0.319
? MU2 0';"8 0.477 O'g‘6 0';’5 0441 0429 0417 0404 0391 0'937 0.366

Efficient but performing weakly. In other words, we can say that there is a chance to
improve efficiency by reducing the input and output slacks of DMU 6 and 12
respectively. Thus it was clear that fuzzy SBM has good discrimination power over fuzzy
BCC. The results of Table 3 are the lower bounds of efficiency scores in fuzzy SBM
model at different levels of « . Table 4 shows the upper bounds of fuzzy SBM model at
different levels of « . In addition, we also observed that DMU2 is full efficient at « =1,
but when o =0 it showing inefficiency. Thus in conventional DEA DMU?2 is fully
efficient, however, Bank 2 is not affected by its overdue loans ratio, and as such, its
efficiency score is an overestimation.

Table 6: Lower Bounds of Supper efficiency DMUs by Fuzzy Supper SBM.

DMUs

(T)e

= Lower limits of Fuzzy Super -SBM efficiency on different levels of ¢ .

o=0

0=0.1

o=0.2

o=0.3

o=0.4

0=0.5

0=0.6

0=0.7

0=0.8

0=0.9

0=0.1

DMU4
DMUS
DMU8
DMUS9
DMU10
DMU16
DMU17
DMU19
DMU20
DMU21
DMU24

3.466
1.155
1.304
1.081
1.065
1.037
1.041
1.103
1.073
1.076
1.108

3.467
1.142
1.305
1.083
1.066
1.038
1.043
1.105
1.074
1.078
1.108

3.469
1.155
1.306
1.085
1.066
1.040
1.044
1.106
1.075
1.080
1.109

3.470
1.165
1.307
1.087
1.067
1.041
1.045
1.108
1.077
1.081
1.110

3.472
1.174
1.307
1.089
1.068
1.042
1.046
1.109
1.078
1.083
1.111

3.473
1.181
1.308
1.091
1.068
1.043
1.048
1.111
1.079
1.085
1.112

3.475
1.190
1.309
1.092
1.069
1.045
1.049
1.112
1.081
1.087
1.112

3.476
1.198
1.310
1.094
1.070
1.046
1.050
1.114
1.109
1.089
1.113

3.478
1.206
1.311
1.096
1.071
1.047
1.051
1.115
1.083
1.091
1.114

3.479
1.212
1.312
1.098
1.071
1.049
1.053
1.116
1.084
1.093
1.115

3.481
1.217
1.313
1.100
1.072
1.050
1.054
1.118
1.086
1.095
1.115

Table 7: Upper Bounds of Supper efficiency DMUs by Fuzzy Supper SBM.
(7)Y = Upper limits of Fuzzy Super -SBM efficiency on different levels of ¢t .

DMUs

0=0

0=0.1

0=0.2

o=0.3

0=0.4

0=0.5

0=0.6

0=0.7

0=0.8

0=0.9

0=0.1

DMU4
DMU5S
DMU8
DMU9
DMU10
DMU16
DMU17
DMU19
DMU20
DMU21

3.535
1.227
1.399
1.131
1.079
1.060
1.066
1.132
1.099
1.116

3.529
1.226
1.388
1.128
1.078
1.059
1.065
1.131
1.098
1.114

3.524
1.225
1.378
1.125
1.078
1.058
1.064
1.129
1.097
1.112
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3.518
1.224
1.368
1.122
1.077
1.057
1.063
1.128
1.095
1.110

3.513
1.223
1.357
1.119
1.076
1.056
1.061
1.126
1.094
1.107

pp481-501

3.508
1.222
1.346
1.116
1.075
1.055
1.060
1.125
1.093
1.105

3.502
1.221
1.335
1.113
1.075
1.053
1.059
1.124
1.091
1.103

3.497
1.220
1.324
1.109
1.074
1.053
1.058
1.122
1.090
1.101

3.492
1.219
1.319
1.106
1.073
1.052
1.056
1.121
1.088
1.099

3.486
1.218
1.316
1.103
1.073
1.051
1.055
1.119
1.087
1.097

3.481
1.217
1.313
1.100
1.072
1.050
1.054
1.118
1.086
1.095
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DMU24‘1.123 1122 1121 1121 1120 1119 1118 1.118 1117 1116 1.115

The results of fuzzy BCC model and fuzzy SMB model are having the same shortcoming
and we cannot rank the DMUSs, because in both the models the efficiency is denoted as 1.
Therefore, | order to overcome from this weakness, we are using fuzzy supper efficiency
model based on the slacks. Fuzzy supper SBM excludes all inefficient DMUs and rank all
those efficient DMUs, whose efficiency score is equal to unity in the fuzzy SBM model.
Such that all those DMUs will be rank easily. In Table 6, we are showing the supper
efficiency lower bounds of efficient DMUs at different levels of « and supper efficiency
upper bounds at same levels « are present in the Table8.

Table 8: Ranking as per Fuzzy Efficiency Scores

Fuzzy BM 1 2 3 4 5 6 7 8 9 10 11 12
;e 084 090 077 100 100 100 068 100 100 100 090 100
2 8 7 0 0 0 4 0 0 0 4 0
BCC o
) 17 15 19 1 1 1 2 1 1 1 16 1
e 058 089 076 100 100 100 015 100 100 100 049 100
5 2 0 0 0 0 4 0 0 0 6 0
SBM .
) 17 14 15 1 1 13 23 1 1 1 18 12
cep 016 027 022 098 033 027 004 037 031 030 014 027
Sup. 8 4 5 3 8 9 5 4 0 0 4 9
SBM Ea” 7 14 16 1 3 13 23 2 6 9 18 12
DM
Fuzzy " 18 14 15 16 17 18 19 20 21 22 23 24
s, 008 057 079 100 100 074 100 100 100 075 094 100
1 4 0 0 0 2 0 0 0 7 4 0
BCC o
) 24 23 18 1 1 021 1 1 1 20 14 1
crr 004 044 074 100 100 043 100 100 100 031 038 100
0 4 5 0 0 3 0 0 0 4 3 0
SBM oo
) 24 19 16 1 1 20 1 1 1 02 21 1
s 001 013 023 029 029 012 031 030 030 008 011 031
Sup. 1 0 6 4 5 5 3 4 7 9 4 2
SBM
Ea” 24 19 15 11 10 20 4 8 7 2 21 5

The ranking through fuzzy BCC and fuzzy SBM models are not genuine ranking which is
acceptable for all. While as the ranking by making the use of fuzzy supper SBM model is
genuine and generally acceptable to all. From the above analysis, it was observed that
DMU 4 is top-ranked DMU (Bank) on the other said DMU13 is bottom ranked DMU.

7. Conclusions

DEA has wide application to evaluate the relative efficiency in the set of DMUs by using
multiple inputs to produce multiple outputs. Evaluating performance in many activities
by a traditional DEA approach requires precise input-output data. However in the real
world, it is not always possible, in many empirical studies inputs and outputs are volatile,
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hybrid and complex to deal such type of inputs and outputs fuzzy set theory has been
proposed a way quantify imprecise and vague data in DEA models.

In this paper, three kinds of fuzzy DEA models are proposed for evaluating the

relative efficiencies of DMUs having fuzzy data and it was concluded that the proposed
fuzzy DEA models are more powerful and general approach forms where uncertainty,
interval, high frequency and hybrid data can be handled easily.
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