
Pak.j.stat.oper.res.  Vol.XIV  No.2 2018  pp387-402 

Static Mean-Variance Portfolio Optimization  

under General Sources of Uncertainty 

Reza Keykhaei 
Department of Mathematics  

University of Khansar, Khansar, Iran 

keykhaei@khansar-cmc.ac.ir 
 

Bardia Panahbehagh 
Department of Mathematical Sciences and Computer  
Kharazmi University, Tehran, Iran 

panahbehagh@khu.ac.ir 

Abstract 

The only source of uncertainty in the standard Markowitz’s static Mean-Variance portfolio selection model 

is the future price of assets. This paper studies the static Mean-Variance portfolio selection model under 

general sources of uncertainty which generalizes the Markowitz’s model. It is shown that how the 

generalized problem can be reformulated as a quadratic program. Sufficient conditions are provided under 

which the standard and the generalized models produce the same set of optimal portfolios. Some sources of 

uncertainty and relevant examples are investigated. An illustrative example is provided to demonstrate the 

model. 

Keywords:   Static Mean-Variance portfolio selection, Optimal portfolio, Uncertain exit-

time, Uncertain quantity. 

1.   Introduction 

Harry Markowitz (1952,1959) laid the foundation of the modern portfolio theory in the 

1950’s by introducing his static Mean-Variance (M-V) portfolio selection model. This 

model suggests portfolio diversification to reduce the risk of the investment which is 

measured by the variance of the portfolio return, and tries to compute  efficient portfolios. 

A portfolio is efficient if, in compare to it, there is no portfolio with the same risk and a 

higher expected return, or there is no portfolio with the same expected return and a lower 

risk. Analytical expression of the efficient portfolios with and without no-shorting 

constraint was derived by Markowitz (1952,1959) and Merton (1972), respectively. 

 

The only source of uncertainty in a static M-V portfolio selection model is the asset 

returns. However, in the real-world, there are other sources of uncertainty, such as exit-

time, recovery rate and cash flows which are considered by other researchers. 

Considering the time of death as the uncertain exit-time, Yari (1965) investigated the 

optimal consumption problem in a market with one riskless asset only. The Yari’s model 

(1965) was generalized by Hakansson (1969,1971) to the case with multi-period setting 

with risky assets and an uncertain lifetime. Merton (1971) considered an investment-

consumption problem when the exit-time is the first jump time of a Poisson process. Liu 

and Loewenstein (2002) studied a portfolio selection model with uncertain exit-time and 

transaction cost. Martellini and Urosevic (2006) generalized the standard static M-V 

model of Markowitz to the case with uncertain exit-time. Keykhaei (2016) extended this 

model to the case where each asset has individual uncertain exit-time. The multi-period 
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M-V portfolio optimization problem with uncertain exit-time is considered by Guo and 

Hu (2005). Zhang and Li (2012) studied a multi-period M-V portfolio selection model 

with uncertain exit-time where the asset returns are serially correlated. Wu and Li (2011) 

investigated a multi-period M-V model in regime switching markets when exit-time is 

uncertain. Wu et al. (2014) considered a multi-period M-V model with state-dependent 

exit probability and regime switching. Using mean-field formulation, Yi et al. (2014) 

studied a multi-period M-V model with an uncertain exit-time. Yi et al. (2008) 

considered an asset-liability management model when the investment horizon is 

uncertain. Blanchet-Scalliet et al. (2008) studied an optimal investment problem when the 

uncertain time-horizon depends on the asset returns. Lv et al. (2016) studied a M-V 

portfolio optimization problem where market parameters and exit-time are random and 

market is incomplete. 

 

Some researchers have considered the notions of bankruptcy and recovery rate in their 

models. For instance, Cheung and Yang (2007) proposed a multi-period investment-

consumption portfolio selection model in a Markovian regime switching market with a 

bankruptcy state. Also, Wu and Zeng (2013) studied a M-V portfolio selection model in a 

regime-switching market with a bankruptcy state. In these models, when bankruptcy 

occurs, the investor only receive a random fraction, that is the recovery rate, of his/her 

wealth. 

 

Moreover, some researchers have considered other uncertainties in their models. For 

example, Merton (1971) proposed an investment-consumption model with stochastic 

wage income. Wu and Li (2012) and Wu (2013) considered discrete-time and 

continuous-time M-V portfolio selection problems, respectively, with stochastic cash 

flow. Yao et al. (2013) considered a M-V asset-liability management model with an 

uncontrolled cash flow and an uncertain exit-time. Yao et al. (2014) investigated a M-V 

asset allocation model for defined contribution pension funds with mortality risk and 

stochastic income. Zhou et al. (2016) studied the pre-commitment and time-consistent 

investment strategies in the M-V framework with stochastic cash flows. Yao et al. (2016) 

proposed a M-V asset-liability management model with stochastic cash flows for wealth 

and liability. Also, see Tsai and Wu (2015). 

 

In this study we were motivated by the models proposed by Martellini and Urosevic’s 

(2006) and Keykhaei (2016). These model considers two types of uncertainty: asset 

returns and exit-time. This paper studies the static M-V portfolio selection model under 

general sources of uncertainty, which generalizes the Markowitz’s model (1952) and 

covers the models of Martellini and Urosevic (2006) and Keykhaei (2016). Inspired by 

Keykhaei and Jahandideh (2012), we investigate a third type of uncertainty which affects 

the quantity of each asset, and combine it with the other types. In fact, we assume that the 

quantity of each asset is uncertain during the investment period. It is shown how the 

generalized problem can be reformulated as a quadratic program. Also, some sufficient 

conditions are provided under which the standard and the generalized models produce the 

same set of optimal portfolios. 

