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Abstract 

Two upper bounds for ruin probability under the discrete time risk model for insurance controlled by two 

factors: proportional reinsurance and surplus investment are presented. The latter is of interest because of 

the assumption that insurers invest some or their entire financial surplus on both the stock and bond 

markets, for which bond interest rates follow a time – homogeneous Markov chain. In addition, the control 

of reinsurance and stock investment in each time period are assumed to be constant values. The first upper 

bound for finite time ruin probability and ultimate ruin probability was derived under the condition that the 

Lundberg coefficient exists. The second upper bound is for finite time ruin probability and was developed 

from a new worse than used function. Numerical examples are used to illustrate these results, and the upper 

bound of ruin probability using real-life motor insurance claims data from a broker is also presented. 

Keywords: Discrete-time Risk Model, Upper bound of ruin probability, Lundberg 

coefficient, new worse than used.  

1. Introduction 

There is increasing attention on ruin probability for insurance discrete time risk models 

with reinsurance and investment of financial surplus over the last decade due to the fact 

that insurance companies can purchase reinsurance, invest in the stock market, and 

receive dividends, among other transactions. However, obtaining an explicit solution of a 

company’s ruin probability is actually a difficult task. One alternative method commonly 

used in ruin theory is deriving bounds for the ruin probabilities (Diasparra and Romera, 

2009, and Lin et al., 2015) thus the focus in this paper is on upper bounds for ruin 

probability. 

 

Lundberg’s inequality provides a well-known upper bound for the probability of ultimate 

ruin in the classical risk model when the moment generating function of the claim size 

random variable exists. However, in many practical distributions, the moment generating 

function does not exist, so the Lundberg inequality is not available in these cases (Cai and 

Wu, 1997, and Cai and Garrido, 1999). Thus, there are many researches in which the 

upper bound of ruin probability has been derived (see, for example, Dickson (1994), 

Willmot (1994), Kalashnikov (1999), and other researchers) and can be applied to more 

general claim size distributions. 
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In this paper, two upper bounds of ruin probability for a discrete time risk model 

controlled by reinsurance and investment are presented. The former was derived under 

the condition that the moment generating function of a claim size exists (the Lundberg 

coefficient exists). This upper bound can be viewed as an extension of the results from 

the studying of Diasparra and Romera (2009), and Jasiulewicz and Kordecki (2015) by 

adding investment to a risk model. The latter was developed from the idea of Willmot 

(1994) by providing the upper bound in terms of the new worse than used (NWU) 

function. This upper bound can be applied for more general claim size distributions. 

2. Model description 

The typical discrete time risk model for insurance can be written as 

n n-1 n nU U + X   Y= −  ; 1,2,3,...n = ,      (1) 

where nU  denotes the insurer’s surplus at the end of time period n  with initial constant

0U   u= ,
 nX

 
being the total premiums amount during time period n  (i.e. from time 

1n−  to n ), and nY
 
is the total claims amount during n . We assume that this sequence 

consists of independent and identically distributed (i.i.d.) random variables with a 

common distribution function ( ) ( )nP y Pr Y y=  ; 0y  . In this study, the above risk 

model is expanded upon by adding proportional reinsurance and investment. 

 

Under proportional reinsurance contracts, the reinsurer agrees to cover a fraction of each 

claim equal to the fraction of premiums that it receives from the insurer. Throughout this 

study, ( 0,1nb   is defined as the retention level of a reinsurance contract for time period 

n . This means that the insurer pays n nb Y  of total claim amount nY  while the reinsurer is 

liable for ( )1 n nb Y− , and if the retention level 1nb = , this means that there is no 

reinsurance. Let ( )n nh b ,Y  denote the fraction of the total claim nY  paid by the insurer, 

( )n n n0 h b ,Y Y  , with ( )b n n bG( y ) Pr h b ,Y y=    , 0by  , then ( )n nh b ,Y  can be 

evaluated by ( )n nh b ,Y
 
= n nb Y  (this is the case throughout this paper). In addition, the 

insurance premium during time period n, nX , is assumed to be a fixed constant c for all 

n. Subsequently, by the expected value principle with safety loading factor 0  , the 

premium constant is calculated as c = ( ) ( )1 nE Y+  and paid at the end of every time 

period unit
 
( 1n ,n− . Let   be the safety loading factor added by the reinsurer and rec  be 

the premium constant for the reinsurer. Thus, by the expected value principle, the 

constant premium for reinsurer in a unit period is given by 

( ) ( )re n n nc 1 E Y h b ,Y= + −    

( )( ) ( )n n1 1 b E Y= + − .       (2) 
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Next, the constant premium which is retained by the insurer in a unit period denoted by

( )nc b , when ( )0 nc b c  , can be calculated as 

( )n rec b c c= −  

( ) ( )( ) ( )n n1+θ 1+ 1 b E Y= − −   .     (3) 

 

For the effect of an investment on a risk model, we assume that the insurer can invest in 

two assets. One is a bond with a known interest rate at the initial time ( 0I ); the interest 

rate at time n  ( ), 1,2,3...nI n =  has a finite countable number ( nd ) of possible values (

n kI i= , where 1,2,3,..., nk d ), and we assume that nd d= for all n  throughout this 

dissertation. In addition, nI  is assumed to follow a time-homogeneous Markov chain, i.e. 

both the transition probabilities and the time are independent, and are denoted by 

   1 0 1n b n a s n b n aPr I i | I i ,...,I i Pr I i | I i− −= = = = = =  

abp= ,      (4) 

where 
0

1
d

ab
b

p
=

=  for all
 

 0 1 2a,b , , ,...,d . 

