
Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp809-828 

An Extended Burr XII Distribution:  

Properties, Inference and Applications 

Gauss M. Cordeiro  
Departamento de Estatística 

Universidade Federal de Pernambuco, Pernambuco, Brazil 

gauss@de.ufpe.br 

 

M. E. Mead  
Department of Statistics, Mathematics and Insurance 

Zagazig University, Egypt 

mead9990@gmail.com 

 

Ahmed Z. Afify  
Department of Statistics, Mathematics and Insurance 

Benha University, Egypt 

ahmed.afify@fcom.bu.edu.eg 

 

Adriano K. Suzuki  
Departamento de Matemática Aplicada e Estatística 

Universidade de São Paulo, São Paulo, Brazil 

suzuki@icmc.usp.br 

 

Amarat A. K. Abd El-Gaied 
Department of Statistics, Mathematics and Insurance 

Zagazig University, Egypt 

amira.emad@yahoo.com 

Abstract 

We propose and study a new continuous model named the Marshall-Olkin exponentiated Burr XII 

(MOEBXII) distribution. It contains several special cases, namely the Marshall-Olkin exponentiated log-

logistic, Marshall-Olkin exponentiated Lomax, Marshall-Olkin Burr XII, Marshall-Olkin log-logistic, 

Marshall-Olkin Lomax distributions, among others, and most importantly includes all four of the most 

common types of hazard function: monotonically increasing or decreasing, bathtub and arc-shaped hazard 

functions. Some of its structural properties are obtained such as the ordinary and incomplete moments, 

quantile and generating functions, order statistics and probability weighted moments. The maximum 

likelihood and least square methods are used to estimate the model parameters. A simulation study is 

performed to evaluate the precision of the estimates from both methods. The usefulness of the new model is 

illustrated by means of two real data sets. 

Keywords: Exponentiated Burr XII, Hazard Function, Marshall-Olkin Family, 

Maximum Likelihood, Order Statistic, Rényi entropy.  

1.   Introduction 

The Burr XII (BXII) distribution includes as sub-models the logistic and Weibull 

distributions and it is very popular for modeling lifetime data and phenomenon with 

different failure rates. It can fit a wide range of empirical data. Different values of its 

parameters cover a broad set of skewness and kurtosis. Hence, it is used in various fields 
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such as finance, hydrology and reliability to model a variety of data types. Examples of 

data modeled by the BXII distribution are household income, crop prices, insurance risk, 

flood levels and failure data. 

 

Recently, many generalizations of the BXII distribution have been proposed. For 

example, the beta BXII (Paranaba et al., 2011), Kumaraswamy BXII (Paranaba et al., 

2013), beta exponentiated BXII (Mead, 2014), Marshall-Olkin BXII (Al-Saiarie et al., 

2014), McDonald BXII (Gomes et al., 2015), Weibull BXII (Afify et al., 2016) and 

Kumaraswamy exponentiated BXII (Mead and Afify, 2017) distributions. 

 

The cumulative distribution function (cdf) of the exponentiated Burr XII (EBXII) 

distribution is given by (for 𝑥 ≥ 0)  

𝐺(𝑥; 𝑐, 𝑘, 𝜆) = [1 − (1 + 𝑥𝑐)−𝑘]𝜆,      (1) 

where 𝑐, 𝑘 and 𝜆 are positive shape parameters. 

 

The probability density function (pdf) of the EBXII becomes  

𝑔(𝑥; 𝑐, 𝑘, 𝜆) = 𝜆𝑐𝑘𝑥𝑐−1(1 + 𝑥𝑐)−𝑘−1[1 − (1 + 𝑥𝑐)−𝑘]𝜆−1.   (2) 

 

The procedure of adding one or two shape parameters to a class of distributions to obtain 

more flexibility is a well-known technique in the statistical literature. Marshall and Olkin 

(1997) proposed a method of adding a shape parameter into a family of distributions and 

many authors used their method to extend several well-known distributions in recent 

years. This family is called the Marshall-Olkin-G (MO-G) class. Tahir and Nadarajah 

(2015) listed 28 published papers on distributions in this class. 

 

Consider a baseline distribution with cdf 𝐺(𝑥) and pdf 𝑔(𝑥). Thus, the cdf and pdf of the 

MO-G family are defined by (for 𝑥 ∈ ℜ)  

𝐹(𝑥; 𝛼) = 1 −
𝛼 [1−𝐺(𝑥)]

1−𝛼 [1−𝐺(𝑥)]
       (3) 

and  

𝑓(𝑥; 𝛼) =
𝛼 𝑔(𝑥)

{1−𝛼 [1−𝐺(𝑥)]}2,       (4) 

respectively, where 𝛼 > 0 is a shape parameter and 𝛼 = 1 − 𝛼. For 𝛼 = 1, we obtain the 

baseline distribution, i.e. 𝐹(𝑥; 1) = 𝐺(𝑥). 

 

The hazard rate function (hrf) corresponding to (4) is given by  

ℎ(𝑥; 𝛼) =
𝑟(𝑥)

1−𝛼 [1−𝐺(𝑥)]
,       (5) 

where 𝑟(𝑥) = 𝑔(𝑥)/[1 − 𝐺(𝑥)] is the hrf of the parent distribution. It is clear from 

equation (5) that ℎ(𝑥; 𝛼)/𝑟(𝑥) is increasing in 𝑥 for 𝛼 ≥ 1 and decreasing in 𝑥 for 0 <
𝛼 ≤ 1. According to Marshall and Olkin, the shape parameter 𝛼 is called “ tilt 

parameter”, since the hrf ℎ(𝑥; 𝛼) of the generated distribution is shifted below (𝛼 ≥ 1) or 

above (0 < 𝛼 ≤ 1) from the baseline hrf, say ℎ𝐺(𝑥). In fact, for all 𝑥 > 0, ℎ(𝑥; 𝛼) ≤
𝑟(𝑥) when 𝛼 ≥ 1, and ℎ(𝑥; 𝛼) ≥ 𝑟(𝑥) when 0 < 𝛼 ≤ 1. Further details were addressed 

by Marshall and Olkin (1997). 
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In this paper, the EBXII distribution is embedded in a larger family by adding a new 

shape parameter. The model generated by applying the MO transformation to the EBXII 

distribution is called the Marshall-Olkin exponentiated Burr XII (MOEBXII) distribution. 

The new distribution has the advantage of being capable of modelling various shapes of 

aging and failure criteria. Further, the MOEBXII model is shown to provide better fits 

than at least seven other models each one having the same number of parameters. We 

hope that the proposed distribution will attract wider applications in reliability, 

engineering and other areas of research. 

 

The rest of the paper is outlined as follows. In Section 2, we define the MOEBXII 

distribution, provide plots of the pdf and hrf, give some special models and derive a 

linear representation for the pdf. In Section 3, we obtain some mathematical properties 

including quantile function (qf), ordinary, central and incomplete moments, moment 

generating function (mgf), moments of the residual and reversed residual lifes, order 

statistics and probability weighted moments (PWMs). In Section 4, we discuss the 

maximum likelihood and the least square methods to estimate the model parameters. Two 

simulation studies are performed in Section 5 in order to verify the consistency of the 

estimates. In Section 6, we prove empirically the potentiality of the new distribution by 

means of two real data sets. Finally, some concluding remarks are offered in Section 7. 

