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Abstract 

Managing the inventories is very important task for companies in the manufacturing industry. In this paper, 

we first present a mathematical model to determine an optimal production time for a single-stage 

production inventory problem with rework process. Next, we consider the production inventory problem in 

fuzzy environment by applying two types of fuzzy numbers, which are trapezoidal and triangular. Fuzzy 

total inventory cost functions are derived for both production inventory models with crisp production time 

period and fuzzy production time period, respectively, and defuzzified by using graded mean integration 

representation method. To illustrate the results of developed models, numerical examples are provided, and 

sensitivity analysis is carried out to discuss the effects of the fuzziness in the components over the 

production time and the total inventory cost. 

Keywords: Inventory; Single-stage; Production time; Lagrangean; Optimization; Fuzzy 

set theory. 

1. Introduction 

At the beginning of the 1990s, the Economic Order Quantity (EOQ) and the Economic 

Production Quantity (EPQ) models have been one of the most important subjects of 

production and operations management areas. Although there has been a significant effort 

by academicians and researchers to provide applicability of the inventory models, these 

models ignore many factors faced with real-world problems. For example, one of the 

basic assumptions of these models is that 100% of items produced or received are of 

perfect quality. However, in most of production processes, it is unavoidable that the items 

ordered or produced have defects. Recently, these models have been extended in many 

directions by relaxing the assumption. Salameh and Jaber (2000) extended the classical 

EOQ model by assuming that the ordered lot contains a random proportion of defective 

items and after the inspection of the whole lot, the identified defective items are sold in a 

single batch at a lower price. Chen (2003) considered the classical EOQ model under 

random demand. Chen used the cycle length 𝑇 as decision variable. Jamal et al. (2004) 

developed two production inventory models to determine the optimal production quantity 

in a single-stage production system where rework is done under two different cases to 

minimize the total inventory cost. In the first case, the defective items produced regular 

production process is reworked within the same cycle. In the second case, the defective 

items are accumulated until N cycles are completed, and then they are reworked. Later, 

Cárdenas-Barrón (2009) extended Jamal et al.’s (2004) model, where defective items are 

reworked within the same cycle, considering planned backorders. An extensive review of 

the models that deal with the classical inventory models can be found in Andriolo et al. 

(2014). 

 

In present conditions, companies need to apply different inventory models because of 

changing its management strategies, production types, financial requirements and other 
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factors. This may increase the degree of uncertainty that decision makers take into 

account when planning. However, there are many difficulties to know the exact value of 

input parameters including vagueness and imprecision for the development of a 

mathematical modeling related to the real-world problems. In the classical inventory 

models, in order to determine the optimal production and order quantities, both demand 

and cost parameters are assumed to be fix values. However, in the real-world problems, 

all of them probably will have little changes. In literature, most of inventory models 

assume that input parameters and decision variables are described as crisp values or 

having crisp statistical distributions to reflect these uncertainties which have a significant 

importance for decision makers. 

 

Uncertainty that has a quantifiable imprecision can arise from observation and 

measurement. The probability theory could address this kind of imprecision. However, 

there are additional sources of uncertainty from incomplete information and data, lack of 

knowledge, vagueness and ambiguities mentioned in Booker and Ross (2011). Fuzzy set 

theory was introduced by Zadeh in 1965to represent this kind of imprecision. Since then, 

it has been successfully applied in industry, and there are many different inventory 

problems related to the fuzzy set theory in production management. Park (1987) fuzzified 

ordering cost and holding cost into trapezoidal fuzzy numbers in the classical EOQ 

model. Chen et al. (1996) fuzzified demand, holding cost, ordering cost and backordering 

cost into trapezoidal fuzzy numbers in the classical EOQ model with backorder. Gen et 

al. (1997) considered an inventory control model where the input parameters are vague 

and are given by triangular fuzzy numbers, and presented a new method which uses 

interval mean value concept. Roy ve Maiti (1997) proposed fuzzy EOQ models and used 

fuzzy non-linear programming and fuzzy geometric programming to obtain the optimal 

order quantity in the fuzzy sense. Tang et al. (2000) developed an approach to model 

multi-product production planning problems with the objective of minimizing the total 

