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Abstract 
In this paper, we shall introduce a new class of generalized complementary compound lifetime distributions 

which is obtained by compounding generalized Lindley distribution with power series distribution. This 

new family of continuous lifetime distributions so obtained will be called Complementary Generalized 

Lindley Power Series (CGLPS) distribution. The proposed class of distribution contains several lifetime 

distributions as its special cases that are very flexible to accommodate different types of data sets since the 

probability density function and hazard rate can take up different forms such as increasing, decreasing and 

upside down bathtub shapes which have been shown through graphs for some selected values of parameters 

and the potentiality of  proposed class has been tested statistically by using it to model some real life data 

set. 
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1.  Introduction 

Regarding the compounding of probability, the work has been done in this 

particular area since 1920. It is well known that Green wood and Yule (1920) established 

a relationship between Poisson distribution and a negative binomial distribution through 

by compounding mechanism by treating the parameter in Poisson distribution as gamma 

variate. The probability parameter in binomial distribution is constant; Skellam (1948) 

derived a probability distribution from the binomial distribution by treating p , the 

constant probability of successes as a beta variable between the sets of trails and this 

distribution which is commonly called beta binomial distribution proved to be efficient 

over binomial distribution when it comes to fit accidental data.  Gurland (1957) showed 

that some compound distribution may also be called generalized distribution because 

there exists some interrelations between a certain class compound and generalized 

distributions. Sankaran (1970) proposed Poison Lindley distribution by allowing the 

parameter of Poisson distribution to vary according to Lindley distribution and this 

compound distribution was used for the analysis of count data sets but Sankaran didn’t 

obtained MLE of unknown parameter p  due to computational difficulty. Kemp and 

Kemp (1966) obtained a compound of Poisson distribution with that of normal 

distribution by allowing the parameter of Poisson distribution as a normal variate, this 

particular distribution was called by them as Hermite distribution. Hermite distribution 
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sometimes lacks any physical interpretation because the parameter in Poisson distribution 

is positive and the compounding distribution is supposed to vary according to that. 

However, if the normal compounding distribution has positive mean much larger than its 

variance then the probability of a negative value is almost negligible. Dubey (1970) 

obtained compound of gamma distribution by treating one of the parameter  of gamma 

distribution as another gamma variate and reduced this compound distribution to the beta 

and F distribution by some suitable transformations. The problem of compounding of 

distribution was further addressed by Gerstenkorn (1993,1996) who proposed several 

compound distributions, he obtained a compound of generalized gamma distribution with 

exponential distribution by treating one of the parameter of generalized gamma 

distribution as an exponential variate, he  also obtained a compound of polya with beta 

distribution and the factorial moments of this particular compound distribution were also 

obtained with the help of sterling number of the 3rd kind. Gertenkorn (2004) constructed 

another compound distribution by treating the probability parameter as a generalized beta 

variate in the extended version of negative binomial distribution. A new generalized 

negative binomial distribution was proposed by Gupta and Ong (2004), this distribution 

arises from Poisson distribution if the parameter  follows generalized gamma 

distribution; the resulting distribution so obtained was applied to various data sets and 

can be used as better alternative to negative binomial distribution. Sometimes observable 

phenomenon under consideration does not start by taking a ‘zero’ value in that case  zero 

truncated distribution provides better fit with this in mind,  Ghitany Mutairi and 

Nadhrajah (2007) obtained a compound of zero truncated Poisson distribution with 

Lindley distribution, the estimation of parameters were also given by means of moments 

and MLE method. Zamani and Ismail (2010) constructed a new compound distribution 

by compounding negative binomial with one parameter Lindley distribution that provides 

good fit for count data where the probability at zero has a large value. Kumaraswamy 

distribution is a two parameter continuous probability distribution that has been obtained 

by Kumaraswamy (1980), this distribution is similar to the beta distribution but unlike 

beta distribution it has a closed form of cumulative distribution function which makes it 

very simple to deal with, Li, Haung and Zhao (2011) ascribed Kumaraswamy distribution 

to the probability parameter of binomial distribution and obtained and a new compound 

distribution called Kumaraswamy-binomial distribution which was used to model 

overdispersed binomial data. Adil and Jan (2013)  obtained a compound of zero truncated 