2.   The MOEBXII Distribution 

In this section, we define the MOEBXII distribution and provide its eleven sub-models. 

By inserting (1) in equation (3), the cdf of the MOEBXII distribution (for 𝑥 > 0), say 

𝐹(𝑥) = 𝐹(𝑥; 𝑐, 𝑘, 𝜆, 𝛼), is given by  

𝐹(𝑥) = 1 −
𝛼 {1−[1−(1+𝑥𝑐)−𝑘]

𝜆
}

1−𝛼{1−[1−(1+𝑥𝑐)−𝑘]
𝜆

}
 ,      (6) 

where 𝑐, 𝑘, 𝜆 and 𝛼 are positive shape parameters. 

 

Its density function, say 𝑓(𝑥) = 𝑓(𝑥; 𝑐, 𝑘, 𝜆, 𝛼), becomes  

𝑓(𝑥) =
𝛼𝜆𝑐𝑘𝑥𝑐−1(1+𝑥𝑐)−𝑘−1[1−(1+𝑥𝑐)−𝑘]

𝜆−1

(1−𝛼 {1−[1−(1+𝑥𝑐)−𝑘]
𝜆

})
2 .     (7) 

Henceforth, let 𝑋~MOEBXII(𝑐, 𝑘, 𝜆, 𝛼) be a random variable having the pdf (7). 

 

The hrf and cumulative hazard rate function (chrf) of 𝑋 are given by  

ℎ(𝑥; 𝑐, 𝑘, 𝜆, 𝛼) =
𝑟(𝑥; 𝑐, 𝑘, 𝜆)

1 − 𝛼 {1 − [1 − (1 + 𝑥𝑐)−𝑘]𝜆}
 

and  

𝐻(𝑥; 𝑐, 𝑘, 𝜆, 𝛼) = log (
1 − 𝛼 {1 − [1 − (1 + 𝑥𝑐)−𝑘]𝜆}

𝛼{1 − [1 − (1 + 𝑥𝑐)−𝑘]𝜆}
), 

respectively, where  

𝑟(𝑥; 𝑐, 𝑘, 𝜆) =
𝜆𝑐𝑘𝑥𝑐−1(1 + 𝑥𝑐)−𝑘−1[1 − (1 + 𝑥𝑐)−𝑘]𝜆−1

1 − [1 − (1 + 𝑥𝑐)−𝑘]𝜆
 

is the hrf of the EBXII model. 
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For 0 < 𝛼 < 1, we provide a simple motivation for the MOEBXII distribution in the 

medical context as follows. Consider a random sample 𝑊1, … , 𝑊𝑁, where the 𝑊𝑖’s are 

independent and identically distributed having the EBXII density (2). Let 𝑁 have a 

geometric random variable with probability mass function (pmf) 𝑃(𝑁 = 𝑘) = 𝛼 (1 −
𝛼)𝑘−1 (for 𝑘 ≥ 1). Then, the density of the random variable 𝑋 = min(𝑊1, … , 𝑊𝑁) is that 

of (7). For 𝛼 > 1, we can use 𝛼−1 instead of 𝛼 in the pmf of 𝑁. This setup is usually 

common in oncology, where 𝑁 represents the amount of cells with metastasis potential 

and 𝑊𝑖 denotes the time for the 𝑖th cell to metastasize. So, 𝑋 represents the recurrence 

time of the cancer. 

 

The MOEBXII distribution is a very flexible model that approaches to different 

distributions. Its eleven sub-models are listed in Table 1. Figure 1 displays some plots of 

the MOEBXII density for selected values of 𝑐, 𝑘, 𝜆 and 𝛼. These plots illustrate the 

versatility and modality of the new distribution. The plots in Figure 2 reveal that the hrf 

of 𝑋 can have bathtub, unimodal, increasing and decreasing shapes. 

Table 1:   Sub-models of the MOEBXII distribution 

No.  Distribution   𝑐   𝑘   𝜆   𝛼   Author  

1  MOBXII   𝑐   𝑘   1   𝛼   Al-Saiarie et al. (2014)  

2  MOELo   1   𝑘   𝜆   𝛼   New  

3  MOELL   𝑐   1   𝜆   𝛼   New  

4  MOLo   1   𝑘   1   𝛼   –  

5  MOLL   𝑐   1   1   𝛼   –  

6  EBXII   𝑐   𝑘   𝜆   1    

7  ELo   1   𝑘   𝜆   1    

8  ELL   𝑐   1   𝜆   1    

9  BXII   𝑐   𝑘   1   1    

10  Lo   1   𝑘   1   1    

11  LL   𝑐   1   1   1    

Abbreviations: Lo=Lomax and LL=Log-Logistic. 
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Figure  1: Plots of the MOEBXII density for selected parameter values. 

  
Figure  2: Plots of the MOEBXII hrf for selected parameter values. 

2.1 Linear Representation 

An expansion for equation (7) can be derived using the power series  

(1 − 𝑧)−𝜐 = ∑∞
𝑗=0

Γ(𝜐+𝑗)

𝑗! Γ(𝜐) 
 𝑧𝑗 ,       (8) 

where |𝑧| < 1, 𝜐 > 0 and Γ(𝜐) = ∫
∞

0
𝑡𝜐−1e−𝑡d𝑡 is the gamma function. Based on the 

linear representation of Cordeiro et al. (2014) for the MO-G family and using (8) in (7) 

when 𝛼 ∈ (0,1), we can write  
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𝑓(𝑥) = 𝛼 𝜆𝑐 𝑘 ∑

∞

𝑖=0

∑

∞

𝑗=𝑖

(−1)𝑖(𝑗 + 1) �̅�𝑗 (
𝑗
𝑖
) 

          ×  𝑥𝑐−1(1 + 𝑥𝑐)−𝑘−1[1 − (1 + 𝑥𝑐)−𝑘]𝜆(𝑖+1)−1. 
 

Using the generalized binomial expansion, we obtain  

𝑓(𝑥) = 𝛼 ∑

∞

𝑖,𝑚=0

∑

∞

𝑗=𝑖

(−1)𝑖+𝑚(𝑗 + 1) �̅�𝑗 (
𝑗
𝑖
) (𝜆(𝑖 + 1) − 1

           𝑚
) 

                    × 𝜆𝑐𝑘 𝑥𝑐−1(1 + 𝑥𝑐)−𝑘(𝑚+1)−1. 
 

Then, the pdf of 𝑋 can be expressed as a linear combination of BXII densities  

𝑓(𝑥) = ∑∞
𝑚=0 𝑏𝑚 𝑔𝑚+1(𝑥),       (9) 

where 𝑔𝑚+1(𝑥) is the pdf of the BXII model with shape parameters 𝑐 and (𝑚 + 1)𝑘 and 

(for 𝑚 ≥ 0)  

𝑏𝑚 =
𝛼𝜆

𝑚 + 1
 ∑

∞

𝑖=0

∑

∞

𝑗=𝑖

(−1)𝑖+𝑚(𝑗 + 1) �̅�𝑗  (
𝑗
𝑖
) (𝜆(𝑖 + 1) − 1

          𝑚
). 