inventory cost with fuzzy demands and fuzzy capacities. I et al. (2002) considered the 

single-period inventory problem in the presence of uncertainties, two of which are 

randomness incorporated through the probability theory, and fuzziness characterized by 

fuzzy numbers. Chang (2004) extended the work by Salameh and Jaber (2000) 

considering the fuzziness in demand and the proportion of defective items. Two fuzzy 

inventory models were proposed. While the first model incorporates the fuzziness of the 

proportion of defective items, both the proportion of defective items and demand are 

represented as triangular fuzzy numbers in the second model. Dutta et al. (2005) 

presented a single-period inventory problem in the fuzzy environment by introducing 

demand as a fuzzy random variable. Mandal and Roy (2006) developed a multi-item 

inventory model under limited display-space constraint in fuzzy environment, where 

demand is considered as a function of the displayed inventory level and the cost 

parameters are assumed to be triangular fuzzy numbers. De and Goswami (2006) 

developed an EOQ model with fuzzy inflation rate and fuzzy deterioration rate under 

permissible delay in payment. Chen and Chang (2006)proposed a multi-product, multi-

echelon, and multi-period supply chain model with fuzzy parameters, and developed a 

solution procedure that is able to calculate the fuzzy objective value of the fuzzy 

model.Das et al. (2007) proposed a single period production-inventory model with two 

warehouse, constant or stock dependent demand and imperfect production system under 

fuzzy budget constraint. Dutta et al. (2007) analyzed a single-period inventory model 

with a reordering strategy in a fuzzy environment, where demand is linguistic in nature 
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and characterized as a fuzzy number. Wang et al. (2007) investigated an EOQ model for 

defective items, where the proportion of defective items in each lot is characterized as a 

random fuzzy variable while the cost parameters are characterized as fuzzy variables. 

They solved the fuzzy EOQ model by designing a particle swarm optimization (PSO) 

algorithm based on the random fuzzy simulation. Xu and Liu (2008) provided a method 

of solving solution sets of fuzzy multi-objective inventory problems with fuzzy random 

variables. Maity and Maiti (2008) considered a production-inventory system for 

deteriorating items with warehouse capacity and investment constraints in fuzzy 

environment. Liu (2008) developed a solution method to derive the fuzzy total profit of 

the classical inventory models when demand and cost parameters are fuzzy numbers. 

Vijayan and Kumaran (2008)developed fuzzy inventory models with partial backorders 

and lost sales where cost parameters are assumed to be trapezoidal fuzzy numbers. Björk 

(2009)proposed a fuzzy EOQ model in which demand and lead time are represented as 

triangular fuzzy numbers. Roy et al. (2009) investigated a production inventory model for 

a single product in an imperfect manufacturing system with remanufacturing of defective 

items considering the fuzziness in the proportion of defective items. Most recently, 

Karmakar et al. (2017) developed an EPQ model for deteriorating items in which 

shortages are allowed and partially backordered, production rate is a function of demand 

and cycle time and all cost parameters are fuzzy. 

 

Besides, the fuzziness of decision variable(s) in inventory models is another research 

stream in the literature. Lin and Yao (2000) considered the classical EPQ problem in the 

fuzzy sense. They fuzzified production quantity into trapezoidal fuzzy number, and 

obtained the optimal production quantity using the extension principle and centroid 

method. Later, Hsieh (2002) developed two production inventory models for crisp or 

fuzzy production quantity. The fuzzy total cost functions are defuzzified using graded 

mean integration representation (GMIR) method, and the optimal solutions of these 

models are obtained by using Extension of the Lagrangean method for solving inequality 

constrain problem. Chen and Chang (2008) extended the classical EPQ model to the 

fuzzy environment considering crisp production quantity and fuzzy production quantity. 