 

The other investment asset is a stock with simple net return nR  and the price of one share 

of stock nS  at time n  is defined as 

( )1 11n n- n n- nS S R S W= + =  ; 1,2,3,...n =      (5) 

 

A standard assumption on the stock market is 1 0n n R  W+ =  , which is called the gross 

return. Throughout this paper, nW  is assumed to be a sequence of i.i.d. nonnegative random 

variables with the distribution function
 

( ) ( )nF w Pr W w=  , 0w . 

 

Based on the risk model in Equation (1), if at the beginning of thn  period the insurer has 

the chance to decide the amount of stock investment n ( )0n   using the information 

from   and  : 0 1 2 1j jI W j , , ,...,n= − , and the retention level nb  of a reinsurance contract, 

our risk model is finally formulated as 

( ) ( ) ( )1 1n n n n n n n nU U I W c b h b ,Y−= + + + − ,     (6) 

with the assumption that the sequences  nI ,  nW , and  nY  are mutually independent. 

 

From the risk model in Equation (6), if we replace the values of n  as 1 2n , ,..,m= , then 

the output from this action is another form of the former model as follows: 
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( ) ( ) ( )1 0 1 1 1 1 1 11U U I W c b h b ,Y= + + + −
 

( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( ) ( )

2 1 2 2 2 2 2 2

2

0 1 1 2 1 2 1 1 2
1

2 2 2 2 2

1

1 1 1 1j
j

U U I W c b h b ,Y

     U I W I c b I h b ,Y I

  W c b h b ,Y ,







=

= + + + −

= + + + + + − +

+ + −



( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( ) ( )

3 2 3 3 3 3 3 3

3 3 3 3

0 1 1 1 1 1
1 2 2 2

2 2 3 2 3 2 2 3 3 3 3 3 3

1

1 1 1 1

1 1 1

j k k k
j k k k

U U I W c b h b ,Y

    U I W I c( b ) I h b ,Y I

  W I c b I h b ,Y I W c b h b ,Y ,





 

= = = =

= + + + −

= + + + + + − +

+ + + + − + + + −

   
 

( ) ( ) ( )( ) ( )0
11 1

1 1
m mm

m j j j j j j k
jj k j

U U I W c b h b ,Y I
== = +

 
= + + + − + 

 
 

 

Therefore, the other form of nU  is 

( ) ( ) ( )( ) ( )0
11 1

1 1
n nn

n j j j j j j k
jj k j

U U I W c b h b ,Y I
== = +

 
= + + + − + 

 
   ; 1,2,3,...n =  

          (7)
 

 

Remark 1: In the case where the value of k is greater than n, kI  does not exist in 

( )
1

1
n

k
k j

I
= +

+ , thus we assume kI = 0, i.e. ( ) ( )
1 1

1 1 1
n n

k
k j k j

I
= + = +

+ = =  . 

 

From the definition of ruin probability in the article of Cai and Dickson (2004) and 

Jasiulewicz and Kordecki (2015), and given the initial values 0U u=  and 0 sI i= , the ruin 

probability for the insurance risk model can be written as follows. 

 

The ruin probability for finite time is given by 

( ) ( ) 0 0
1

, Pr 0 | ,
n

n s k s
k

u i U U u I i
=

=  = =U  

 0 0Pr 0 for some 1 | ,k sU k n U u I i=    = = ,   (8) 

and the ultimate ruin probability is also given by 

( ) ( ) 0 0
1

, Pr 0 | ,s k s
k

u i U U u I i


=

=  = =U  

 0 0Pr 0 for some 1 |  ,k sU k U u I i=   = = .   (9) 

 

Consider that the ruin probabilities are the cumulative probability from Equations (8) and 

(9), then 

( ) ( ) ( )1 2 3, , , ...s s su i u i u i           (10) 
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and
 

( ) ( )lim , ,n s s
n

u i u i 
→

=       (11)
 

 

Remark 2: 

1) When the insurance risk model in Equation (6) is neither reinsurance ( 1nb = ) nor 

investment ( 0nI =  and 0n = ), then the model is reduced to the classical discrete time 

risk model 

1n n- nU U c Y= + −
.       (12) 

 

Subsequently, the famous Lundberg inequality for the ultimate ruin probability, ( )u , 

for Equation (12) states that if ( )nE Y c  and the constant (Lundberg coefficient) 0 0R   

exists such that  

( )0 1nR Y c
E e

−  =
 

,       (13) 

then 

( ) 0R u
u e −
  ; 0 0U u=  ,      (14) 

2) If we omit the investment factor ( 0nI = and 0n = ) from the insurance risk model in 

Equation (6), the model is reduced to   

( ) ( )1n n- n n nU U c b h b ,Y= + − .      (15) 

 

Again, the ultimate ruin probability, ( )u , for Equation (15) with constant values of 

reinsurance in each time period, i.e. nb b=  for all 1 2 3n , , ,...= and if   ( )nE bY c b , in 

which the Lundberg constant 0 0R  exists, then 

( )( )0 1nR bY c b
E e

−  =
 

       (16) 

becomes 

( ) 0R u
u e −
  ; 0 0U u=        (17) 

 

(see Diasparra and Romera, 2009, p. 102). 