 

The rest of this paper proceeds as follows. In Section 2, we review some definitions, 

basic notations, and the standard static M-V portfolio selection problem formulation. In 

Section 3, we describe portfolio optimization problem under general sources of 
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uncertainty and reformulate it into a standard quadratic program. The main results are 

given in this section. Two types of examples for the generalized model are given, 

distinctly, in Sections 4 and 5. In the last section, an illustrative example is provided.  

2.   Standard Model 

In this section we explain some basic notions (see, for example, Chapter 1 of Korn and 

Korn (2001)). We consider a market consisting of 𝑛 ≥ 2 risky assets. Consider an 

investor who joins the market at initial time 𝑡 = 0 with an initial wealth 𝑊(0) and 

investment time-horizon 𝑇. At the beginning of the investment period (𝑡 = 0), the 

investor invests his/her wealth as 𝑊(0) = ∑𝑛
𝑖=1 𝜑𝑖𝑆𝑖(0), where 𝑆𝑖(0) and 𝜑𝑖 are the 

value and the quantity of asset 𝑖, respectively. At the end of the investment period (𝑡 =
𝑇), the wealth is 𝑊(𝑇) = ∑𝑛

𝑖=1 𝜑𝑖𝑆𝑖(𝑇), where 𝑆𝑖(𝑇) is the value of asset 𝑖. Here, 𝜑𝑖’s 

remain fixed during the investment period. 

 

The return of each asset is defined by 𝑟𝑖 =
𝑆𝑖(𝑇)

𝑆𝑖(0)
 for 𝑖 = 1,2, … , 𝑛. Similarly, the return of 

the portfolio is defined by 𝑍 =
𝑊(𝑇)

𝑊(0)
. Then, the portfolio return can be expressed in terms 

of asset returns as follows  

𝑍 =
∑𝑛

𝑖=1 𝜑𝑖𝑆𝑖(𝑇)

𝑊(0)
= ∑

𝑛

𝑖=1

𝜑𝑖𝑆𝑖(0)

𝑊(0)

𝑆𝑖(𝑇)

𝑆𝑖(0)
= ∑

𝑛

𝑖=1

𝑥𝑖𝑟𝑖, 

in which  

𝑥𝑖 =
𝜑𝑖𝑆𝑖(0)

𝑊(0)
,    (𝑖 = 1,2, … , 𝑛) 

is the weight allocated to asset 𝑖 in the portfolio. Each portfolio is denoted by the weight 

vector 𝐗: = (𝑥1, … , 𝑥𝑛)′ ∈ 𝑅𝑛. We assume that the random vector of asset returns 𝐑 =
(𝑟1, … , 𝑟𝑛)′ has the known mean vector �̅� = (�̅�1, … , �̅�𝑛)′ and covariance matrix 𝐕 =
(𝜎𝑖𝑗)𝑛×𝑛. Also, 𝐕 is positive definite and �̅� ≠ 𝑘𝟏 for all 𝑘 ∈ ℝ, where 𝟏 = (1,1, … ,1)′ ∈

𝑅𝑛. Obviously, the mean and the variance of the portfolio return can be rewritten by 

𝔼(𝑍) = 𝐗′�̅� and 𝕍 𝑎𝑟 (𝑍) = 𝐗′𝐕𝐗, respectively. The static M-V portfolio selection 

problem for a desired return 𝜇∗ is formulated as follows:  

𝑃(𝜇∗): {
min

𝐗

1

2
𝐗′𝐕𝐗

s. t. 𝐗′�̅� = 𝜇∗,

𝐗′𝟏 = 1.

 

Define  

𝐴: = 𝟏′𝐕−1𝟏, 𝐵: = 𝟏′𝐕−1�̅�, 𝐶: = �̅�′𝐕−1�̅�. 
 

Theorem 2.1  Problem 𝑃(𝜇∗) has the following unique optimal solution  

𝐗 =
𝐶 − 𝜇∗𝐵

𝐴𝐶 − 𝐵2
𝐕−1𝟏 +

𝜇∗𝐴 − 𝐵

𝐴𝐶 − 𝐵2
𝐕−1�̅�. 

Proof. See Chapter 4 of Ingersoll (1987).  
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3.   Portfolio Selection with Uncertain Parameters 

In this section, we generalize the standard model to the case where the wealth of the 

investor is affected by some sources of uncertainty denoted by Θ = (Θ1, … , Θ𝑚)′ ∈ ℝ𝑚. 

Under the random parameter vector Θ, the return of the investment is 𝑍Θ =
𝑊(Θ)

𝑊(0)
, where 

𝑊(Θ) is the wealth of the investor at the end of the investment period. Actually, in the 

standard case we have Θ = (𝑆1, … , 𝑆𝑛), where 𝑆𝑖 denotes the price of asset 𝑖, for 𝑖 =
1, … , 𝑛. The generalized static M-V portfolio selection problem corresponding to the 

uncertain parameter vector Θ for a desired return 𝜇 is defined as follows:  

𝑃(𝜇, Θ): {

min
𝐗

𝕍 𝑎𝑟 (𝑍Θ)

s. t. 𝔼(𝑍Θ) = 𝜇,

𝐗′𝟏 = 1.

 

 

In the following, compared to the standard case, we exclude the 𝑆𝑖’s from Θ, as the trivial 

sources of uncertainty, and consider Θ to denote the other sources. In this case the return 

of asset 𝑖 is defined in terms of 𝑆𝑖 and Θ as follows:  

𝑟𝑖
Θ: = 𝑟𝑖

Θ(𝑆𝑖 , Θ)    (𝑖 = 1,2, … , 𝑛). 
 