 

Otherwise, if 𝛼 > 1, we can rewrite (7), using (8) and following the same developments 

of Cordeiro et al. (2014), as  

𝑓(𝑥) = 𝛼−1 (1 − 𝛼−1) 𝜆𝑐 𝑘 ∑

∞

𝑗=0

(𝑗 + 1) 𝑥𝑐−1(1 + 𝑥𝑐)−𝑘−1[1 − (1 + 𝑥𝑐)−𝑘]𝜆(𝑗+1)−1. 

 

Applying the generalized binomial expansion gives  

 𝑓(𝑥) = 𝜆𝛼−1 (1 − 𝛼−1) 𝑐 𝑘 ∑∞
𝑗,𝑚=0 (−1)𝑚(𝑗 + 1) 

                       ×  (𝜆(𝑗 + 1) − 1
          𝑚

) 𝑥𝑐−1(1 + 𝑥𝑐)−𝑘(𝑚+1)−1. 

 

Then, the pdf of 𝑋 when 𝛼 > 0 can be expressed as a linear combination of BXII 

densities given by  

𝑓(𝑥) = ∑∞
𝑚=0 𝑞𝑚 𝑔𝑚+1(𝑥),       (10) 

where  

𝑞𝑚 =
(−1)𝑚𝜆𝛼−1 (1 − 𝛼−1)

𝑚 + 1
∑

∞

𝑗=0

 (𝑗 + 1) (𝜆(𝑗 + 1) − 1
          𝑚

). 

 

Equations (9) and (10) have the same linear representation except for the coefficients. 

They are the main results of this section. So, some structural properties of the MOEBXII 

model can be determined from these equations and those properties of the BXII 

distribution. From now on, we work only with equation (9). 

3.   Mathematical Properties 



An Extended Burr XII Distribution: Properties, Inference and Applications  

Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp809-828 815 

In this section, we obtain some mathematical properties of the MOEBXII distribution 

including qf and random number generation, ordinary, central and incomplete moments, 

mgf and moments of the residual and reversed residual lifes. 

 

Let 𝑍 be a random variable having the two-parameter BXII density given by  

𝑔(𝑧; 𝛼, 𝑘) = 𝑐𝑘𝑧𝑐−1(1 + 𝑧𝑐)−𝑘−1,      (11) 

where 𝑐 and 𝑘 are positive shape parameters. 
 

The 𝑟th ordinary and incomplete moments of 𝑍 are given (for 𝑟 < 𝑐𝑘) by  

𝜇𝑟,𝑍
′ = 𝑘 𝐵 (𝑘 −

𝑟

𝑐
,
𝑟

𝑐
+ 1)       and        𝜑𝑟,𝑍(𝑡) = 𝑘𝐵 (𝑡𝑐; 𝑘 −

𝑟

𝑐
,
𝑟

𝑐
+ 1), 

respectively, where 𝐵(𝑎, 𝑏) = ∫
1

0
𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡 and 𝐵(𝑦; 𝑎, 𝑏) = ∫

𝑦

0
𝑡𝑎−1(1 −

𝑡)𝑏−1)𝑑𝑡 are the beta and incomplete beta functions, respectively. 

3.1 Moments 

The 𝑟th ordinary moment of 𝑋 is given by 

𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑

∞

𝑚=0

𝑏𝑚   ∫
∞

0

𝑥𝑟𝑔𝑚+1(𝑥)𝑑𝑥. 

 

For 𝑟 < 𝑘 𝑐, we obtain  

𝜇𝑟
′ = 𝑘 ∑∞

𝑚=0 𝑏𝑚 (𝑚 + 1) 𝐵 (𝑘(𝑚 + 1) −
𝑟

𝑐
,

𝑟

𝑐
+ 1) .   (12) 

 

The mean of 𝑋 follows by setting 𝑟 = 1 in (12) as  

𝜇1
′ = 𝑘 ∑

∞

𝑚=0

𝑏𝑚 (𝑚 + 1)𝐵 (𝑘(𝑚 + 1) −
1

𝑐
,
1

𝑐
+ 1). 

 

The 𝑠th central moment (𝜇𝑠) of 𝑋 is given by  

𝜇𝑠 = 𝐸(𝑋 − 𝜇)𝑠 = ∑

𝑠

𝑖=0

(−1)𝑖  (
𝑠
𝑖

) (𝜇1
′ )𝑠 𝜇𝑠−𝑖

′ . 

 

The skewness and kurtosis measures can be calculated from the central moments using 

well-known relationships. 
 

The 𝑠th incomplete moment of 𝑋 is given by 𝜑𝑠(𝑡) = ∫
𝑡

0
𝑥𝑠 𝑓(𝑥)𝑑𝑥. It follows from 

equation (9)  

𝜑𝑠(𝑡) = ∑

∞

𝑚=0

𝑏𝑚  ∫
𝑡

0

𝑥𝑠 𝑔𝑚+1(𝑥)𝑑𝑥, 

and then using the incomplete beta function, we obtain (for 𝑠 < 𝑘𝑐) 

𝜑𝑠(𝑡) = 𝑘 ∑

∞

𝑚=0

 (𝑚 + 1) 𝑏𝑚 𝐵 (𝑡𝑐; 𝑘(𝑚 + 1) −
𝑠

𝑐
,
𝑠

𝑐
+ 1). 
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The first incomplete moment of 𝑋 follows from the last equation by setting 𝑠 = 1. It can 

be applied to obtain mean deviations, Bonferroni and Lorenz curves, mean residual and 

waiting times and totality of deviations from the mean and median. 

 

The effects of the parameter 𝛼 on the mean, variance, skewness and kurtosis for given 

values of 𝜆, 𝑐 and 𝑘 are displayed in Figures 3 and 4, respectively. 

 

  

Figure 3: Plots of mean and variance of the MOEBXII distribution. 

  

Figure 4: Plots of skewness and kurtosis of the MOEBXII distribution. 

3.2  Quantile and Generating Functions 

The qf of 𝑋 is obtained by inverting (6) as  

𝑄(𝑢) = ({1 − [
𝛼𝑢

1−(1−𝛼)𝑢
]

1

𝜆
}

−1

𝑘

− 1)

1

𝑐

, 0 < 𝑢 < 1.    (13) 

Setting 𝑢 = 0.5 in (13) gives the median of 𝑋. Simulating the MOEBXII random variable 

is straightforward. If 𝑈 is a uniform variate on the unit interval (0,1), then the random 

variable 𝑋 = 𝑄(𝑈) follows (7). 
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The mgf of 𝑋, say 𝑀𝑋(𝑡) = 𝐸(e𝑡𝑋), can be obtained from (9) as 

𝑀𝑋(𝑡) = ∑

∞

𝑚=0

𝑏𝑚 𝑀𝑚+1(𝑡), 

where 𝑀𝑚+1(𝑡) is the mgf of the BXII distribution with parameters 𝑐, (𝑚 + 1)𝑘. 