Vijayan and Kumaran (2009) extended the work by Chen(2003)to the case where the 

cycle length, holding cost, setup cost and purchasing cost are fuzzy numbers, and used 

graded mean integration method to obtain the total cost in the fuzzy sense and the optimal 

cycle length. Kazemi et al. (2010) considered the classical EOQ model with backorders 

in fuzzy environment in which the optimal order quantity and the maximum backorder 

level are characterized as fuzzy variables. Recently, Glock et al. (2012) applied the 

concept of learning in fuzziness to the classical EOQ model with fuzzy demand. The total 

cost function was defuzzified by using graded mean integration representation, signed 

distance and centroid methods. Qin and Kar (2013) investigated the single-period 

inventory problem in the fuzziness of demand. Shekarian et al. (2014) extended the paper 

of Cárdenas-Barrón (2009) by fuzzifying input parameters into trapezoidal and triangular 

fuzzy numbers. Xu (2014) considered an integrated inventory problem under trade credit, 

where demand and the deterioration rate are characterized as fuzzy random variables with 

known probability distributions. The fuzzy random models based on three decision 

criteria which are expected value, chance-constrained and chance maximization were 

developed. Kazemi et al. (2015) extended the work by Salameh and Jaber (2000) to the 
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fuzzy-learning environments. In a subsequent paper, Kazemi et al. (2016) discussed the 

effect of human learning on a fuzzy EOQ model with backorders.  

 

To make the perfect decisions, the essential information may not be available or 

accessible to researchers or decision makers all the time. In inventory decisions, the 

policies could turn out to be imperfect by using the crisp values, and thus, upon the 

implementation of such imperfect policies, they may prove to be costly. Therefore, the 

input parameters’ precision is improved by using the fuzzy set theory, which lessens the 

uncertainty and reduces errors. 

 

In this paper, we revise the work by Jamal et al. (2004) and present a mathematical model 

to determine the optimal production time for a single-stage production system with 

rework process. We then consider the production inventory model in fuzzy environment. 

The fuzzy total inventory cost functions are derived for both inventory models with crisp 

and fuzzy production time, respectively, and the fuzzy total inventory cost functions are 

defuzzified in a similar manner to Hsieh (2002) and Vijayan and Kumaran (2009). In 

fuzzy production inventory model for crisp production time, the first derivative of fuzzy 

total production inventory cost is used to solve the optimal production time. Furthermore, 

the algorithm of Extension of the Lagrangean method is used to solve inequality 

constraints in fuzzy production inventory model for fuzzy production time. 

 

The basic concept of the fuzzy set theory is the association of every object in the fuzzy 

set with an indicator value, which denotes the degree of its membership. In the written 

works, there exist different kinds of membership functions, which are classified as either 

a linear group or a non-linear group. Some of the linear membership functions make the 

calculations complex according to the studies, and therefore, the need of developing the 

simple fuzzy membership functions becomes imperative; in contrast, the selection of a 

non-linear membership function is not appropriate because it may not yield the perfect 

solution; however, few of them do result in a perfect solution to optimize such models, 

but they are costly in terms of time and effort to develop the complicated heuristic 

algorithms. Such approach is not only uneconomical but also impractical. Hence, these 

kind of member functions are not suitable for the model proposed in this paper. The fuzzy 

production inventory models are proposed in this paper, and their fuzzy production times 

and parameters are the fuzzy numbers that are types of linear membership functions; 

those numbers are as follows: triangular fuzzy numbers and trapezoidal fuzzy numbers. 

 

The product of fuzzy numbers yields a fuzzy number with a very complex membership 

function if the extension principle is used as a fuzzy arithmetical operation. For instance, 

the product of one fuzzy number with a trapezoidal membership function with another 

fuzzy number with its trapezoidal membership function yields a fuzzy number with a 

membership function that has a shape like a parabolic drum with two sides. On the other 

hand, the product of one fuzzy number with a trapezoidal membership function with 

another fuzzy number with a membership function that has a shape like a parabolic drum 

with two sides yields a fuzzy number with a membership function that has a shape like a 

cube with two sides. When the original numbers get more complex, it becomes more 

complicated not only to operate on the fuzzy numbers but also to represent those numbers 

(Chen et al., 2006). 
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The Function Principle is proposed by Chen (1985) in order to handle the fuzzy 

arithmetical operations by using the trapezoidal fuzzy numbers. Instead of using the 

Extension Principle, Chen (1985) used the Function Principle in his paper. The first 

reason of using the Function Principle is that it is easier to use compared to the Extension 

Principle. Secondly, after the product of two trapezoidal fuzzy numbers, the Function 

Principle does not affect the shape of the trapezoidal fuzzy number. Thirdly, the 

multiplication of four trapezoidal fuzzy numbers or more can still be handled by using the 