The aim is to describe the return of the portfolio by a  linear combination  

 𝑍Θ = 𝐗′𝐑Θ,        (1) 

where 𝐑Θ = (𝑟1
Θ, … , 𝑟𝑛

Θ)′ is the random vector of returns with mean vector �̅�Θ =
(�̅�1

Θ, … , �̅�𝑛
Θ)′ and covariance matrix 𝐕Θ. Equation (1) yields that 𝔼(𝑍Θ) = 𝐗′�̅�Θ and 

𝕍 𝑎𝑟 (𝑍Θ) = 𝐗′𝐕Θ𝐗. Therefore, problem 𝑃(𝜇, Θ) can be reformulated as a standard 

quadratic program which is equivalent to the following problem:  

�̃�(𝜇, Θ): {
min

𝐗

1

2
𝐗′𝐕Θ𝐗

s. t. 𝐗′�̅�Θ = 𝜇,

𝐗′𝟏 = 1.

 

 

In the following we try to provide some conditions for which the generalized problem 

�̃�(𝜇, Θ) and the standard problem 𝑃(𝜇∗) produce the same set of optimal portfolios 

obtained from various desired expected returns. This means that the other sources of 

uncertainty does not affect on the set of optimal portfolios. 

 

Let 𝑔, ℎ: ℝ𝑚 → ℝ are real-valued functions such that  

𝔼(𝑟𝑖
Θ|Θ = 𝜃) = �̅�𝑖𝑔(𝜃),       (2) 

ℂ 𝑜𝑣 (𝑟𝑖
Θ, 𝑟𝑗

Θ|Θ = 𝜃) = 𝜎𝑖𝑗ℎ(𝜃).      (3) 

 

Then, under condition (2), the expected return of asset 𝑖 is  

𝔼(𝑟𝑖
Θ) = ∫

ℝ𝑚
𝔼(𝑟𝑖

Θ|Θ = 𝜃)𝑑𝐹(𝜃)

= ∫
ℝ𝑚

�̅�𝑖𝑔(𝜃)𝑑𝐹(𝜃)

= �̅�𝑖𝔼(𝑔(Θ)),

 

where 𝐹 denotes the distribute function of Θ. Moreover,  
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ℂ 𝑜𝑣 (𝔼(𝑟𝑖
Θ|Θ), 𝔼(𝑟𝑗

Θ|Θ)) = 𝔼(𝔼(𝑟𝑖
Θ|Θ)𝔼(𝑟𝑗

Θ|Θ)) − 𝔼(𝔼(𝑟𝑖
Θ|Θ))𝔼(𝔼(𝑟𝑗

Θ|Θ))

= ∫
ℝ𝑚

𝔼(𝑟𝑖
Θ|Θ = 𝜃)𝔼(𝑟𝑗

Θ|Θ = 𝜃)𝑑𝐹(𝜃) − �̅�𝑖�̅�𝑗𝔼2(𝑔(Θ))

= ∫
ℝ𝑚

�̅�𝑖�̅�𝑗𝑔2(𝜃)𝑑𝐹(𝜃) − �̅�𝑖�̅�𝑗𝔼2(𝑔(Θ))

= �̅�𝑖�̅�𝑗𝔼(𝑔2(Θ)) − �̅�𝑖�̅�𝑗𝔼2(𝑔(Θ))

= �̅�𝑖�̅�𝑗𝕍 𝑎𝑟 (𝑔(Θ)).

 

Using (3) we can obtain  

𝔼(ℂ 𝑜𝑣 (𝑟𝑖
Θ, 𝑟𝑗

Θ|Θ)) = ∫
ℝ𝑚

ℂ 𝑜𝑣 (𝑟𝑖
Θ, 𝑟𝑗

Θ|Θ = 𝜃)𝑑𝐹(𝜃)

= ∫
ℝ𝑚

𝜎𝑖𝑗ℎ(𝜃)𝑑𝐹(𝜃)

= 𝜎𝑖𝑗𝔼(ℎ(Θ)).

 

Applying the equation  

ℂ 𝑜𝑣 (𝑟𝑖
Θ, 𝑟𝑗

Θ) = 𝔼(ℂ 𝑜𝑣 (𝑟𝑖
Θ, 𝑟𝑗

Θ|Θ)) + ℂ 𝑜𝑣 (𝔼(𝑟𝑖
Θ|Θ), 𝔼(𝑟𝑗

Θ|Θ)), 

we can calculate the covariation between 𝑟𝑖
Θ and 𝑟𝑗

Θ as follows:  

ℂ 𝑜𝑣 (𝑟𝑖
Θ, 𝑟𝑗

Θ) = 𝜎𝑖𝑗𝔼(ℎ(Θ)) + �̅�𝑖�̅�𝑗𝕍 𝑎𝑟 (𝑔(Θ)). 

Then  

 𝐕Θ = 𝔼(ℎ(Θ))𝐕 + 𝕍 𝑎𝑟 (𝑔(Θ))𝐄,     (4) 

where 𝐄 = (𝑒𝑖𝑗)𝑛×𝑛 and 𝑒𝑖𝑗 = �̅�𝑖�̅�𝑗, for 𝑖, 𝑗 = 1, … , 𝑛. If 𝐗′�̅� = 𝜇∗ then we have  

𝜇: = 𝔼(𝑍Θ) = 𝐗′�̅�Θ = 𝔼(𝑔(Θ))𝐗′�̅� = 𝔼(𝑔(Θ))𝜇∗, 
𝜎2: = 𝕍 𝑎𝑟 (𝑍Θ) = 𝐗′𝐕Θ𝐗 = 𝔼(ℎ(Θ))𝐗′𝐕𝐗 + 𝕍 𝑎𝑟 (𝑔(Θ))𝐗′𝐄𝐗. 

Lemma 3.1 The matrix 𝑽𝛩 is positive definite if 𝔼(ℎ(𝛩)) > 0.   

Proof. Let 𝐗 ∈ ℝ𝑛 and 𝐗 ≠ 0. Since 𝕍 𝑎𝑟 (𝑔(Θ)) is non-negative and 𝐕 is positive 

definite, then  

𝐗′𝐕Θ𝐗 = 𝔼(ℎ(Θ))𝐗′𝐕𝐗 + 𝕍 𝑎𝑟 (𝑔(Θ))(𝐗′�̅�)2 > 0. 
 