 

First, we provide the mgf of the two-parameter BXII distribution as defined by Afify et 

al. (2016). We can write the mgf of 𝑍 with pdf (11), say 𝑀𝑍(𝑡), (for 𝑡 < 0) as  

𝑀𝑍(𝑡) = 𝑐 𝑘 ∫
∞

0

 ezt 𝑧𝑐−1 (1 + 𝑧𝑐)−𝑘−1 𝑑𝑧. 

 

We require the Meijer G-function defined by  

𝐺𝑝,𝑞
𝑠,𝑛 (𝑥|

𝑎1, … , 𝑎𝑝

𝑏1, … , 𝑏𝑞
) =

1

2𝜋𝑖
∫

𝐿

∏𝑠
𝑗=1 Γ(𝑏𝑗 + 𝑡) ∏𝑛

𝑗=1 Γ(1 − 𝑎𝑗 − 𝑡)

∏𝑝
𝑗=𝑛+1 Γ(𝑎𝑗 + 𝑡) ∏𝑝

𝑗=𝑠+1 Γ(1 − 𝑏𝑗 − 𝑡)
𝑥−𝑡𝑑𝑡, 

where 𝑖 = √−1 is the complex unit and 𝐿 denotes an integration path (Gradshteyn and 

Ryzhik, 2000, Section 9.3). The Meijer G-function contains as particular cases many 

integrals with elementary and special functions (Prudnikov et al., 1986). Further, we 

assume that 𝑐 = 𝑠/𝑘, where 𝑠 and 𝑘 are positive integers. This condition is not restrictive 

since every positive real number can be approximated by a rational number. 

 

For 𝑠 and 𝑘 positive integers, 𝜇 > −1 and 𝑝 > 0, the following result holds (Prudnikov 

et al., 1992, p. 21)  

𝐼 (𝑝, 𝜇,
𝑠

𝑘
, 𝑣) = ∫

∞

0

e−𝑝𝑥 𝑥𝜇  (1 + 𝑥
𝑠

𝑘)
𝑣

𝑑𝑥 

                      = 𝑉 𝐺𝑘+𝑠,𝑘
𝑘,𝑘+𝑠 (

𝑠𝑠

𝑝𝑠 |
𝛥(𝑠, −𝜇), 𝛥(𝑘, 𝑣 + 1)

          𝛥(𝑘, 0)
), 

where 𝑉 =
𝑘−𝑣𝑠

𝜇+
1
2

(2𝜋)
𝑠−1

2 Γ(−𝑣)𝑝𝜇+1
 and 𝛥(𝑘, 𝑎) =

𝑎

𝑘
,

𝑎+1

𝑘
, … ,

𝑎+𝑘

𝑘
. For 𝑡 < 0, we can write  

𝑀𝑍(𝑡) = 𝑠𝐼 (−𝑡,
𝑠

𝑘
− 1,

𝑠

𝑘
, −𝑘 − 1). 

 

Finally, the mgf of 𝑋 can be reduced to  

𝑀𝑋(𝑡) = 𝑠 ∑

∞

𝑚=0

𝑏𝑚 𝐼 (−𝑡,
𝑠

𝑘(𝑚 + 1)
− 1,

𝑠

𝑘(𝑚 + 1)
, −𝑘(𝑚 + 1) − 1). 

3.3  Residual and Reversed Residual Lifes 

For 𝑛 = 1,2, … and 𝑡 > 0, the 𝑛th moment of the residual life of 𝑋 is given by  

𝑚𝑛(𝑡) =
1

1 − 𝐹(𝑡)
 ∫

∞

𝑡

(𝑥 − 𝑡)𝑛𝑑𝐹(𝑥). 
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Using equation (9), we can write  

𝑚𝑛(𝑡) =
𝑘

𝐹(𝑡)
∑

∞

𝑚=0

∑

𝑛

𝑖=0

(𝑛 + 1)𝑖 (𝑚 + 1) 𝑏𝑚 𝑡𝑛−𝑖

(−1)𝑛−𝑖𝑖!
𝐵 (𝑡𝑐; 𝑘(𝑚 + 1) −

𝑖

𝑐
,
𝑖

𝑐
+ 1), 

where 𝜌𝑖 = Γ(𝜌 + 1)/Γ(𝜌 − 𝑖 + 1) is the falling factorial. 

 

The mean residual life (MRL) function of 𝑋 follows by setting 𝑛 = 1 in the last equation. 

It represents the expected additional life length for a unit which is alive at age 𝑥. The 

MRL is also known as the life expectancy at age 𝑥. 

 

For 𝑛 = 1,2, … and 𝑡 > 0, the 𝑛th moment of the reversed residual life of 𝑋 is given by  

𝑀𝑛(𝑡) =
1

𝐹(𝑡)
∫

𝑡

0

(𝑡 − 𝑥)𝑛𝑑𝐹(𝑥). 

 

Then, we can write  

𝑀𝑛(𝑡) =
𝑘

𝐹(𝑡)
∑

𝑛

𝑖=0

∑

∞

𝑚=0

(𝑛 + 1)𝑖  (𝑚 + 1) 𝑏𝑚𝑡𝑛−𝑖

(−1)𝑖 𝑖!
 𝐵 (𝑡𝑐 ; 𝑘(𝑚 + 1) −

𝑖

𝑐
,
𝑖

𝑐
+ 1). 

 

The mean inactivity time (MIT) of 𝑋 follows by setting 𝑛 = 1 in the above equation. It 

represents the waiting time elapsed since the failure of an item on condition that this 

failure had occurred in (0, 𝑥). The MIT is also called the mean reversed residual life 

function. 

3.4 Order Statistics 

Let 𝑋1, … , 𝑋𝑛 be a random sample of size 𝑛 from the MOEBXII distribution and 

𝑋(1), … , 𝑋(𝑛) be the corresponding order statistics. Then, the pdf of the 𝑖th order statistic 

𝑋𝑖:𝑛, say 𝑓𝑖:𝑛(𝑥), is given by  

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

B(𝑖,𝑛−𝑖+1)
 ∑𝑛−𝑖

𝑗=0  (−1)𝑗  (
𝑛 − 𝑖
    𝑗

)  𝐹(𝑥)𝑖+𝑗−1.   (14) 

 

Using the generalized binomial expansion and after some algebra, we can write  

𝑓(𝑥) 𝐹(𝑥)𝑖+𝑗−1 = 𝜆 ∑

∞

𝑙,𝑤,𝑟=0

(−1)𝑙+𝑟𝛼𝑙+1𝛼
𝑤

(
−𝑙 − 2
     𝑤

) (
𝑙 + 𝑤
   𝑟

) 

             × (
𝑖 + 𝑗 − 1
        𝑙

) 𝑐 𝑘 𝑥𝑐−1 (1 + 𝑥𝑐)−𝑘−1[1 − (1 + 𝑥𝑐)−𝑘]𝜆(𝑟+1)−1. 