Function Principle. As stated above, since the shape of triangular or trapezoidal fuzzy 

number is not affected by the Function Principle, it would be an appropriate method to 

use for the complicated model here to avoid the degenerate solutions. Moreover, there are 

various terms of multiplication operations of fuzzy numbers involved in the developed 

model proposed in this paper. For the aforementioned reasons, the Function Principle is 

preferred in order to avoid getting not only the very complicated mathematical 

expressions but also the degenerate solutions. Furthermore, by the virtue of the Function 

Principle, the fuzzy arithmetical operations are handled properly. Instead of using the 

Extension Principle, the Function Principle is used not only to make the computation of 

trapezoidal fuzzy numbers simpler but also to determine the fuzzy total cost of the 

production inventory of the developed model. 

 

To make the usage of the fuzzy set theory easy for the decision makers, the fuzzy 

outcomes should be transformed into crisp values. The extraction process of the crisp 

values from the fuzzy models is called defuzzification. The famous defuzzification 

methods or processes are as follows: signed distance method, centroid method, and the 

GMIR method. The efficient and productive defuzzification process is suggested to be 

selected so as to defuzzify the fuzzy inventory function. The GMIR method, which was 

developed by Chen and Hsieh (1998), is applied here in order to make the mathematical 

process simpler and to improve the application of the model. The fuzzy cost function is 

defuzzified by using the GMIR method. Using this method, the defuzzified value can be 

evaluated by GMIR directly by utilizing the fuzzy arithmetic operations as the 

membership function is not affected by them.  

 

The remainder of the paper is organized as follows. In Section 2, we present the 

assumptions and notations for the production inventory model, and derive the total 

production inventory cost function. In addition, we prove the convexity of the total cost 

per unit of time function, and obtain the optimal production time period which is unique. 

In Section 3, some basic concepts of fuzzy sets theory and the Lagrangean optimization 

method are presented. In Section 4, the fuzzy total cost functions are derived and the 

graded mean integration representation method is applied to defuzzify the functions. In 

Section 5, numerical examples are provided to discuss the effects of the fuzziness of the 

components over the optimal production time period and the total inventory cost. The last 

section concludes and summarizes the paper. 

2. Development of the production inventory model 

The EOQ and EPQ models are developed in order to facilitate the researchers and the 

decision makers to comprehend the working of the production inventory systems and the 

cost of those systems. Despite the simplistic nature of these models and their 
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functionality, they incorporate the limited conditions. They do not include the defective 

or imperfect products in a lot size. Few factors are uneconomical and can impact the 

decisions or production. Those factors may include the following: untrained or 

unqualified operators of the production systems, faulty machines, below-standard raw 

materials, and defective process that lead to producing imperfect or defective products. 

Different costs are curtailed by doing the rework process on the defective items where 

there is a need of a trade-off. Likewise, for the imperfect production process, Jamal et al. 

(2004) has developed an EPQ inventory model, in which the rework process of the 

defective items is done to renew and add them in the inventory for the demand of the 

buyers. 

 

We use the same notation and assumptions as in Jamal et al. (2004).Jamal et al. (2004) 

use the production quantity 𝑄 as decision variable. However, in this study, we use the 

production time 𝑡, i.e. production uptime, as decision variable. 

 
Notations: 

𝑃   The production rate in units per unit time 

𝑄 Production lot size per cycle (dependent variable) 

𝐷 The demand rate in units per unit time 

𝑡 The production time (decision variable) 

𝑡1 The time period needed to rework of defective items 

𝑡2 The time period when inventory depletes 

𝑇 Cycle length, 𝑇 = 𝑡 + 𝑡1 + 𝑡2 

𝛽 The proportion of defective items produced 

𝑆 The setup cost for each production 

𝑄1 The maximum level of on-hand inventory of perfect items in units, when the 

regular production process stops, 

𝑄2 The maximum level of on-hand inventory of perfect items in units, when the 

rework process ends, 

𝐶 The processing cost per unit ($/unit) 

𝐻 The holding cost per unit per unit time ($/unit/unit time) 

∗     The superscript representing optimal value  

 

Assumptions: 

• Demand is constant and continuous. 