The relation between problems 𝑃(𝜇∗) and �̃�(𝜇, Θ) are given in the next theorem.  

 

Theorem 3.2  If 𝔼(ℎ(𝛩)) > 0, then problems 𝑃(𝜇∗) and �̃�(𝜇, 𝛩) have the same unique 

optimal solution when 𝜇∗ =
𝜇

𝔼(𝑔(𝛩))
.  

 

Proof. Considering (4), the Lagrangian associated with problem �̃�(𝜇, Θ) is  

𝐿(𝐗, 𝜆1, 𝜆2): =
𝔼(ℎ(Θ))

2
𝐗′𝐕𝐗 +

𝕍 𝑎𝑟 (𝑔(Θ))

2
𝐗′𝐄𝐗 + 𝜆1(𝐗′�̅�Θ − 𝜇) + 𝜆2(𝐗′𝟏 − 1). 

 

At the optimal solution we have  

 𝔼(ℎ(Θ))𝐕𝐗 + 𝕍 𝑎𝑟 (𝑔(Θ))𝐄𝐗 + 𝜆1�̅�Θ + 𝜆2𝟏 = 𝟎,   (5) 

 𝐗′�̅�Θ − 𝜇 = 0,        (6) 

 𝐗′𝟏 − 1 = 0.        (7) 

 

If 𝜇∗ =
𝜇

𝔼(𝑔(Θ))
 then 𝐗′�̅�Θ = 𝜇 yields that 𝐗′�̅� = 𝜇∗. Then we can obtain 𝔼(𝑔(Θ))𝐄𝐗 =

𝜇�̅� and rewrite equation (5) as  
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𝔼(ℎ(Θ))𝐕𝐗 + 𝕍 𝑎𝑟 (𝑔(Θ))
𝜇

𝔼(𝑔(Θ))
�̅� + 𝜆1𝔼(𝑔(Θ))�̅� + 𝜆2𝟏 = 𝟎. 

 

Therefore the optimal portfolio is  

                        𝐗 = 𝛼𝐕−1𝟏 + 𝛽𝐕−1�̅�,     (8) 

where  

𝛼 = −
𝜆2

𝔼(ℎ(Θ))
, 𝛽 = −(

𝕍 𝑎𝑟 (𝑔(Θ))𝜇

𝔼(ℎ(Θ))𝔼(𝑔(Θ))
+

𝜆1𝔼(𝑔(Θ))

𝔼(ℎ(Θ))
). 

 

Replace 𝐗 obtained from (8) into (6) and (7) to obtain  

 1 = 𝟏′𝐗 = 𝛼𝟏′𝐕−1𝟏 + 𝛽𝟏′𝐕−1�̅� = 𝛼𝐴 + 𝛽𝐵,   (9) 

 𝜇∗ =
𝜇

𝔼(𝑔(Θ))
= �̅�′𝐗 = 𝛼�̅�′𝐕−1𝟏 + 𝛽�̅�′𝐕−1�̅� = 𝛼𝐵 + 𝛽𝐶.  (10) 

 

Considering equations (9)-(10) we can obtain  

                            𝛼 =
𝐶−𝜇∗𝐵

𝐴𝐶−𝐵2 ,    𝛽 =
𝜇∗𝐴−𝐵

𝐴𝐶−𝐵2.     (11) 

 

Now the result follows from equations (8) and (11) and theorem 2.1. Since 𝐕Θ is positive 

definite, the solution is unique.  

 

Theorem 3.2 guarantees that the sets of optimal portfolios corresponding to the standard 

model and the generalized model are the same, under conditions (2) and (3). In the next 

two sections, two examples of the generalized problem are presented. Also, in the 

following, we combine these two examples together.  

4.   Uncertain Exit-Time 

Martellini and Urosevic (2006) considered the static M-V portfolio selection model when 

the exit-time is uncertain. In fact, they considered the asset prices and the exit-time as the 

sources of uncertainty in their model. They showed that when asset returns follow a 

random walk and the exit-time is independent of the asset returns, the standard model and 

the generalized model produce the same set of optimal portfolios. Also, this result does 

not necessarily hold when the exit-time and asset returns are dependant. In this model, it 

is assumed that all assets have the same exit-time which is the market exit-time. In fact, 

by denoting 𝜏 as the exit-time, they set Θ = 𝜏 and 𝑍𝜏 = 𝐗′𝐑𝜏, where  

𝑟𝑖
𝜏: = 𝑟𝑖

𝜏(𝑆𝑖, 𝜏) =
𝑆𝑖(𝜏)

𝑆𝑖(0)
,    (𝑖 = 1, … , 𝑛) 

and 𝑆𝑖(𝜏) is the price of asset 𝑖 at the exit-time. Keykhaei (2016) considered a model 

where each asset has individual uncertain exit-time. In this model Θ = {𝜏1, … , 𝜏𝑛} and  

𝑟𝑖
Θ: = 𝑟𝑖

Θ(𝑆𝑖 , Θ) =
𝑆𝑖(𝜏𝑖)

𝑆𝑖(0)
,    (𝑖 = 1, … , 𝑛) 

where 𝜏𝑖 and 𝑆𝑖(𝜏𝑖) are the exit-time and the price of asset 𝑖, respectively, at its exit-time. 

In fact, the model of Martellini and Urosevic (2006) is an extension of the Keykhaei’s 

(2016) model when  
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𝜏1 = 𝜏2 = ⋯ = 𝜏𝑛 = 𝜏. 
 