 

Using this expansion again, the last equation reduces to 

𝑓(𝑥) 𝐹(𝑥)𝑖+𝑗−1 = 𝜆 ∑

∞

𝑙,𝑤,𝑟,𝑠=0

(−1)𝑙+𝑟+𝑠𝛼𝑙+1𝛼
𝑤

(
−𝑙 − 2
     𝑤

) (
𝑙 + 𝑤
    𝑟

) 

× (
𝑖 + 𝑗 − 1
       𝑙

) (𝜆(𝑟 + 1) − 1
           𝑠

)  𝑐 𝑘 𝑥𝑐−1(1 + 𝑥𝑐)−𝑘(𝑠+1)−1. 



An Extended Burr XII Distribution: Properties, Inference and Applications  

Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp809-828 819 

Then, we can write  

𝑓(𝑥) 𝐹(𝑥)𝑖+𝑗−1 = ∑∞
𝑠=0 𝑝𝑠 𝑔𝑠+1(𝑥),      (15) 

where  

𝑝𝑠 =
𝜆

𝑠 + 1
∑

∞

𝑙,𝑤,𝑟=0

(−1)𝑙+𝑟+𝑠𝛼𝑙+1 𝛼
𝑤

 (
−𝑙 − 2
      𝑤

) (
𝑙 + 𝑤
    𝑟

) 

× (
𝑖 + 𝑗 − 1
       𝑙

) (𝜆(𝑟 + 1) − 1
            𝑠

) 

and 𝑔𝑠+1(𝑥) denotes the BXII density function with parameters 𝑐 and (𝑠 + 1)𝑘. 

 

By inserting (15) in equation (14), we obtain  

𝑓𝑖:𝑛(𝑥) =  
1

B(𝑖,𝑛−𝑖+1)
 ∑𝑛−𝑖

𝑗=0 (−1)𝑗  (
𝑛 − 𝑖
    𝑗

) ∑∞
𝑠=0  𝑝𝑠𝑔𝑠+1(𝑥).   (16) 

 

Equation (16) reveals that the density function of the MOEBXII order statistics is a linear 

combination of BXII densities. Based on this equation, we can obtain some structural 

properties of 𝑋𝑖:𝑛 from those BXII properties. For example, the 𝑞th moment of 𝑋𝑖:𝑛 is 

given by  

𝐸(𝑋𝑖:𝑛
𝑞 ) =

1

B(𝑖, 𝑛 − 𝑖 + 1)
 ∑

𝑛−𝑖

𝑗=0

(−1)𝑗  (
𝑛 − 𝑖
    𝑗

) ∑

∞

𝑠=0

𝑝𝑠𝑘(𝑠 + 1) 𝐵 (𝑘(𝑠 + 1) −
𝑞

𝑐
,
𝑞

𝑐
+ 1). 

 

Using the moments in the last equation, we can derive explicit expressions for the L-

moments of 𝑋 as infinite weighted linear combinations of the means of suitable 

MOEBXII distributions. They are given by  

𝜆𝑟 =
1

𝑟
∑

𝑟−1

𝑑=0
(−1)𝑑  (

𝑟 − 1
    𝑑

)  𝐸(𝑋𝑟−𝑑:𝑟), 𝑟 ≥ 1. 

3.5 Probability Weighted Moments 

The PWMs can be used to derive estimators of the parameters and quantiles of 

generalized distributions. These moments have low variances and no severe biases, and 

they compare favorably with estimators obtained by maximum likelihood. The (𝑟, 𝑗)th 

PWM of 𝑋 (for 𝑟 ≥ 1, 𝑗 ≥ 0) is formally defined by  

𝜌𝑟,𝑗 = 𝐸[𝑋𝑟 𝐹(𝑋)𝑗] = ∫
∞

0

𝑥𝑟  𝐹(𝑥)𝑗 𝑓(𝑥)𝑑𝑥. 

We can write from (9) 

𝑓(𝑥) 𝐹(𝑥)𝑗 = 𝜆 ∑

∞

𝑙,𝑤,𝑟,𝑠=0

(−1)𝑙+𝑟+𝑠𝛼𝑙+1𝛼
𝑤

 (
𝑗
𝑙
) (

−𝑙 − 2
    𝑤

) (
𝑙 + 𝑤
    𝑟

) 

× (
𝜆(𝑟 + 1) − 1
            𝑠

)  𝑐 𝑘 𝑥𝑐−1(1 + 𝑥𝑐)−𝑘(𝑠+1)−1. 

 

We can rewrite the last equation as  

𝑓(𝑥) 𝐹(𝑥)𝑗 = ∑

∞

𝑠=0

𝑑𝑠 𝑔𝑠+1(𝑥), 
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where  

𝑑𝑠 =
𝜆

𝑠 + 1
∑

∞

𝑙,𝑤,𝑟=0

(−1)𝑙+𝑟+𝑠 𝛼𝑙+1 𝛼
𝑤

 (
𝑗
𝑙
) (

−𝑙 − 2
     𝑤

) (
𝑙 + 𝑤
    𝑟

) (
𝜆(𝑟 + 1) − 1
            𝑠

). 

 

Then, 𝜌𝑟,𝑗 can be expressed as  

𝜌𝑟,𝑗 = ∑

∞

𝑠=0

𝑑𝑠  ∫
∞

0

𝑥𝑟 𝑔𝑠+1(𝑥)𝑑𝑥. 

 

Finally, we obtain (for 𝑟 < 𝑐𝑘)  

𝜌𝑟,𝑗 = ∑

∞

𝑠=0

𝑑𝑠𝑘(𝑠 + 1) 𝐵 (𝑘(𝑠 + 1) −
𝑟

𝑐
,
𝑟

𝑐
+ 1). 

4.   Estimation 

In this section, we consider the estimation of the unknown parameters of the MOEBXII 

model from complete samples by maximum likelihood and least square methods. The 

MLEs enjoy desirable properties for constructing confidence intervals. 

 

Let 𝑥1, … , 𝑥𝑛 be a random sample of this distribution with parameter vector 𝜃 =
(𝑐, 𝑘, 𝜆, 𝛼)T. The log-likelihood function for 𝜃, say ℓ = ℓ(𝜃), is given by 

ℓ = 𝑛log𝛼 + 𝑛log𝜆 + 𝑛log𝑐 + 𝑛log𝑘 + (𝑐 − 1) ∑

𝑛

𝑖=1

log𝑥𝑖 + (𝜆 − 1) ∑

𝑛

𝑖=1

log𝑠𝑖 

−(𝑘 + 1) ∑𝑛
𝑖=1 log(1 + 𝑥𝑖

𝑐) − 2 ∑𝑛
𝑖=1 log[1 − 𝛼 (1 − 𝑠𝑖

𝜆)],  (18) 

where 𝑠𝑖 = [1 − (1 + 𝑥𝑖
𝑐)−𝑘]. 