3. Recursive and Integral Equations form for Ruin Probability 

The recursive form of ruin probability for finite and ultimate time under discrete time risk 

model for insurance as in Equation (6), in which ruin probabilities are defined as in 

Equations (8) and (9), are derived as follows. 
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Lemma 1: The recursive form of ruin probability for finite time and the integral equation 

of the ultimate ruin probability under the discrete time insurance risk model as in 

Equation (6) are given as 

( ) ( )1
0 0

( , ) dF w
d

s st
t

u i p G 


=

=  ,      (18) 

where ( ) ( ) ( )( )1 11 Pr ,G G h b Y  = − =   and ( ) ( )1 11 tu i w c b = + + + , 

( ) ( )( ) ( ) ( )1 1
0 0 0

( , ) 1 ,
d

n s st n t b t b
t

u i p u i w z y i dG y dF w


  


+
=

= + + −    

( ) ( )
0 0

+ dF w ,
d

st
t

p G 


=

        (19) 

and 

( ) ( )( ) ( ) ( )1
0 0 0

( , ) 1 ,
d

s st t b t b
t

u i p u i w z y i dG y dF w


  


=

= + + −    

( ) ( )
0 0

d

st
t

 p G dF w


=

+   .      (20) 

 

Proof: 

Let ( ) ( ) ( ), ,n n n n n nZ z h b Y h b Y c b= = −   , 1 2 3n , , ,...= , and suppose that 1 tI i= ,

 0,1,2,...,t d , 1 , 0W w w=  , and 1 1( , ) , 0b bh b Y y y=  . Thus,

( ) ( ) ( )1 1 1 1, .bZ z y h b Y c b= = −  

 

Consider that 

( ) ( ) ( )1 0 1 1 1 1 1 11U U I W c b h b ,Y= + + + −  

( ) ( )11 t bu i w z y= + + −  

( )bh z y= − ,        (21) 

where ( ) 11 th u i w= + + . Thus, if ( )bz y h , then 

( ) 1 1 1 1 1 0 0Pr 0 | , , , , , 1b t sU W w h b Y y I i I i U u = = = = = = , 

implying that for ( )bz y h , 

( ) ( ) 
1

1 1 1 1 0 0
1

Pr 0 |  , , , , , 1
n

k b t s
k

U W w h b Y y I i I i U u
+

=

 = = = = = =U .  (22) 

However, if ( )0 bz y h  , then 

( ) 1 1 1 1 1 0 0Pr 0 | , , , , , 0b t sU W w h b Y y I i I i U u = = = = = = , 

implying that for ( )0 bz y h  , 
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( ) ( ) 
1

1 1 1 1 0 0
1

Pr 0 | , , , , ,
n

k b t s
k

U W w h b Y y I i I i U u
+

=

 = = = = =U  

( ) ( ) 
1

1 1 1 1 0 0
2

Pr 0 | , , , , ,
n

k b t s
k

U W w h b Y y I i I i U u
+

=

=  = = = = =U  

( )( ) ( ) ( ) ( )

( )

1

11 12

1 1

1 1 0
Pr

| ,  

n k kk

b j j j j m
jj m jk

b t

h z y I W Z I

U h z y I i


+

== = +=

     
− + + − +     

=      
 

= − = 

 U
 

( )( ) ( ) ( ) ( )

( )

11 11

0 0

1 1 0
Pr

| ,  

n r rr

b j j j j m
jj m jr

b t

h z y I W Z I

U h z y I i


== = +=

     
− + + − +     

=      
 

= − = 

 U
 

( )( ),n b th z y i= −  

( ) ( )( )11 ,n t b tu i w z y i = + + − .     (23) 

 

Consider ( )1n su,i + from Equation (8) is as follows: 

( ) ( ) 
1

1 0 0
1

, Pr 0 | ,
n

n s k s
k

u i U U u I i
+

+
=

=  = =U , 

 

we can therefore rewrite
 

( )n 1 su,i +  as 

( )
( )

( )
( ) ( )

1

0 0 1
11

0 0 0

1 1 1

0 | , , ,
, Pr

, ,

n

d
k s t

kn s st b
t

b

U U u I i I i
u i p dG y dF w

h b Y y W w



+

 

=+
=

 
 = = = 

=  
 = = 

  
U

 

( )  ( ) ( )
1

0 10 0

Pr 0 |
nd

st k b
t k

p U dG y dF w
  +

= =

=    U ,   (24) 

where ( ) 0 0 1 1 1 1, , , , ,s t bU u I i I i h b Y y W w = = = = = =   

 

From Equation (21), consider that ruin will occur in the first period if ( )bz y h  or 

( ) ( ) ( )1 1 1 1, 1 th b Y u i w c b + + +  and will occur in another period if

( ) ( ) ( )1 1 1 1, 1 th b Y u i w c b + + + . Since ( )1 1, bh b Y y=  is defined at the beginning of the 

proof, we now define ( ) ( )1 11 tu i w c b + + + =  for the short term. In order to use 

Equations (22) and (23) to derive the recursive form, we need to rewrite ( )1n su,i +  in 

Equation (24) as  
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( )
( ) ( )

( ) ( )
( )

1

10

1
1

0 0

1

0

0

n

k b
d

k

n s st
n

t

k b
k

Pr U | dG y

u,i p dF w

Pr U | dG y











+


=

+  +
=

=

  
    

=  
  +     


 



U

U  

( ) ( )( ) ( ) ( )1
0 0 0

1 ,
d

st n t b t b
t

p u i w z y i dG y dF w


 


=

= + + −    

( ) ( )
0 0

d

st b
t

p dG y dF w


 

=

+   . 