Let 𝜏𝑖 = 𝜏 for 𝑖 = 1, … , 𝑛. Without loss of generality we assume that 𝑇 = 1. When the 

exit-time is independent of asset returns and the asset returns follow a random walk we 

have  

𝔼(𝑟𝑖
𝜏|𝜏 = 𝑡) = 𝔼(𝑟𝑖(𝑡)) = �̅�𝑖𝑡, 

ℂ 𝑜𝑣 (𝑟𝑖
𝜏 , 𝑟𝑗

𝜏|𝜏 = 𝑡) = ℂ 𝑜𝑣 (𝑟𝑖(𝑡), 𝑟𝑗(𝑡)) = 𝜎𝑖𝑗𝑡. 

 

Using theorem 3.2 and considering the functions 𝑔, ℎ: ℝ𝑚 → ℝ where 𝑔(𝑥1, … , 𝑥𝑚) =
ℎ(𝑥1, … , 𝑥𝑚) = 𝑥1 in (2)) and (3)), we have the following theorem.  

 

Theorem 4.1 (Proposition 4 of Martellini and Urosevic (2006) and Theorem 4.1 of 

Keykhaei (2016)) Assume that the asset returns follow a random walk. If 𝜏 is independent 

of asset returns, then problems 𝑃(𝜇∗) and �̃�(𝜇, 𝜏) have the same unique optimal solution 

when 𝜇∗: =
𝜇

𝔼(𝜏)
.  

 

Martellini and Urosevic (2006) demonstrated that when the uncertain exit-time depends 

on the asset returns, efficient portfolios in problem 𝑃(𝜇∗) might be inefficient in problem 

�̃�(𝜇, 𝜏) and vice versa.  

5.   Uncertain Quantities 

Bankruptcy is not a rare occurrence and many companies are going bankrupt every year 

(for example, see Wu and Zeng (2013)). Cheung and Yang (2007) and Wu and Zeng 

(2013) considered regime-switching markets with a bankruptcy state and applied the 

notion of recovery rate in their portfolio selection models. when bankruptcy occurs, the 

investor only get a random fraction 𝛿 ∈ [0,1] (the recovery rate) of his/her wealth. So, if 

investors neglect the possibility of bankruptcy, and consequently neglect the recovery 

rate, they can not get an accurate estimation of their expected wealth. 

 

In the standard portfolio selection problems, it is assumed that the portfolios are self-

financing, i.e., capital additions and withdrawals are forbidden during the investment 

period. Wu and Li (2012) investigated a multi-period non-self-financing M-V portfolio 

selection model with regime-switching and a stochastic cash flow. We can justify 

stochastic cash flow by capital additions or withdrawals. For instance, the insurers might 

face premium income and claim payout in each period; or, the investors decide to make 

an additional investment on some assets to earn a better income or decide to withdraw 

some of their wealth to stop their losses (see Wu and Li (2012)). 

 

In the following, we investigate a general static model which covers possibility of 

bankruptcy, asset additions and withdrawals. 

5.1  Weight Coefficients 

In this section, unlike Section 2, we assume that asset quantities are non-constant and 

change randomly during the investment period. With this assumption, for some 𝑖 we 
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might have 𝜑𝑖(0) ≠ 𝜑𝑖(𝑇), where 𝜑𝑖(0) and 𝜑𝑖(𝑇) are the quantities of asset 𝑖 at the 

beginning and at the end of the investment period, respectively. Thus 𝜑𝑖(𝑇) is uncertain. 

Then, the values of portfolio, at the beginning and at the end of the investment period, are 

𝑊(0) = ∑𝑛
𝑖=1 𝜑𝑖(0)𝑆𝑖(0) and 𝑊(𝑇) = ∑𝑛

𝑖=1 𝜑𝑖(𝑇)𝑆𝑖(𝑇), respectively. 

 

Changes in asset quantities can be interpreted as follows, 

•  Consider an investment opportunity in commodities. In this case, some activities 

such as holding and transporting affect asset quantities which is caused by natural 

or accidental events such as decay, fire or earthquake. 

•  Consider an investment opportunity which is associated with a Birth and Death 

process. 

•  Consider an investment opportunity with asset additions and withdrawals 

possibilities. 

 

Under these conditions, we try to reformulate problem 𝑃(𝜇, Θ) into a quadratic form like 

problem �̃�(𝜇, Θ). Following Keykhaei (2016), we give the following two definitions. 

Firstly, we define the notion of weight coefficient.  

 

Definition 5.1  The  weight coefficient of asset 𝑖 is  

Λ𝑖 : =
𝜑𝑖(𝑇)

𝜑𝑖(0)
,    (𝑖 = 1, … , 𝑛). 

 

In fact, the vectors of quantities, at the beginning and at the end of the investment period, 

are (𝜑1(0), … , 𝜑𝑛(0))′ and (Λ1𝜑1(0), … , Λ𝑛𝜑𝑛(0))′, respectively. Using the notion of 

weight coefficient, we can formulate some portfolio selection problems in terms of 

uncertain quantities, see examples 5.3-5.6. 

 

Note that, in discrete multi-period portfolio selection models, it is common that the 

quantity of each asset is not the same at the beginning and at the end of the investment 

period. This is the result of rebalancing the portfolio during the period. Actually, the 

quantities to be bought at time zero are deterministic, whereas the quantities to be held at 

future trading dates, and therefore at the end of the investment period, are random from 

the time-zero perspective. In this case, the investor changes the quantity of each asset, 

whereas in our model, an exogenous factor can also change the quantities, and this is the 

main difference between these two models. Actually, in a multi-period model, the 

investor solves a new optimization problem at the beginning of each period to obtain new 

optimal quantities. In fact, the investor changes the quantities according to the optimal 

strategy. However, in our model, the investor solves an optimization problem only once 

at the beginning, and there are no other optimization problems to solve in the future time 

periods. In other words, changes in asset quantities are out of investor’s hands. We can 

develop this model to multi-period settings. Consider a multi-period portfolio 

optimization problem with the exit-time 𝑇. Let 𝜑𝑖(𝑗) be the quantity of asset 𝑖 held at the 

beginning of period 𝑗 (i.e., the time interval [𝑗, 𝑗 + 1)) after rebalancing, and 𝑆𝑖(𝑗) be the 

value of the asset 𝑖 at time 𝑗, for 𝑖 = 1, … , 𝑛 and 𝑗 = 0,1, … , 𝑇 − 1. Then, at the end of 

period 𝑗 and before rebalancing, the quantity of asset 𝑖 is Λ𝑖 (𝑗)𝜑𝑖(𝑗), where Λ𝑖(𝑗) is the 

weight coefficient of asset 𝑖 during the period 𝑗. In this settings, the wealth at time 𝑗 ≥ 1 