 

Equation (18) can be maximized either directly by using the R (optim function), SAS 

(PROC NLMIXED), Ox program (sub-routine MaxBFGS) or by solving the nonlinear 

likelihood equations obtained by differentiating this equation. 

 

The elements of the score vector 𝐔(𝜃) =
∂ℓ

∂𝜃
= (

∂ℓ

∂𝑐
 ,

∂ℓ

∂𝑘
 ,

∂ℓ

∂𝜆
 ,

∂ℓ

∂𝛼
 )T are:  

∂ℓ

∂𝑐
=

𝑛

𝑐
+ ∑

𝑛

𝑖=1

log𝑥𝑖 + (𝑘 + 1) ∑

𝑛

𝑖=1

𝑥𝑖
𝑐log𝑥𝑖

1 + 𝑥𝑖
𝑐 + (𝜆 − 1) ∑

𝑛

𝑖=1

𝑝𝑖

𝑠𝑖
− 2 ∑

𝑛

𝑖=1

 𝛼𝜆𝑝𝑖(𝑠𝑖)
𝜆−1

1 − 𝛼 (1 − 𝑠𝑖
𝜆)

, 

∂ℓ

∂𝑘
=

𝑛

𝑘
− ∑

𝑛

𝑖=1

log(1 + 𝑥𝑖
𝑐) + (𝜆 − 1) ∑

𝑛

𝑖=1

𝑢𝑖

𝑠𝑖
− 2𝛼𝜆 ∑

𝑛

𝑖=1

𝑢𝑖𝑠𝑖
𝜆−1

1 − 𝛼 (1 − 𝑠𝑖
𝜆)

, 

∂ℓ

∂𝜆
=

𝑛

𝜆
+ ∑

𝑛

𝑖=1

log𝑠𝑖 − 2 ∑

𝑛

𝑖=1

𝛼𝑠𝑖
𝜆log𝑠𝑖

1 − 𝛼 (1 − 𝑠𝑖
𝜆)

  and  
∂ℓ

∂𝛼
=

𝑛

𝛼
− 2 ∑

𝑛

𝑖=1

(1 − 𝑠𝑖
𝜆)

1 − 𝛼 (1 − 𝑠𝑖
𝜆)

, 

respectively, where 𝑝𝑖 = 𝑘𝑥𝑖
𝑐(1 + 𝑥𝑖

𝑐)−𝑘−1log(𝑥𝑖) and 𝑢𝑖 = (1 + 𝑥𝑖
𝑐)−𝑘log(1 + 𝑥𝑖

𝑐). 
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We can obtain the estimates of the unknown parameters by setting the score vector to 

zero, 𝐔(𝜃) = 𝟎. By solving these equations simultaneously gives the MLEs �̂�, �̂�, �̂� and �̂�. 

Iterative techniques such as Newton-Raphson type algorithms can be adopted to obtain 

the estimates. All the second-order derivatives exist for the proposed distribution. 

 

The interval estimation of the model parameters requires the 4 × 4 observed information 

matrix 𝐽(𝜃) = {𝐽𝑖𝑗} for 𝑖, 𝑗 = 𝑐, 𝑘, 𝜆, 𝛼. The multivariate normal 𝑁4(0, 𝐽(𝜃)−1) 

distribution, under standard regularity conditions, can be used to provide approximate 

confidence intervals for the unknown parameters, where 𝐽(𝜃) is the total observed 

information matrix evaluated at 𝜃. Then, approximate 100(1 − 𝜑)% confidence intervals 

for 𝑐, 𝑘, 𝜆 and 𝛼 are given by 

�̂� ± 𝑧𝜑/2√𝐽𝑐𝑐,   �̂� ± 𝑧𝜑/2√𝐽𝑘𝑘,  �̂� ± 𝑧𝜑/2√𝐽𝜆𝜆   and  �̂� ± 𝑧𝜑/2√𝐽𝛼𝛼,  

where 𝑧𝜑/2 is the upper 𝜑th percentile of the standard normal model. 

 

An alternative estimation to maximum likelihood is the least square estimation. The least 

square estimates (LSEs), �̃�, �̃�, �̃� and �̃� of 𝑐, 𝑘, 𝜆 and 𝛼, are defined as those arguments 

that minimize the objective function:  

𝑄(𝜃)  =  ∑

𝑛

𝑖=1

(1 −
𝛼 {1 − [1 − (1 + 𝑥(𝑖)

𝑐 )
−𝑘

]
𝜆

}

1 − 𝛼 {1 − [1 − (1 + 𝑥(𝑖)
𝑐 )

−𝑘
]

𝜆

}

 −  
𝑖

𝑛 + 1
)

2

, 

where 𝑥(𝑖) is a possible outcome of the 𝑖th order statistic based on a 𝑛-points random 

sample obtained from 𝑋. For more complex distributions, the properties of the LSEs are 

not easy to obtain as those of the MLEs. 
 

The minimum point �̃�, �̃�, �̃� and �̃� can also be given as a solution in the following system 

of non-linear equations:  
∂𝑄(𝜃)

∂𝑐
=

∂𝑄(𝜃)

∂𝑘
=

∂𝑄(𝜃)

∂𝜆
=

∂𝑄(𝜃)

∂𝛼
= 0. 

5.   Simulation Study 

In this section, we provide simulation results to assess the performance of the MLEs and 

LSEs of. We simulate the MOEBXII model under two setups for the model parameters: 

𝑐 = 1.5, 𝑘 = 2.0, 𝜆 = 1.5 and 𝛼 = 0.5; and 𝑐 = 3.0, 𝑘 = 0.5, 𝜆 = 1.5 and 𝛼 = 5.0. 
 

The results are obtained from 3,000 Monte Carlo simulations. For each replication, a 

random sample of size 𝑛 is drawn from the MOEBXII model and the parameters are 

estimated by MLEs. The sample sizes are 𝑛 = 50, 100, 200, 300 and 500. All 

simulations were performed using the R software with the Optim function. 
 

Table 2 lists the averages of the MLEs (Mean), the biases (Bias) and the mean square 

errors (MSEs) and 95% coverage probabilities (CP). We conclude from the figures in 

Table 2 that the MSEs of the MLEs of 𝑐, 𝑘, 𝜆 and 𝛼 decay toward zero when the sample 

size increases, as expected under standard asymptotic theory. In fact, the biases of the 

estimates tend to be closer to the true parameter values if 𝑛 increases. 
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Table 3 presents the averages of the LSEs (Mean), the biases (Bias) and the mean square 

errors (MSEs). We conclude from the figures in Table 3 that the biases and MSEs of the 

LSEs of 𝑐, 𝑘, 𝜆 and 𝛼 are, in general, lower than those values for the MLEs. 