GNBD with  that of GBD, the new compound distribution so obtained has some desirable 

properties as it embodies several truncated compound distributions as special cases. Adil 

and Jan (2014a) treated the probability parameter of Geeta distribution as generalized 

beta variate the resulting distribution proved to be a general class for some discrete 

compound distributions.  Based on same compounding mechanism Adil and Jan (2014b) 

treated the probability parameter in Consul distribution as  random variable and ascribed 

a generalized beta distribution to it the resulting distribution was named as a compound 

of Consul with generalized beta distribution which embodies several compound 

distributions. Adil and Jan (2015a, 2016a) proposed two new competitive count data 

models, one is obtained by compounding Consul distribution with Kumaraswamy 

distribution that find its application in traffic analysis and other is obtained by 

compounding negative binomial distribution with Kumaraswamy distribution that finds 

its application in biological sciences. The potentiality of these two proposed models was 

tested by chi-square goodness of fit test by modeling the real world data sets from traffic, 
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genetics and ecology. Pandey and Kumari (2016) obtained one parameter new lifetime 

distribution for modeling monotonic decreasing survival rates. Adil et al. (2017, 2018) 

obtained a versatile models that not only contains several sub-models as special cases but 

can be used to model various types of continuous lifetime data sets in parallel setting, 

they also obtained an advanced discrete count data model that finds its application in 

genetics when the data under consideration is overdispersed and heavy tailed. 

  

 The modeling of lifetime data has received prime attention of researchers from the 

last one decade. Many continuous probability models such as exponential, gamma, 

Weibull have been frequently used in statistical literature to analyze the lifetime data, but 

these probability models cannot be used efficiently to model the lifetime data that is 

bathtub shaped and have unimodal failure rates. To overcome this problem, researchers 

have focused their attention on compounding mechanism which helps in constructing 

suitable, flexible and alternative models to fit the lifetime data of different types.  

  

 Consider a system with N components, where N, the number of components is 

being a discrete random variable with domain N =1,2,…, The lifetime of ith component is 

a continuous random variable say Xi  that may follow any one of the lifetime distributions 

such as exponential, gamma, Weibull, Lindley etc. The suitable discrete distributions for 

N may be geometric, zero truncated Poisson or power series distribution in general. The 

lifetime of such a system in series and parallel combination is defined and denoted by a 

non- negative random variable  
1

min
N

i i
Y X


 or  

1
max

N

i i
Y X


 respectively. 

  

With this in mind Adamidis and Loukas (1998) constructed a two parameter 

lifetime distribution by compounding exponential distribution with geometric distribution 

called Exponential Geometric (EG) distribution. Tahmasbi and Rezaei (2008) obtained 

Exponential Logarithmic (EL) distribution by using the same compounding mechanism. 

Power series distribution contains several classical discrete distributions as its special 

cases, therefore Chahkandi and Ganjali (2009) introduced a compound class of 

Exponential Power Series (EPS) distribution which contains several compound 

distributions as its special cases. It is known that Weibull distribution contains 

exponential distribution as a special case, in view of this Morais and Baretto Souza 

(2011) replaced the exponential distribution with Weibull distribution in the 

compounding mechanism of EPS distribution and obtained a compound class of Weibull 

Power Series (WPS) distribution which contains EPS distribution as a special case. 

Recently one parameter Lindley distribution has been used frequently to model the 

lifetime data because it has been observed in several research papers that this distribution 

performs excellently well when it comes to fit the lifetime data. Adil and Jan (2016b) 

constructed a new family of lifetime distribution by compounding Lindley distribution 

with that of power series distribution that generalized LG distribution due to Zakerzadeh 

and Mahmoudi (2012). Furthermore, authors also discussed some special cases of the 

LPS family of compound distribution which are very flexible in terms of density and 

hazard rate functions. Applications and various mathematical properties such as 

moments, order statistics and parameter estimation through MLE of the proposed family 

of compound distribution were also discussed in detail. Adil and Jan (2018b) proposed a 

generalized version Lindley power series family of compound lifetime distributions 

which proved to be versatile because it not only generalizes most of the lifetime 
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distributions but also have some attractive desirable properties in terms of hazard rate and 

density functions. 