Static Mean-Variance Portfolio Optimization under General Sources of Uncertainty 

Pak.j.stat.oper.res.  Vol.XIV  No.2 2018  pp387-402 395 

before rebalancing is 𝑊(𝑗) = ∑𝑛
𝑖=1 Λ𝑖(𝑗 − 1)𝜑𝑖(𝑗 − 1)𝑆𝑖(𝑗) and the wealth at time 𝑗 

after it is 𝑊(𝑗) = ∑𝑛
𝑖=1 𝜑𝑖(𝑗)𝑆𝑖(𝑗). 

 

In the following we go back to static model. Applying the notion of weight coefficients 

for Θ = (Λ1, … , Λ𝑛), we have  

𝑍Θ =
∑𝑛

𝑖=1 𝜑𝑖(𝑇)𝑆𝑖(𝑇)

𝑊(0)

= ∑

𝑛

𝑖=1

𝜑𝑖(0)𝑆𝑖(0)

𝑊(0)

𝜑𝑖(𝑇)

𝜑𝑖(0)

𝑆𝑖(𝑇)

𝑆𝑖(0)

= ∑

𝑛

𝑖=1

𝑥𝑖Λ𝑖𝑟𝑖 ,

 

where 𝑥𝑖 = 𝜑𝑖(0)𝑆𝑖(0)/𝑊(0) is the initial weight allocated to asset 𝑖.  
 

Definition 5.2 For each 𝑖 = 1, … , 𝑛, we define 𝑟𝑖
𝛩: = 𝛬𝑖𝑟𝑖 as the  total-return of asset 𝑖.  

 

Replacing 𝑟𝑖
Θ in 𝑍Θ we have  

 𝑍Θ = 𝐗′𝐑Θ, 
as we desire. 

Example 5.3 (Bankruptcy) Following Cheung and Yang (2007) and Wu and Zeng (2013), 

assume that there are only one risk-free asset and one risky asset in the market. Let 𝑟1 

and 𝑟2 denote the return of risk-free asset and the return of risky asset, respectively. As it 

is mentioned in Cheung and Yang (2007) and Wu and Zeng (2013), after occurrence of 

bankruptcy, the dynamic of wealth, corresponding to the time interval [𝑛, 𝑛 + 1], can be 

represented by  

𝑊(𝑛 + 1) = 𝛿(𝑊(𝑛)𝑟1 + 𝜑2(𝑛)𝑆2(𝑛)(𝑟2 − 𝑟1)), 

where 𝛿 is the recovery rate. Then we have  

𝑍Θ = 𝑥1Λ1𝑟1 + 𝑥2Λ2𝑟2, 

where Λ1 = Λ2 = 𝛿. In fact, each weight coefficient can be interpreted as the recovery 

rate.  

 

Example 5.4 (An asset with a birth-death process) Consider an investment opportunity in 

an asset in which the size of its population follows a discrete time birth-death process. If 

𝜑(𝑡) denotes the population size of this asset in the portfolio at time 𝑡, then 𝜑(𝑡 + 1) is a 

random variable for which 𝜑(𝑡 + 1) = 𝜑(𝑡) + 𝑖, where 𝑖 = −1,0,1. So 𝜑(𝑇) is a 

random variable with the sample space 𝑆 = {(𝜑(0) − 𝑇)+, (𝜑(0) − 𝑇)+ + 1, … , 𝜑(0) +
𝑇}, where (. )+: = 𝑚𝑎𝑥(0, . ).  

 

Example 5.5 (Portfolio optimization with specific stop-loss level for assets) Consider an 

investor who determines a stop-loss level for the price of an asset, for example the first 

one, in the portfolio. If the price at the (deterministic or stochastic) time interval [𝜏1, 𝜏2] 
(𝜏1 ≤ 𝜏2 ≤ 𝑇) falls below this level, he sells the asset at time 𝜏: = 𝜏2 to avoid more losses 

and invests the income between other assets. Let 𝐴 denotes the mentioned event. Then, for 

each 𝑖 ≥ 2, the investor invests the amount 𝛼𝑖𝜑1𝑆1(𝜏) in asset 𝑖 where each portion 𝛼𝑖 ≥
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0 is predetermined and ∑𝑛
𝑖=2 𝛼𝑖 = 1. So, his wealth at time 𝑡 = 𝜏 (after the reinvestment) 

and at the exit time 𝑡 = 𝑇 are equal to  

𝑋(𝜏) = 𝜑1𝟏𝐴𝑆1(𝜏) + ∑

𝑛

𝑖=2

[𝜑𝑖 + 𝛼𝑖𝜑1𝟏𝐴𝑐 𝑆1(𝜏)/𝑆𝑖(𝜏)]𝑆𝑖(𝜏) 

and  

𝑊(𝑇) = 𝜑1𝟏𝐴𝑆1(𝑇) + ∑

𝑛

𝑖=2

[𝜑𝑖 + 𝛼𝑖𝜑1𝟏𝐴𝑐 𝑆1(𝜏)/𝑆𝑖(𝜏)]𝑆𝑖(𝑇)

= 𝜑1[𝟏𝐴 + 𝟏𝐴𝑐 ∑

𝑛

𝑖=2

𝛼𝑖

𝑆1(𝜏)𝑆𝑖(𝑇)