 

Since ( ) ( )( ) ( )1 1 bG Pr h b ,Y dG y


 


=  =  , then we can rewrite 1( , )n su i +  as 

( ) ( )( ) ( ) ( )1 1
0 0 0

( , ) 1 ,
d

n s st n t b t b
t

u i p u i w z y i dG y dF w


  


+
=

= + + −  
 

( ) ( )
0 0

d

st
t

p G dF w


=

+  .      (25) 

 

By using Equation (11) and the Lebesgue dominated convergence theorem, the result of 

taking n→   in Equation (25) becomes 

1( , ) lim ( , )s n s
n

u i u i  +
→

=  

( ) ( )( ) ( ) ( )1
0 0 0

1 ,
d

st t b t b
t

p u i w z y i dG y dF w


 


=

= + + −    

   
( ) ( )

0 0

d

st
t

p G dF w


=

+  .  

 

Furthermore, following on from Equation (18), we obtain 

( )  1 1 0 0, Pr 0 | ,s su i U U u I i =  = =  

( ) 0 0Pr 0 | ,b sh z y U u I i= −  = =  

( ) ( ) ( ) 1 1 1 1 0 0Pr , 1 | ,t sh b Y u i w c b U u I i=  + + + = =  

( ) ( ) ( )

 ( )

1 1 1 1
0 0

0 0 1 1

Pr , 1

     | , , ,

d

st t
t

s t

p h b Y u i w c b

U u I i I i W w dF w




=

=  + + +

= = = =

 
 

( ) ( )
0 0

d

st
t

p G dF w


=

=  . 
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4. Upper bounds for ruin probability 

In this section, two upper bounds for ruin probability are derived. The first is the case 

when the Lundberg coefficient exists, and the second is based on the NWU function. 

4.1 The upper bound for ruin probability when the Lundberg coefficient exists 

Theorem 1: If the Lundberg coefficient, 0 0R  satisfies (16), suppose that the reinsurance 

and investment in stock in each time period are controlled to be constant values, i.e.

nb b=  and n = , for 1 2 3n , , ,...= , then the upper bound of ruin probability for finite 

time and the ultimate ruin probability from Lemma1 is 

( )( )0 1 11

1 0 0( , ) ( , ) |
R u I W

n s s su i u i E e I i


  
− + +  

+   = ,    (26) 

where 

( )

( )

0

0

1

0
0

inf

bR y

b
m

R mm

e dG y

e G m




−


=


, for all 0m  .     (27) 

 

Proof: 

Let ( ) ( ) ( )11 Pr ,G m G m h b Y m= − =    , for all 0m  , then the ( )G m  can be rewritten 

as 

( )
( )

( )
( )

0

0 0

0

1

b

b

R y

b
R m R ym

bR m
m

e dG y

G m e e dG y
e G m

−



−

 
 

=  
 
 
 



  

( )0 0

0
bR m R y

b
m

e e dG y


−
    ; where 

( )

( )

0

0

1

0
0

inf

bR y

b
m

R mm

e dG y

e G m




−


=


 

( )0 0

0
bR m R y

be e dG y


−

−

   

( )( )0 10 ,

0

R h b YR m
e E e −

= .       (28) 

From (18) in Lemma 1, we have 

( ) ( )1
0 0

( , )
d

s st
t

u i p G dF w 


=

=   

where ( ) ( )11 tu i w c b = + + + . Subsequently, 

( ) ( )  ( )( ) ( )0 0 1
1 ,

1 0
0 0

( , ) t

d
R u i w c b R h b Y

s st
t

u i p e E e dF w


 


− + + +

=

   (from Equation(28)) 

( )( ) ( ) ( ) ( )0 1 10 1
1,

0 0|
R u I W c bR h b Y

sE e E e I i



− + + +

= =  
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( ) ( ) ( ) ( ) ( )0 1 0 1 1, 1

0 0|
R c b h b Y R u I W

sE e E e I i



− − − + +

= =  

( ) ( )0 1 11

0 0|
R u I W

sE e I i



− + +

= = . (from Equation(18))  (29) 

 

By using the inductive method, we obtain 

( ) ( )0 1 11

0 0( , ) |
R u I W

n s su i E e I i


 
− + +

 = .     (30) 

 

Replace u  and si  by ( ) ( )1 t bu i w z y+ + −
 

and ti  in Equation (30), and consider 

Equation (19) in that ( ) ( )1 0t bu i w z y+ + −   when ( ) ( ) ( )11 tu i w  c b   h b,Y+ + +  , 

then 

( )
( ) ( ) ( ) ( )0 1 11 1

0 0(1 ) ( ), |t bR u i w z y I W

n t b t tu i w z y i E e I i
 

  
 − + + − + + + + −  =  

( ) ( )0 1

0

t bR u i w z y
e




 − + + −  .    (31) 

 

From Equation (19) in Lemma 1, we obtain 

( ) ( )( ) ( ) ( )1
0 0 0

( , ) 1 ,
d

n s st n t b t b
t

u i p u i w z y i dG y dF w


  


+
=

= + + −    

( ) ( )
0 0

d

st
t

p G dF w


=

+  .      (32) 