Here, in this particular paper we assume that there is no information about which 

factor was responsible for the component failure but only the maximum lifetime value 

among all risks is observed instead of the minimum lifetime value among all risks. The 

new distribution is a counterpart of the generalized Lindley power series distribution and 

therefore we call it complementary generalized Lindley power series (CGLPS) 

distribution.  

 The present paper is organized as follows: In section (2) we present the 

construction of the proposed family of lifetime distribution. Density, survival, hazard rate 

functions and some of the properties of the proposed family are given in section (3). 

Moment generating function of CGLPS class of distributions is given in section (4). 

Order statistics, their moments and parameter estimation are discussed in detail 

respectively in section (5) and (6). Special cases that include complementary Generalized 

Lindley Poisson, complementary Generalized Lindley logarithmic, complementary 

Generalized Lindley geometric and complementary Generalized Lindley binomial 

distributions are discussed section (7). Finally, real application and conclusion about new 

findings are respectively given in section (8) and (9) 

 

2.   Construction of the Class 

Let 
1 , ..., NX X be an independent and identically distributed (iid) random variables 

following Lindley distribution with density function  given by 

 

 

1
2

; , (1 ) 1 1 (1)
1 1

x xx
g x x e e



  
 

 



 
  

     
   

 

Here, the index N is itself a discrete random variable following zero truncated power 

series distribution with probability function given by 

  
( ) , 1, 2, ...

n

na
P N n n

C




    

where
na depends only on n ,  

1

n

n

n

C a 




 and 0  is such that ( )C  is finite. Below 

given Table 1 shows useful quantities of some zero truncated power series distributions  

such as Poisson, logarithmic, geometric and binomial (with m being the number of 

replicas) distributions. 

 

Table 1: Useful quantities of Some Power Series Distribution 

Distribution na   C    'C    ''C    1C     

Poisson 1!n   1e   e  e   log 1    0,   

Logarithmic 1n   log 1     
1

1 


   
2

1 


  1 e    0,1  

Geometric 1  
1

1 


   
2

1 


   
3

2 1 


   
1

1 


   0,1  

Binomial 
m

n

 
 
 

  1 1
m

     
1

1
m

m 


  
 

 
2

1

1
m

m m







  

1/
1 1

m
     0,   
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Let    
1

max .
N

in i
X X


  The conditional cumulative distribution function of   

|
n

X N n  is 

given by 

 
   | ( )

n

n

X N nG x G x   

 1 1
1

n

xx
e








   
     

    

 

and 

  
 

, 1 1 , 0, 1.
1

nn

xn

n

a x
P X x N n e x n

C



 

 


  

        
    

The compound complementary Lindley power series family of distributions is defined by 

the marginal cumulative distribution function of   
:

n
X  

 
 

 1

1 1
1

n n

x n

n

ax
F x e

C

 

 






  
    

  
  

  

1 1
1

, 0 (2)

x x
C e

x
C


 






 
          

 
 

 

From here, a random variable X following complementary compound Lindley-power 

series distribution with parameters ,  and  will be denoted by ~ ( , , )X CGLPS    This 

new class of distributions contains several distributions as its special cases. The 

complementary generalized Lindley geometric distribution and the complementary 

generalized Lindley Poisson distribution are obtained by taking    
1

1C   


  with 

 0,1 and   1C e    with  0,   respectively in (2). Similarly we obtain 

complementary generalized Lindley logarithmic distribution and complementary 

generalized Lindley binomial distribution by taking    log 1 .C     ,  0,1 and 

   1 1
m

C  


   ,  0,   in (2) respectively. These cases will be discussed in detail in 

section (7) 
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3.   Density, Survival and Hazard Rate Function 

The probability density function of complementary generalized Lindley power series 

distribution can be obtained by differentiating (2) both sides with respect to x . 

 
 dF x

f x
dx

  

1
2

( ) (1 ) 1 1 1 1 (3)
( )( 1) 1 1

x x xx x
f x e x e C e

C

 

    
 

   



  
       
            

            

 

 

  1 ( )S x F x 

 

 
 

1 1
1

1

xx
C e

S x
C











   
    

    
   

and the hazard function is  
( )

( )
( )

f x
h x

S x


 
 

 

1
2

(1 ) 1 1 1 1
1 1 1

( ) , 0

1 1
1

x x x

x

x x
e x e C e

h x x

x
C C e

 

  





  
 

  


 





  



      
           

           
 

   
     

    

 

 

we will now study some properties of  CGLPS distribution in the form of following 

important propositions. 