𝑆1(𝑇)𝑆𝑖(𝜏)
]𝑆1(𝑇) + ∑

𝑛

𝑖=2

𝜑𝑖𝑆𝑖(𝑇),

 

respectively, where 𝟏𝐴 denotes the indicator function of 𝐴. Then  

𝑍Θ = ∑

𝑛

𝑖=1

𝑥𝑖𝑟𝑖
Θ = ∑

𝑛

𝑖=1

𝑥𝑖Λ𝑖𝑟𝑖, 

where  

Λ1 = [𝟏𝐴 + 𝟏𝐴𝑐 ∑

𝑛

𝑖=2

𝛼𝑖

𝑆1(𝜏)𝑆𝑖(𝑇)

𝑆1(𝑇)𝑆𝑖(𝜏)
],    𝜑1(𝑇) = Λ1𝜑1, 

and Λ𝑖 = 1 for 𝑖 = 2, … , 𝑛.  

 

Example 5.6 (Portfolios of options) Let 𝐶𝑖(0) denotes the initial price of a European call 

option on a stock with the expiration price 𝑆𝑖(𝑇) and the strike price 𝐾𝑖, for 𝑖 = 1, … , 𝑛. 

Now the value of each option at the time of expiration is  

𝐶𝑖(𝑇) = max(0, 𝑆𝑖(𝑇) − 𝐾𝑖). 
 

A portfolio containing these options has the initial value 𝑊(0) = ∑𝑛
𝑖=1 𝜑𝑖𝐶𝑖(0) and the 

final value 𝑊(𝑇) = ∑𝑛
𝑖=1 𝜑𝑖Λ𝑖 (𝑆𝑖(𝑇) − 𝐾𝑖), where  

Λ𝑖 = {
1,     𝑖𝑓 𝑆𝑖(𝑇) ≥ 𝐾𝑖,

0,     𝑖𝑓 𝑆𝑖(𝑇) < 𝐾𝑖.
 

Now the portfolio return is 𝑍Θ = ∑𝑛
𝑖=1 𝑥𝑖Λ𝑖𝑟𝑖, where 𝑟𝑖 = (𝑆𝑖(𝑇) − 𝐾𝑖)/𝐶𝑖(0).  

 

Let all assets have the same weight coefficient, that is Λ𝑖 = Λ for 𝑖 = 1, … 𝑛, and 

independent of the asset prices. Then, we can see that  

          
𝔼(𝑟𝑖

Θ|Θ = (𝜆, … , 𝜆)) = 𝔼(𝜆𝑟𝑖|Θ = (𝜆, … , 𝜆))

= 𝜆�̅�𝑖

  (12) 

and  

𝔼(𝑟𝑖
Θ𝑟𝑗

Θ|Θ = (𝜆, … , 𝜆)) = 𝔼(𝜆2𝑟𝑖𝑟𝑗|Θ = (𝜆, … , 𝜆))

= 𝜆2𝔼(𝑟𝑖𝑟𝑗).
 

Therfore  

                ℂ 𝑜𝑣 (𝑟𝑖
Θ, 𝑟𝑗

Θ|Θ = (𝜆, … , 𝜆)) = 𝜆2𝜎𝑖𝑗 .   (13) 

  

Theorem 5.7  If all assets have the same weight coefficient 𝛬 and independent of asset 

returns, then problems 𝑃(𝜇∗) and �̃�(𝜇, 𝜏) have the same unique optimal solution when 

𝜇∗: =
𝜇

𝔼(𝛬)
.  
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Proof. Consider the functions 𝑔, ℎ: ℝ𝑛 → ℝ where 𝑔(𝑥1, … , 𝑥𝑛) = 𝑥1 and ℎ(𝑥1, … , 𝑥𝑛) =
𝑥1

2 in (2) and (3). Now the result follows from theorem 3.2 and equations (14) and (15).  

 

In Section 6, we will show that, by means of an example, the assertion of Theorem 5.7 is 

not true in general without the assumption that the weight coefficients and asset returns 

are independent. In fact efficient portfolios in the standard case (problem 𝑃(𝜇∗)) might be 

inefficient in the generalized case (problem �̃�(𝜇, 𝜏)) and vice versa. 

5.2  Uncertain Quantities and Uncertain Exit-Time 

In this section we combine two sources of uncertainty, exit-time and weight coefficient, 

together. In fact we consider a static portfolio selection model with uncertain weights and 

an uncertain exit-time. Here, we follow the same manner as presented in Section 5.1.  

 

Definition 5.8  The  weight coefficient of asset 𝑖 is  

Λ𝑖
𝜏: =

𝜑𝑖(𝜏)

𝜑𝑖(0)
,    (𝑖 = 1, … , 𝑛). 

 

Definition 5.8 indicates that each weight coefficient depends on the exit-time. Now the 

portfolio return is  

𝑍Θ =
∑𝑛

𝑖=1 𝜑𝑖(𝜏)𝑆𝑖(𝜏)

𝑊(0)

= ∑

𝑛

𝑖=1

𝜑𝑖(0)𝑆𝑖(0)

𝑊(0)

𝜑𝑖(𝜏)

𝜑𝑖(0)

𝑆𝑖(𝜏)

𝑆𝑖(0)

= ∑

𝑛

𝑖=1

𝑥𝑖Λ𝑖
𝜏𝑟𝑖

𝜏 ,

 

where Θ: = ((Λ1
𝜏 , … , Λ𝑛

𝜏 ), 𝜏) = (Λ1
𝜏 , … , Λ𝑛

𝜏 , 𝜏).  

 

Definition 5.9 The  total-return of asset 𝑖 is 𝑟𝑖
𝛩: = 𝛬𝑖

𝜏𝑟𝑖
𝜏, for 𝑖 = 1, … , 𝑛.  

 

Replacing 𝑟𝑖
Θ in 𝑍Θ we have  

𝑍Θ = 𝐗′𝐑Θ, 
as we wish. 