And by replacing Equation (28) and, (31) in Equation (32), we can achieve 

( ) ( ) ( ) ( )0 1

1 0
0 0 0

( , ) t b

d
R u i w z y

n s st b
t

u i p e dG y dF w



 


 − + + − 

+
=

    

( ) ( ) ( ) ( )0 0
1

0
0 0

t b

d
R u i w c b R y

st b
t

p e e dG y dF w





 

 − + + + 

=

+    

( ) ( ) ( ) ( )0 0
1

0
0 0 0

t b

d
R u i w c b R y

st b
t

p e e dG y dF w



 

 − + + + 

=

=    

( ) ( ) ( )( ) ( )0 0 1
1 ,

0
0 0

t

d
R u i w c b R h b Y

st
t

p e E e dF w





 − + + + 

=

= 
 

( ) ( )( ) ( )( )0 1 0 1 1, 1

0 0|
R c b h b Y R u I W

sE e E e I i



− − − + +      = =

 
( )( )0 1 11

0 0|
R u I W

sE e I i



− + +  = =  (from Equation (16)) 

1( , ) lim ( , )s n s
n

u i u i  +
→

=  

( )( )0 1 11

0 0|
R u I W

sE e I i



− + +   = . 
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4.2 The upper bound for finite time ruin probability based on the NWU function. 

The upper bound of ruin probability in Theorem 1 is derived using the condition that “the 

Lundberg coefficient,
 0R

 
exists, which satisfies Equation (16).” However, this condition 

is not true for some distributions of nY
 
claims, especially in heavy-tailed distributions 

such as Pareto and Weibull, among others, because
 0R

 
cannot be found due to the fact 

that the moment generating function is not present in these distributions. Hence, the next 

theorem for the upper bound of ruin probability is derived based on another term of
 0R , 

the NWU function. However, our derivation of this upper bound only restricts the results 

where
 nY  is a compound distribution in order to use the outcome of Willmot (1994) to 

support this procedure. Therefore, the additional assumptions for the next theorem are as 

follows. 

 

Let ( )B x  be the distribution of a non-negative random variable and ( ) ( )1B x B x= − , 

then ( )B x  is the NWU if ( ) ( ) ( )B x B y B x y + , for 0, 0x y   (Willmot, 1994) 

 

Let 
1

nN

n ni
i

Y V
=

=  ; 1 2 3n , , ,...= , and 1,2,3,..., ni N= ,     (33) 

where 

niV
 
is the ith claim amount occur during time period n  (i.e. from 1n−  to n ) which is 

assumed to be an i.i.d. sequence with common distribution function ( ) ( )Pr niO v V v=  , 

0v  ; and  

nN
 
is the number of claims occurring during time period n , which is assumed to be an 

i.i.d. sequence with 

Pr( )nm nj N m= =  ; 0,1,2,...m =       (34) 

and 

1

nm nk

k m

a p


= +

=    ; 0,1,2,...m =       (35) 

 

Suppose there exist positive numbers 0 1n   (see Willmot and Lin (1994) for more 

details) such that  

( 1)n m n nma a+    ; 0,1,2,...m = ,      (36) 

and since the sequence of nN , 1 2 3n , , ,...=  is assumed to be i.i.d., then the values of nmj , 

nma , and n as defined in Equations (34) –(36) are constant for all values of n . To make 

this easier, we define 

Pr( )m nm nj j N m= = =  ; 0,1,2,...m =      (37) 

and 
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1 1

m nm nk k

k m k m

a a j j
 

= + = +

= = =   ; 0,1,2,...m =      (38) 

 

Suppose there exist positive numbers 0 1n  =   such that  

1m ma a+   ; 0,1,2,...m =        (39) 

 

From the afore mentioned additional assumptions, Willmot (1994) shows us that if the 

non-negative, non-increasing function ( ) 0B x , x   exists (which is NWU) such that 

 
1

1

0

( ) ( )B v dO v 


−
−         (40) 

and in addition, 

 
1

( ) ( ) ( ) ( ) ( )
y y

O y dO v B y B v dO v

 
−

=    ; 0y  ,   (41) 

then the upper bound for ( ) ( )1P y P y= − , where ( ) ( )nP y Pr Y y=  ; 0y   is the 

common distribution of the total claims nY , is written as 

( ) ( ) ( )1

01P y j B y− − ,       (42) 

where 0j  is defined as in Equation (37). 

 

Since the total claims 
1

nN

n ni
i

Y V
=

= ; 1,2,3,...n = ; 1,2,3,..., ni N=  is assumed and the fraction 

of the total claims paid by insurer when the company signed the reinsurance contract is

( ),n n n nh b Y b Y= ; 1,2,3,...n = , then ( ),n nh b Y  can be rewritten as
 

( ) ( )
1 1

, ,
n nN N

n n n ni n ni
i i

h b Y b V h b V
= =

= =  ,      (43) 

where ( ),n nih b V  is an i.i.d. sequence for which the common distribution function is 

assumed to be ( ) ( ) Pr ,b n ni bQ v h b V v=  , 0bv  . 