 

Proposition 1: The generalized Lindley distribution is the limiting case of the CGLPS 

distribution when 0 .   

 

Proof: From the cumulative distribution function of CGLPS distribution we have  

  
 

 0 0

1 1
1

lim lim , 0

xx
C e

F x x
C





 






 



 

   
    

    
   

In view of the fact 

 1

( ) n

n

n

C a 




  

  

 
1

0 0

1

1 1
1

lim lim

n

x

n

n

n

n

n

x
a e

F x

a





 







 







 



   
    

    





 

 

using the L’ Hospital’s rule, it follows 
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1

2
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1
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1 1 1 1
1 1
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n

x n x

n

n

n

n

n

x x
a e a n e

F x

a a n
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 



 


 





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








      
          

       







 

 Hence we get that 1 1
1

xx
e








  

    
  

.  

which is the distribution function of generalized Lindley distribution. 

 

Proposition 2: The densities of CGLPS class of distribution can be expressed as an 

infinite linear combination of densities of nth order statistics of Lindley distribution 

 
1

( ) ( ) ( , )n

n

f x P N n g x n




   

where
1 2( , ) max( , ,..., )n ng x n X X X is the nthorder statistics of Lindley distribution 

 

Proof: Using the fact that        

  1

1

( ) n

n

n

C na 






   

The pdf of CGLPS distribution takes the form after using the above argument. Therefore 

it follows  
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where

1
2

( , ) (1 ) 1 1
1 1

n

x x

n

n x
g x n x e e



  


 



 
  

     
   

 

is the nth order statistics of generalized Lindley distribution. Therefore the densities of 

CGLPS distribution can be expressed as an infinite linear combination of the nth order 

statistics of generalized Lindley distribution. Hence it is obvious that properties of 

CGLPS distribution can be obtained from the nth order statistics 

1 2( , ) m ( , ,..., )n ng x n ax X X X of generalized Lindley distribution. 

 

4.   Moment Generating Function  

The moment generating function of CGLPS distribution can be obtained from (4) 

( )

1

( ) ( ) ( )
nX X

n

M t P N n M t




   

where
( )
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Lindley distribution 
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2

0
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1 1n

n
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 
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5.   Order Statistics and Their Moments 

Order statistics are most oftenly used in statistics theory and practice. Order statistics are 

considered as one of the most fundamental tools in non-parametric and inferential 

statistics because they play an important role in quality control testing and reliability 

where a practitioner needs to predict the failure of future items based on the times of a 

few early failures.   

      Let 1 2, , ..., nX X X  be a random sample from CGLPS distribution and 1: 2: 1:, , ...,n n nX X X

denote the corresponding order statistics. The pdf of ith order statistics say 
:i nX  is given 

by 
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Expression (6) can be equivalently written as         
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The associated CDF of 
:i nf ( )x denoted by 

:: ( )i nF x becomes 
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Alternatively expression (7) can be written as
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Expression for thr moment of thi  order statistics  
1: ,.... :n n nX X  with CDF (7) can be obtained 

by using a well-known result due to Barakat and Abdelkadir (2004) as follows 
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where ( )S x  is the survival  function of CGLPS distribution. Therefore we have 
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where 1, 2,3...r  and 1, 2,...,i n  

 

6.   Parameter Estimation  

Let 
1 , ..., NX X  be a random sample with observed values 

1 , ... nx x  from CGLPS ( , ) 

distribution and let ( , )T    be the unknown parameter vector in the rest of the paper. 

The log-likelihood function is given by 
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The maximum likelihood estimate of   say ̂  is obtained by solving the non-linear 

system of equations ( ) , , 0
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. The solution of this non-linear system of 

equation can be found numerically by using software such as R.  

 

7.  Consequences of proposed model 

In this section we will study in detail some special sub-models of CGLPS distributions 

further more we also present expression for cdf, pdf, hazard rate and survival function. 

The graphical nature for different values of parameters is also studied to show the 

flexibility of these sub models. 

 

7.1 Complementary GeneralizedLindley Poisson Distribution (CGLPD) 

Poisson distribution is a special case of power series distribution for ( ) 1C e   and

( )C e  . Therefore cdf and pdf of a compound of Generalized Lindley Poisson (CGLP) 

distribution is obtained by using the same arguments in (2). 