 

Consider the random walk case. If all assets have the same weight coefficient Λ and the 

same exit-time 𝜏, when both are independent of asset returns, then  

 𝔼(𝑟𝑖
Θ|Θ = ((𝜆, … , 𝜆), 𝑡)) = 𝜆𝔼(𝑟𝑖(𝑡)) = 𝜆𝑡�̅�𝑖   (14) 

and  

𝔼(𝑟𝑖
Θ𝑟𝑗

Θ|Θ = ((𝜆, … , 𝜆), 𝑡)) = 𝜆2𝔼(𝑟𝑖(𝑡)𝑟𝑗(𝑡))

= 𝜆2(ℂ 𝑜𝑣 (𝑟𝑖(𝑡), 𝑟𝑗(𝑡)) + 𝔼(𝑟𝑖(𝑡))𝔼(𝑟𝑗(𝑡)))

= 𝜆2(𝑡𝜎𝑖𝑗 + 𝑡2�̅�𝑖�̅�𝑗).
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Therefore  

 ℂ 𝑜𝑣 (𝑟𝑖
Θ, 𝑟𝑗

Θ|Θ = ((𝜆, … , 𝜆), 𝑡)) = 𝜆2𝑡𝜎𝑖𝑗 .    (15) 

 

Theorem 5.10 Suppose that asset returns follow a random walk and all assets have the 

same weight coefficient 𝛬 and exit-time 𝜏. If 𝛬 and 𝜏 are independent of asset returns, 

then problems 𝑃(𝜇∗) and �̃�(𝜇, 𝜏) have the same unique optimal solution when 𝜇∗: =
𝜇

𝔼(𝛬𝜏)
. This holds for 𝜇∗: =

𝜇

𝔼(𝛬)𝔼(𝜏)
 if 𝛬 and 𝜏 are independent.  

 

Proof. Consider the functions 𝑔, ℎ: ℝ𝑛+1 → ℝ where 𝑔(𝑥1, … , 𝑥𝑛+1) = 𝑥1𝑥𝑛+1 and 

ℎ(𝑥1, … , 𝑥𝑛+1) = 𝑥1
2𝑥𝑛+1 in (2) and (3). Now the result follows from theorem 3.2 and 

equations (14) and (15). The last part of the theorem is obvious.  

6.   An Illustrative Example 

In this section we refer back to example 5.5 and investigate a portfolio selection problem 

with a specific stop-loss criterion for an asset. We consider a four week (T=20) portfolio 

optimization problem with three stocks: NEM, KO and IBM from S&P 500. Let 𝑆1, 𝑆2 

and 𝑆3 denote the price of the stocks NEM, KO and IBM, respectively. We chose the 

historical stock prices from 1/2/2013 to 1/2/2015 to estimate the required parameters. 

Considering the historical data, we can see that NEM does not have a good performance 

during this period (see Figure 1). Consider an investor who worried about the price of this 

stock and specifies a stop-loss criterion for it. He would withdraw the investment in NEM 

at the end of the second week (𝜏 = 10) if 𝑆1 falls below the level 𝑘 throughout the first 

two weeks of the investment period, and invest the income in KO for the remainder of the 

period (two weeks). Let 𝐴 denotes the mentioned event. Then  

𝑊(𝑇) = 𝜑1[𝟏𝐴 + 𝟏𝐴𝑐
𝑆1(𝜏)𝑆2(𝑇)

𝑆1(𝑇)𝑆2(𝜏)
]𝑆1(𝑇) + ∑

3

𝑖=2

𝜑𝑖𝑆𝑖(𝑇). 

Therefore  

𝑍Θ = ∑

3

𝑖=1

𝑥𝑖Λ𝑖𝑟𝑖, 

where  

Λ1 = [𝟏𝐴 + 𝟏𝐴𝑐
𝑆1(𝜏)𝑆2(𝑇)

𝑆1(𝑇)𝑆2(𝜏)
] 

and Λ𝑖 = 1 for 𝑖 = 2,3. It is assumed that borrowing is not allowed, i.e., 𝐗 ≥ 0. Figure 2 

shows the efficient frontiers for some levels of 𝑘. Note that the efficient frontier of the 

standard model is corresponding to 𝑘 = 0 which is displayed by the blue curve (𝑘 ≤ 19). 

 

This example illustrates a portfolio selection problem in which the uncertain quantities 

depend on the asset returns. The estimated mean vectors and covariance matrices of total-

returns are presented in Table 1 for 𝑘 = 0,25,32. We can see that in the standard case, 
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corresponding to 𝑘 = 0, the portfolio 𝐗0 = (0.07641,0.69596,0.22763)′ is the optimal 

portfolio corresponding to the pair (0.03241,1) in the Mean-Standard Deviation plane. 

For 𝑘 = 25, 𝐗0 corresponds to the pair (0.03199,1.00005). In this case, the optimal 

portfolio for 𝜇 = 1.00005 is 𝐗25 = (0.08441,0.7098,0.20578)′ which is corresponding 

to the pair (0.03197,1.00005). So 𝐗0 is not optimal in the generalized model when 𝑘 =

25. On the other hand, the portfolio 𝐗32 = (0.0754,0.6634,0.26121)′ associated with 

the pair (0.0326,1) is optimal when 𝑘 = 32. But 𝐗32 is not optimal in the standard case. 

Actually, 𝐗32 corresponds to the pair (0.03234,0.99959), whereas for 𝜇 = 0.99959 the 

optimal portfolio �̃�0 = (0.08595,0.68212,0.23185)′ has a lower risk, that is 0.03231. 

This implies that efficient portfolios in the standard case might be inefficient in the 

generalized case and vice versa. Martellini and Urosevic (2006) demonstrated this result, 

by means of an example, when the uncertain exit-time depends on the asset returns. 
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Figure 2. Efficient frontiers. 
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