Table 2:  Summaries of the MLEs for the MOEBXII model  

  c=1.5 k=2.0 λ=1.5 α=0.5 c=3.0 k=0.5 λ=1.5 α=5.0 

n  Mean Bias MSE CP Mean Bias MSE CP 

 c 1.6787 0.1787 0.3923 0.9793 3.5450 0.5450 4.1481 0.9917 

50 k 2.1787 0.1787 1.1016 0.9653 0.5264 0.0264 0.1068 0.9253 

 λ 1.6037 0.1037 0.7354 0.9577 2.1481 0.6481 1.4024 0.9823 

 α 0.7814 0.2814 0.5862 0.9420 4.0536 -0.9464 7.7797 0.8730 

 c 1.6127 0.1127 0.2504 0.9840 3.2913 0.2913 2.2502 0.9973 

100 k 2.1280 0.1280 0.9799 0.9723 0.5272 0.0272 0.0569 0.9347 

 λ 1.6403 0.1403 0.6092 0.9710 1.9946 0.4946 0.8754 0.9807 

 α 0.6595 0.1595 0.2975 0.9253 4.2978 -0.7022 6.3629 0.9160 

 c 1.6085 0.1085 0.1979 0.9887 3.0533 0.0533 1.2754 0.9937 

200 k 2.0052 0.0052 0.6845 0.9683 0.5538 0.0538 0.0450 0.9533 

 λ 1.6018 0.1018 0.4408 0.9740 1.8746 0.3746 0.6255 0.9743 

 α 0.5443 0.0443 0.1103 0.9237 4.6238 -0.3762 4.6908 0.9523 

 c 1.6124 0.1124 0.1699 0.9883 3.1017 0.1017 1.0557 0.9940 

300 k 1.9544 -0.0456 0.5453 0.9660 0.5335 0.0335 0.0332 0.9520 

 λ 1.5488 0.0488 0.3306 0.9693 1.7611 0.2611 0.4615 0.9670 

 α 0.5189 0.0189 0.0714 0.9263 4.8136 -0.1864 4.0601 0.9717 

 c 1.6016 0.1016 0.1332 0.9897 3.0977 0.0977 0.6927 0.9790 

500 k 1.9327 -0.0673 0.3892 0.9653 0.5154 0.0154 0.0193 0.9423 

 λ 1.5149 0.0149 0.2225 0.9670 1.6412 0.1412 0.2439 0.9510 

 α 0.5011 0.0011 0.0394 0.9297 4.9565 -0.0435 2.8801 0.9653 

Table 3:  Summaries of the LSEs for the MOEBXII model  

 n  Mean  Bias  MSE  Mean Bias MSE 

 c=1.5 1.4621 -0.0379 0.1450 c=3 3.733 0.7330 6.5609 

50 k=2 1.8469 -0.1531 0.5194 k=0.5 0.5743 0.0743 0.1398 

 λ=1.5 1.6906 0.1906 0.6319 λ=2 1.6021 0.1021 0.5461 

 α=0.5 0.7786 0.2786 0.8705 α=5 4.7225 -0.2775 1.8995 

 c=1.5 1.4762 -0.0238 0.0837 c=3 3.3904 0.3904 3.5382 

100 k=2 1.8934 -0.1066 0.3284 k=0.5 0.5741 0.0741 0.0937 

 λ=1.5 1.6519 0.1519 0.4228 λ=2 1.5884 0.0884 0.2909 

 α=0.5 0.6310 0.1310 0.3838 α=5 4.8605 -0.1395 0.8140 

 c=1.5 1.4762 -0.0238 0.0491 c=3 3.1389 0.1389 1.7273 

200 k=2 1.8792 -0.1208 0.1906 k=0.5 0.5692 0.0692 0.0578 

 λ=1.5 1.6427 0.1427 0.2475 λ=2 1.5642 0.0642 0.1375 

 α=0.5 0.5019 0.0019 0.1318 α=5 4.9543 -0.0457 0.4205 

 c=1.5 1.4849 -0.0151 0.0356 c=3 3.0783 0.0783 1.0371 

300 k=2 1.9007 -0.0993 0.1317 k=0.5 0.5554 0.0554 0.0401 

 λ=1.5 1.6075 0.1075 0.1541 λ=2 1.5439 0.0439 0.0871 

 α=0.5 0.4744 -0.0256 0.0643 α=5 4.9831 -0.0169 0.2901 

 c=1.5 1.5012 0.0012 0.0243 c=3 3.0438 0.0438 0.6100 

500 k=2 1.9244 -0.0756 0.0873 k=0.5 0.5382 0.0382 0.0245 

 λ=1.5 1.5541 0.0541 0.0871 λ=2 1.525 0.0250 0.0485 

 α=0.5 0.4765 -0.0235 0.0290 α=5 4.9865 -0.0135 0.1797 
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6.   Applications 

In this section, we provide two applications of the new distribution to prove empirically 

its potentiality. We shall compare the fits of the MOEBXII model and the following 

competing non-nested distributions, namely: the Weibull Lomax (WL) (Tahir et al., 

2015), beta generalized exponential (BGE) (Cordeiro et al., 2010), beta Burr XII (BBXII) 

(Cordeiro et al., 2010), beta Weibull (BW) (Lee et al., 2007), Kumaraswamy Lomax 

(KwL) (Lemonte and Cordeiro, 2013) and Kumaraswamy log-logistic (KwLL) (de 

Santana et al., 2012) distributions, whose pdfs (for 𝑥 > 0) are given below: 

WL: 𝑓(𝑥) =
𝑐𝑘𝜆

𝛼
(1 +

𝑥

𝛼
)

𝑐𝑘−1

[1 − (1 +
𝑥

𝛼
)

−𝑘

]
𝑐−1

𝑒
−𝜆[(1+

𝑥

𝛼
)

𝑘
−1]

c

; 

BGE: 𝑓(𝑥) =
𝑐𝑘

𝐵(𝛼,𝜆)
𝑒−𝑐𝑥(1 − 𝑒−𝑐𝑥)𝑘𝛼−1[1 − (1 − 𝑒−𝑐𝑥)𝑘]𝜆−1; 

BBXII: 𝑓(𝑥) =
𝑐𝑘

𝐵(𝛼,𝜆)
𝑥𝑐−1(1 + 𝑥𝑐)−𝑘𝜆−1[1 − (1 + 𝑥𝑐)−𝑘]𝛼−1; 

BW: 𝑓(𝑥) =
𝑐𝑥𝑐−1

𝑘𝑐𝐵(𝛼,𝜆)
𝑒−𝜆(𝑥 𝑘⁄ )𝑐

[1 − 𝑒−(𝑥 𝑘⁄ )𝑐
]

𝛼−1
; 

KwL: 𝑓(𝑥) =
𝑐𝑘𝜆

𝛼
(1 +

𝑥

𝛼
)

−𝑘−1

[1 − (1 +
𝑥

𝛼
)

−𝑘

]
𝑐−1

× {1 − [1 − (1 +
𝑥

𝛼
)

−𝑘

]
𝑐

}

𝜆−1

; 

KwLL: 𝑓(𝑥) =
𝑐𝑘𝜆

𝛼𝑐𝑘 𝑥𝑐𝑘−1 [1 + (
𝑥

𝛼
)

𝑐

]
−𝑘−1

(1 − {1 − [1 + (
𝑥

𝛼
)

𝑐

]
−1

}
𝑘

)

𝜆−1

. 

The parameters of the above densities are all positive real numbers. 