 

Similar to Equations (37) - (39), if the non-negative, non-increasing function ( ) 0D x ,x 

(which is NWU) exists such that 

 
1

1

0

( ) ( )b bD v dQ v 


−
−        (44) 

and in addition, 
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 
1

( ) ( ) ( ) ( ) ( )b b b

y y

Q y dQ v D y D v dQ v

 
−

=    ; 0y  ,   (45) 

then the upper bound for ( ) ( )1G y G y= − , where ( )n nG( y ) Pr h b ,Y y=    ; 0y   is 

the common distribution of claim ( )n nh b ,Y , is given by 

( ) ( ) ( )1

01G y j D y− − .      (46) 

The next theorem is derived from the above information. 

 

Theorem 2: Let the total claims nY , 1 2 3n , , ,...= and the quantity 0 1n  =   satisfy 

Equations (33) and (39); suppose that the reinsurance and investment in stock in each 

time period are controlled to be constant values, i.e. nb b=  and n = , for 1 2 3n , , ,...= ; 

and suppose that the non-negative, non-increasing function ( ) 1 ( )D x D x= −  for 0x 

exists, in which ( )D x  is NWU, ( )0 1D = , and ( )D x
 
satisfies Equations (44) and (45), 

then the upper bound for the finite time ruin probability in Equation (19) can be written 

as 

( ) ( ) 
1

1

1 0 0, (1 ) ( ) |
n

n s b su i j E D y E D I i  
−

−

+
    − =   

,  (47) 

where (as before) ( ) ( )1 tu i w c b = + + + . 

 

Proof 

From Equation (18) in Lemma 1, we obtain 

( ) ( ) ( )1
0 0

,
d

s st
t

u i p G dF w 


=

=  , 

where ( ) ( )1 tu i w c b = + + + . 

 

We can rewrite 1( , )su i
 
using Equation (46) as  

( ) ( ) ( ) ( )1

1 0
0 0

, 1
d

s st
t

u i p j D dF w  


−

=

  −    

( ) ( ) ( )1

0
0 0

1
d

st
t

j p D dF w 


−

=

 = −   
 

( ) ( ) ( )  ( )1

0 1
0 0

1 1
d

st t
t

j p D u i w c b dF w 


−

=

 = − + + +    

( ) ( ) ( ) 1

0 01 1 |t sj E D u i w c b I i −  = − + + + =   
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( ) ( )1

0 01 | sj E D I i −  = − = 
 

( ) ( ) 
( )

( )
0

1
1

0 01 |b sj E D y E D I i 
−

−    = − =   
. 

 

By using the inductive method, we arrive at 

( ) ( ) ( ) 
( )

( )
1

1
1

0 0, 1 |
n

n s b su i j E D y E D I i  
−

−
−     − =   

 

( ) ( ) 
( )

 
1

1
1

0 01 (1 ) ( ) |
n

b t sj E D y E D u i w c b I i 
−

−
−    = − + + + =   

 

           (48) 

 

If we replace u  and si  by by −
 
and ti , we can rewrite ( , )n su i  in Equation (48) as 

( ) ( ) ( ) 
( )

 
1

1
1

0 0,   1 ( )(1 ) ( ) |
n

n b t b b t ty i j E D y E D y i w c b I i    
−

−
−    −  − − + + + =   

( ) ( ) 
( )1

1
1

0 01 ( ) |
n

b b tj E D y E D y I i 
−

−
−     − − =     

( ) ( ) 
( )

( )
1

1
1

01
n

b bj E D y D y 
−

−
−  = − −

  
.   (49) 

 

From Equation (19) in Lemma 1, we obtain 

( ) ( ) ( )( ) ( ) ( ) ( )1
0 0 0

, 1 ,
d

n s st n t b t b
t

u i p u i w z y i dG y G dF w


   


+
=


= + + − +


  

 

         

(50) 

By considering ( ) ( )1 t bu i w z y+ + −
 
in Equation (49) as 

( ) ( ) ( ) ( ) ( )11 1 ,t b tu i w z y u i w c b h b Y + + − = + + + −  

by= − ,      (51) 
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And by replacing Equation (51) in Equation (50), we can achieve 

( ) ( ) ( ) ( ) ( )1
0 0 0

, ,
d

n s st n b t b
t

u i p y i dG y G dF w


   


+
=

 
= − + 

 
    

( ) ( ) 
( )

( ) ( )

( ) ( )

( )

1
1

1

0

0

0 0
1

0

1

1

n

d b b b

st
t

j E D y D y dG y
p dF w

j D



 

 

−
−

−


=
−

   − −       
 
+ − 


   

( ) ( ) 
( )

( ) ( )

( ) ( )

( )

1
1

1

0

0

0 0
1

0

1

1

n

d b b b

st
t

b

j E D y D y dG y
p dF w

j D y



 

 

−
−

−


=
−

   − −       
 
+ − − 


   

( ) ( ) 
( )

( ) ( )

( ) ( ) ( )

( )

1
1

1

0

0

0 0
1

0

1

1

n

b b b
d

st
t

b b

j E D y D y dG y

p dF w

j D y dG y





 

 

−
−

−



=
−

   − −        
 
+ − − 
 


 



 

( ) ( ) 
( )

( ) ( )  ( )

( ) ( ) ( )  ( )

( )

1
1 1

1

0

0

10 0 1

0

1

 1

n

b b bd

st
t

b b

j E D y D D y dG y

p dF w

j D D y dG y





 

 

−
− −

−



 −= −

  −    
  

 + −
  


 



 

( ) ( ) 
( )

( ) ( )  ( ) ( )
1

1 1
1

0
0 0 0

1
nd

st b b b
t

p j E D y D D y dG y dF w 
− − −

−

=

   −    
    

( ) ( )  ( ) ( )
1

1

0
0 0

1
nd

st b
t

p j E D y D dF w 
 −

−

=

  = −    
   

( ) ( )  ( )  ( )
1

1

0
0 0

1
n d

b st
t

j E D y p D dF w 
−

−

=

 = −
  

   

( ) ( )  ( )
1

1

0 01 |
n

b sj E D y E D I i 
−

−    = − =   
. 