  
 

1 1
1

1
, 0

1

xx
e

e
F x x

e










  
   

    
 


.  

The associated pdf, hazard and survival functions are respectively given by
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for , 0 , 0x      respectively. The expression for the thk moment of a random variable 

following CGLP distribution becomes by taking 1!na n  and ( ) 1C e   in (5) 

Fig .2: These graphs show the flexibilty of density of CGLPD  for some selected values 

of parameters 

7.2 Complementary Generalized Lindley Logarithmic Distribution (CGLLD) 

Logarithmic distribution is a special case of PSD when ( ) log (1 )C    and 
1( ) (1 )C      . Therefore a compound of Complementary Generalized Lindley 

Logarithmic (CGLL) distribution is followed from (2) when we put ( ) log (1 )C    in it. 
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for , 0x   and 0 1  respectively. 

Fig .3: These graphs show the flexibilty of density of CGLLD  for some selected values 

of parameters 

  

 The expression for the thk moment of a random variable following CGLL 

distribution becomes by taking 1

na n and ( ) log(1 )C     in (5) 

7.3 Complementary Generalized Lindley Geometric Distribution (CGLGD) 

 Geometric distribution is a particular case of PSD when 1( ) (1 )C      and 
2( ) (1 )C      . Therefore a compound of Complementary Generalized Lindley 

Geometric (CGLG) distribution is followed from (2) after using 1( ) (1 )C      in it. 
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for , , 0 1x    respectively.  

Fig .4: These graphs show the flexibilty of density of CGLGD  for some selected values 

of parameters 

 

7.4  Complementary Generalized Lindley Binomial Distribution (CGLBD) 

 Binomial distribution is a particular case of PSD for ( ) ( 1) 1mC     and a 

compound of compound Complementary Generalized Lindley Binomial (CGLB) 

distribution is followed from (2) by using ( ) ( 1) 1mC      
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where m is the positve integer. The associated pdf, hazard rate and survival functions are 
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respectively for , 0x   , 0    . The expression for the thk moment of a random variable 

following CGLB distribution becomes by taking 
n

m
a

n

 
  
 

 and ( ) ( 1) 1mC     in (5). It 

may be noted here that these sub models are new lifetime distributions that have been 

obtained on specific parameter setting in CGLPSD. 

 

8.   Application 

 

We consider a data set from Murthy et al. (2004) that gives failure times of 20 

mechanical components. The data are: 0.067, 0.068, 0.076, 0.081, 0.084, 0.085, 0.085, 

0.086, 0.089, 0.098, 0.098, 0.114, 0.114, 0.115, 0.121, 0.125, 0.131, 0.149, 0.160, 0.485 

Our aim is to fit this data by the proposed family of compound distributions. The MLE of 

unknown parameters and Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) of the fitted distribution is given in table (3) 

 

Table 3: Analysis of model fitting  

 

 
 

MODEL 

CGLG 

 

 

MLE 
ˆ ˆ ˆ 5.17 , 2.3, 1      

 

AIC 
33.9  

 

BIC 
30.9  

 

CGLP ˆ ˆ ˆ30.3, 16, 1      
61.1  58.1  

 

CGLL ˆ ˆ ˆ 18.3,  0.9, 1      44.5  
 

 

41.4  
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Fig 5: Fitting of CGLP, CGLG, CGLL to the data 

 

9.   Conclusion 

We constructed a new class of compound complementary generalized lifetime 

distribution by compounding generalized Lindley distribution with that of power series 

distribution. Furthermore, we also discussed some special cases of this class of 

distributions that are very flexible in terms of density and hazard rate functions. 

Mathematical properties such as moments, order statistics and parameter estimation 

through MLE of the proposed class has also been discussed. Finally the potentiality of 

the CGLPS class has been illustrated by fitting it to model some real life data set. It is 

quite clear and evident from the above analysis that according to the AIC and BIC all 

the sub models of CGLPS family of compound distributions perform excellently well 

but among them generalized Lindley Poisson is the best competitor since it has lowest 

AIC and BIC which is also corroborated by the graphical analysis in the fig (5). 

Therefore, practitioners are advised to use one of our model in order to get effective 

results when it comes to fit lifetime data.   
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