 

In order to compare these distributions, we consider some goodness-of-fit measures 

including −2ℓ̂ (maximized log-likelihood), 𝐴𝐼𝐶 (Akaike information criterion), 𝐵𝐼𝐶 

(Bayesian information criterion), 𝐶𝐴𝐼𝐶 (consistent Akaike information criterion), 

Kolmogorov-Smirnov (K-S) statistic and 𝑝-value. 

 

The first data set refers to the remission times (in months) of a random sample of 128 

bladder cancer patients (Lee and Wang, 2003). These data were previously analyzed by 

Cordeiro et al. (2012) and Nofal et al. (2017). 

 

The second uncensored data set consists of 20 observations. These data are reported in 

Gross and Clark (1975, p. 105) on the relief times of twenty patients receiving an 

analgesic and analyzed by Mead (2016) and Afify et al. (2017) to fit the beta 

exponentiated Lomax and beta transmuted Lindley distributions, respectively. 

Table 4:  Goodness-of-fit statistics for cancer data  

Model −2ℓ̂ AIC BIC CAIC K-S p-value 

MOEBXII 818.979 826.979 838.387 827.304 0.02655 0.99999 

KwL 819.873 827.873 839.281 828.198 0.0332 0.99894 

WL 820.148 828.148 839.556 828.473 0.03575 0.99672 

BW 821.401 829.401 840.809 829.726 0.04082 0.9833 

KwLL 821.814 829.814 841.223 830.14 0.04348 0.96891 

BGE 826.595 834.595 846.003 834.92 0.07338 0.49584 

BBXII 831.471 839.471 850.879 839.796 0.05747 0.79165 
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Table 5:  MLEs and their standard errors (in parentheses) for cancer data  

Model c k λ α 

MOBXII 0.5051 4.8881 4.2618 110.4832 

 (0.0022) (0.3310) (2.151) (1.1000) 

KwL 1.5157 0.3903 12.0549 12.2950 

 (0.2660) (1.2280) (45.0160) (11.7540) 

WL 1.5152 0.1102 36.1153 6.9692 

 (0.2870) (0.1810) (109.9380) (6.9280) 

BW 0.6290 4.3830 1.3360 2.9110 

 (0.560) (22.8250) (7.5220) (3.3390) 

KwLL 0.2360 12.6680 252.4910 0.6960 

 (0.1300) (2.5330) (719.2900) (2.5400) 

BGE 0.0816 1.1887 1.49851 0.9893 

 (0.0450) (0.3650) (0.8200) (0.4230) 

BBXII 0.2840 0.7760 24.5330 27.5430 

 (0.1590) (0.7220) (24.3560) (27.7270) 

Table 6:   Goodness-of-fit statistics for relief times data  

Model −2ℓ̂ AIC BIC CAIC K-S p-value 

MOEBXII 30.792 38.792 42.774 41.458 0.08432 0.99887 

KwLL 30.822 38.822 42.805 41.489 0.08508 0.99869 

BBXII 30.845 38.845 42.828 41.512 0.08577 0.99851 

BW 34.453 42.453 46.436 45.120 0.16118 0.67636 

BGE 35.329 43.329 47.312 45.995 0.17054 0.60585 

KwL 36.75 44.75 48.733 47.416 0.17464 0.5753 

WL 41.393 49.393 53.375 52.059 0.18387 0.50834 

 

Tables 4 and 6 list the values of −2ℓ̂, 𝐴𝐼𝐶, 𝐵𝐼𝐶, 𝐶𝐴𝐼𝐶, K-S and 𝑝-value, whereas the 

MLEs and their corresponding standard errors (in parentheses) of the model parameters 

are given in Tables 5 and 7, for the two data sets, respectively. 

 

The fitted pdfs of the MOEBXII, KwL, WL and BW models and QQ-plots for cancer 

data are displayed in Figure 5, whereas Figure 6 displays the estimated cdfs and survival 

functions of these fitted models. 
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Table 7:  MLEs and their standard errors (in parentheses) for relief times data 

 Model c k λ α 

 MOBXII 0.8625 6.3711 509.9555 0.4456 

 (2.5200) (24.7590) (8736) (1.4462) 

 KwLL 4.1980 14.7800 0.9910 0.8320 

 (3.8080) (89.7230) (1.2990) (1.4870) 

 BBXII 5.3690 0.7260 1.0650 6.0600 

 (34.5050) (11.9590) (12.3380) (55.7400) 

 BW 0.6180 1.3670 12.7280 28.7650 

 (0.3890) (1.9820) (22.4910) (41.1200) 

 BGE 0.2927 0.4216 13.2883 29.1788 

 (0.5540) (1.1840) (27.8130) (93.7110) 

 KwL 27.9580 0.4610 466.9410 0.0630 

 (68.1460) (0.1460) (808.7400) (0.2780) 

 WL 2.6957 16.7036 3443.6380 747.2166 

 (0.4030) (141.7510) (15220) (64900) 

 

 

  
 

Figure 5: The estimated MOEBXII pdf and other estimated pdfs (left panel) and the QQ-

plots of the MOEBXII, KwL, WL and BW models (right panel) for cancer data. 

 

Figure 7 displays the fitted pdfs of the MOEBXII, KwLL, BBXII and BW distributions 

and QQ-plots for relief times data. Figure 8 gives the plots of the estimated cdfs and 

survival functions for the fitted models. 

Overall, the values of the goodness-of-fit statistics in Tables 4 and 6 indicate that the 

MOEBXII model has the lowest values of these statistics among all fitted competitive 

models. Moreover, the plots in Figures 5, 6, 7 and 8 reveal that this model gives a close 

fit to both data sets. So, the MOEBXII distribution could be chosen as the best model to 

fit both data sets. 
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Figure 6: The estimated cdf of the MOEBXII model and other estimated cdfs (left panel) 

and estimated survival function of the MOEBXII model and other estimated survival 

functions (right panel) for cancer data. 

  

Figure 7: The estimated MOEBXII pdf and other estimated pdfs (left panel) and the QQ-

plots of the MOEBXII, KwLL, BBXII and BW models (right panel) for relief times data.  

  

 

Figure 8: The estimated cdf of the MOEBXII model and other estimated cdfs (left panel) 

and estimated survival function of the MOEBXII model and other estimated survival 

functions (right panel) for relief times data. 
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7.   Conclusions 

In this paper, we propose a new four-parameter model called the Marshall-Olkin 

exponentiated Burr XII (MOEBXII) distribution, which extends the exponentiated Burr 

XII (EBXII) distribution. The MOEBXII density function can be expressed as a linear 

combination of BXII densities. We derive explicit expressions for the ordinary and 

incomplete moments, quantile and generating functions, residual and reversed residual 

life functions. We also obtain the density function of the order statistics and their 

moments. We discuss maximum likelihood and least squares estimation. The proposed 

distribution provides better fits than some other nested and non-nested models using two 

real data sets. We hope that the proposed model will attract wider applications in areas 

such as survival and lifetime data, meteorology, hydrology, reliability, engineering and 

others 
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