5. Numerical example 

The upper bound of ruin probability in Theorems 1 and 2 are illustrated in Examples 1 

and 2, respectively, using R programming. 
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Table 1: The upper bound of ruin probability at each initial surplus level U
0
,  

reinsurance contract retention level b , stock investment value  , and 

initial bond interest rate I
0  

0U  b    
The Proposed Upper Bound Lundberg’s 

Upper bound 0 0 02I .=  
0 0 05I .=  

50 

0.2 

2.5 0.075979 0.074323  

5 0.061892 0.060542  

10 0.042261 0.041339  

0.6 

2.5 0.168041 0.165655  

5 0.146599 0.144518 0.376198 

10 0.113097 0.111491  

1.0 

2.5 0.281212 0.278484  

5 0.255835 0.253353  

10 0.213189 0.211121  

100 

0.2 

5 0.006351 0.006079  

10 0.004337 0.004151  

15 0.003078 0.003024  

0.6 

5 0.033602 0.032659  

10 0.025923 0.025196 0.141525 

15 0.020308 0.019738  

1.0 

5 0.093840 0.092034  

10 0.078197 0.076692  

15 0.065688 0.064424  

500 

0.2 

50 0.000000 0.000000  

100 0.000000 0.000000  

150 0.000000 0.000000  

0.6 

50 0.000000 0.000000  

100 0.000000 0.000000 0.000057 

150 0.000000 0.000000  

1.0 

50 0.000007 0.000007  

100 0.000002 0.000002  

150 0.000001 0.000001  

 

Example 1: Suppose that total claims 
1

exp
9

nY
 

  
 

 in time periods 1,2,3,...n = , and that 

the insurance company has the chance to invest its surplus in both the bond and stock 

markets. The bond interest rates during time periods 1,2,3,...n =  are 

 0.02,0.03,0.05 ,nI   respectively, which are forced to follow a time-homogeneous 

Markov chain with transition probability matrix  

0.6 0.3 0.1

0.3 0.5 0.2

0.2 0.4 0.4

 
 
 
  

. 
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Gross stock return (
nW ) is assumed to be 

2

2
nB

nW e


 
 

− +  
 =  with nB ~ (0,1)nB N , 0.7 =

, and 0.5 =  for  time periods 1,2,3,...n = . The safety loading factors given by the 

insurer and the reinsurer are 10% and 12%, respectively. 

 

The results from Table 1 show that the upper bound’s value decreased when either initial 

surplus 
0U
 
or the investment value in the stock   increased whereas it increased when 

the reinsurance contract retention level b  increased. In addition, the results show that the 

upper bound’s value from Theorem 1 was sharper than the Lundberg upper bound. 

 

Example 2: Here, it is assumed that the total claims amount nY ; 1 2 3n , , ,...=  is a 

summation of i.i.d. claim amounts niV , ( )1.5,0.5niV pareto ; 1,2,3,..., ni N= . The 

number of claims nN  during time period n  is an i.i.d. Poisson distribution with mean 

3 = . It is also assumed that the bond interest rate during time periods 1 2 3n , , ,...=  are 

 0.02,0.03,0.05nI   with initial value 0 0 02I .= . Furthermore, they follow a time-

homogeneous Markov chain with transition probability matrix 

0.6 0.3 0.1

0.3 0.5 0.2

0.2 0.4 0.4

 
 
 
  

. 

Gross stock return ( nW ) is assumed to be nW  = 

2

2
nB

nW e


 
 

− +  
 =  with (0,1)nB N , 

0 7. = , and 0 5. =  for  time periods 1 2 3n , , ,...= . The safety loading factors given by 

the insurer and the reinsurer are 10% and 12%, respectively. There exists 

( ) ( )
1

1D x kx
−

= + which is NWU. Thus, the upper bound of ruin probability in Theorem 2 

is appropriate to this case. 

 

The results from Table 2 show that the upper bound values for finite time ruin probability 

increased as the number of time periods ( n ) increased corresponding with Equation (12) 

that values for finite time ruin probability do not decrease as n  increases. The effects of 

variations of the other factors, i.e. the initial surplus ( 0U ), the stock investment value  

( ), and the reinsurance contract retention level ( b ) on the upper bound values of finite 

time ruin probability were the same as Experiment 1. 
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Table 2: The upper bounds of finite time ruin probability (time period n =  1,2,3,4, 

and 5) at each initial surplus level U
0
, reinsurance contract retention level 

b , and stock investment value   

0U  b    
Upper Bound 

1n =  2n =  3n =  4n =  5n =  

50 

0.2 

2.5 0.048653 0.075875 0.118328 0.184534 0.287784 

5 0.044982 0.070150 0.109399 0.170610 0.266068 

10 0.039266 0.061236 0.095498 0.148930 0.232258 

0.6 

2.5 0.136791 0.213327 0.332687 0.518830 0.809121 

5 0.127043 0.198126 0.308980 0.481858 0.751464 

10 0.111676 0.174160 0.271605 0.423572 0.660566 

1 

2.5 0.214514 0.334537 0.521714 0.813619 1.000000 

5 0.200033 0.311953 0.486495 0.758695 1.000000 

10 0.176944 0.275946 0.430341 0.671121 1.000000 

100 

0.2 

5 0.024735 0.038574 0.060157 0.093815 0.146306 

10 0.022841 0.035620 0.055551 0.086632 0.135103 

15 0.021256 0.033148 0.051695 0.080619 0.125727 

0.6 

5 0.071759 0.111909 0.174523 0.272171 0.424454 

10 0.066424 0.103589 0.161548 0.251936 0.392897 

15 0.061937 0.096591 0.150635 0.234918 0.366357 

1 

5 0.115783 0.180564 0.281592 0.439147 0.684855 

10 0.107418 0.167519 0.261248 0.407419 0.635375 

15 0.100350 0.156497 0.244059 0.380613 0.593571 

500 

0.2 

50 0.004626 0.007214 0.011250 0.017545 0.027361 

100 0.004024 0.006276 0.009788 0.015264 0.023805 

150 0.003575 0.005575 0.008694 0.013558 0.021144 

0.6 

50 0.013789 0.021504 0.033536 0.052299 0.081562 

100 0.012006 0.018723 0.029199 0.045536 0.071014 

150 0.010670 0.016640 0.025951 0.040470 0.063114 

1 

50 0.022836 0.035613 0.055540 0.086615 0.135077 

100 0.019898 0.031032 0.048394 0.075472 0.117699 

150 0.017695 0.027595 0.043035 0.067113 0.104664 

 

Remark 3: The term ( ) 
1

n

bE D y
− 

  
at the right-hand side of Equation (49) in theorem 2 

affects the variation of the upper bound values for finite time ruin probability in this 

theorem as the time period n  increases, the upper bound values increase. The values of 

the upper bound from Theorem 2 depend on not only the change of factors in the risk 

model mentioned in Example 2, but also the NWU function selected. Based on running 

the results from data in Example 2 and  resembling data, we found that the upper bound 

from Theorem 2 is appropriate when the initial surplus u  is sufficient large and the time 

period n  should not be set too many. In other cases, overrated values of upper bound 

might lead to a misunderstanding of the risk level that makes insurers more nervous about 

the risk than is really necessary. 
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6. Real-life example 

Data from 334 real-life motor insurance claims for a broker with three branches in the 

year 2012 were used to analyze the upper bound for ruin probability. The real-life claims 

dataset were fitted to a lognormal distribution with maximum likelihood estimation of log 

data parameter 2 467120.̂ =  (thousand baht) and 1 039443.̂ =  (thousand baht). The 

moment generating function of the lognormal distribution was infinite at any positive 

number, thus the upper bound of ruin probability in Theorem 2 was appropriate in this 

situation. We used the dataset in December to find the upper bound of ruin probability for 

the next 5 months. This dataset fit to lognormal distribution with maximum likelihood 

estimation of log data parameter 2 385506.̂ =  (thousand baht) and 1 089433.̂ =  

(thousand baht). The number of claims occurring in each month was assumed to be i.i.d. 

with a Poisson distribution for which the mean was estimated as the average value of 12 

months of real-life claims data (the result was 27.75). The other factors for finding the 

upper bound of ruin probability for this broker were an initial surplus of 5 million baht 

and an initial bond interest rate at 0.03 (based on Example 1), and the NWU function 

used was ( ) ( )
1

1 ,  0D x kx x
−

= +  . Assuming the dealer kept 0.6 of the reinsurance 

retention level and invested 500,000 baht on the stock market under previous 

assumptions, then the upper bounds of ruin probability in the next 5 months were 

0.670366, 0.670384, 0.670401, 0.670419, and 0.670436 respectively. High values of the 

upper bound for ruin probability indicate that there is a high risk (value of ruin 

probability) of the company going bust under these conditions. The amount and 

frequency of claims with respect to the initial capital seem to be the main cause of this 

situation. 

7. Conclusions 

In this study, we propose two upper bounds of ruin probability under a discrete time risk 

model for reinsurance by generalizing the classic model for two controlling factors: 

proportional reinsurance and investment. The insurer can invest in the bond and stock 

markets, and we assume that the interest rates of the bond have a finite number of 

possible values and follow a time-homogenous Markov chain. Moreover, we assume that 

the controlling reinsurance and stock investment values in each time period are constant 

values.  

 

The ruin probability for finite time is presented in a recursive form while the ultimate 

ruin probability is given as integral equations. The first upper bound for finite time and 

ultimate ruin probability is derived under the condition that the Lundberg coefficient 

exists. This upper bound can be view as an extension of the ideas of Diasparra and 

Romera (2009) and Jasiulewicz and Kordecki (2015). The second upper bound for finite 

time ruin probability is developed from the idea of Willmot (1994) in terms of NWU. 

Numerical examples show the results for the two proposed upper bounds. In the first 

example, the total claims amount in each time period were assumed to follow an 

exponential distribution so that the Lundberg coefficient can be found in this case, thus 

Theorem 1 was applied. In the second example, the claims amount in each time period 

was assumed to be an i.i.d. Pareto distribution, under which circumstances the Lundberg 

coefficient does not exist, thus, Theorem 2 was applied in this case. 
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