• Production rate is constant and is greater than the demand rate, 𝑃 > 𝐷. 
• Production and rework are done at the same speed. 

• Each lot produced contains defective items with a proportion of𝛽.  

• 100% recovery is provided through the reworking. 

• Inspection cost is ignored. 

• Shortages are not allowed. To avoid shortages during the regular production 

process, the production rate must always greater than the demand rate. That is,  

 

𝑃(1 − 𝛽) > 𝐷. (2.1) 

 

Figure 1 depicts the production inventory model for defective items reworked within the 

same cycle. During the regular production process 𝑡, good items are produced with a unit 
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production cost𝐶. It is assumed that production process generates defective items with a 

proportion of𝛽which is constant. When the regular production process ends the rework 

process is accomplished and all defective items are made as-good-as-perfect through the 

reworking during the time period𝑡1. The consumption of on-hand inventory continues at 

the end of time period𝑡2. 
 

 
Figure1: The behavior of the inventory level for the single-stage production 

inventory model with rework process. 

 

Referring to the Figure 1, the following equations which are production uptime𝑡, the time 

period 𝑡1required to rework defective items produced during the production time 𝑡, 
production downtime 𝑡2 and the inventory levels of 𝑄1 and  𝑄2 can be derived. 

 

𝑡 =
𝑄

𝑃
. (2.2) 

  

𝑄 = 𝑡𝑃 (2.3) 

  

𝑡1 =
𝑄2 − 𝑄1
𝑃 − 𝐷

 (2.4) 

  

𝑡2 =
𝑄2
𝑃𝐷

= 𝑇 − 𝑡 − 𝑡1 (2.5) 

  

𝑄1 = (𝑃(1 − 𝛽) − 𝐷)𝑡, (2.6) 

  

𝑄2 = 𝑄1 + (𝑃 − 𝐷)𝑡1, (2.7) 

 

The time period 𝑡1needed to rework𝛽𝑄 units of items is computed as in Equation (2.8): 
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𝑡1 =
𝛽𝑄

𝑃
= 𝛽𝑡, (2.8) 

 

Thus, according to Equations (2.2) and (2.8), the inventory level 𝑄2 is obtained as 

follows: 

𝑄2 = (𝑃(1 − 𝛽) − 𝐷)𝑡 + (𝑃 − 𝐷)𝛽𝑡. (2.9) 

 

The total inventory cost per cycle includes the production setup cost, the production cost, 

the reworking cost and the holding cost. Let𝑇𝐶(𝑡)denote the total invetory cost per cycle. 

Then,  

𝑇𝐶(𝑡) = 𝑆 + 𝐶𝑃𝑡 + 𝐶𝛽𝑃𝑡 + 𝐻 (
𝑄1(𝑡)

2
+
(𝑄1 + 𝑄2)(𝑡1)

2
+
𝑄2(𝑡2)

2
) 

 

= 𝑆 + (1 + 𝛽)𝐶𝑃𝑡 +
𝐻𝑃𝑡2

2𝐷
((1 + 𝛽)(𝑃(1 − 𝛽) − 𝐷) + 𝛽2(𝑃 − 𝐷)) (2.10) 

 
The total cycle length is the summation of the production uptime, the reworking time and 

the production downtime: 

𝑇 = 𝑡 + 𝑡1 + 𝑡2 =
𝑄

𝐷
=
𝑡𝑃

𝐷
. (2.11) 

 

Then,using the renewal reward theorem, the total inventory cost per unit time is given as 

𝑇𝐶𝑈(𝑡) =
𝑇𝐶(𝑡)

𝑇
 

 

=
𝑆𝐷

𝑡𝑃
+ 𝐶𝐷(1 + 𝛽) +

𝐻𝑡

2
((1 + 𝛽)(𝑃(1 − 𝛽) − 𝐷) + 𝛽2(𝑃 − 𝐷)). (2.12) 

 

It can be shown that the total cost per unit time function 𝑇𝐶𝑈(𝑡) is convex with respect to 

𝑡. Hence, the optimal production time 𝑡𝑐
∗ can be found by taking the first derivative of the 

𝑇𝐶𝑈(𝑡) with respect to 𝑡 and equate the result to zero, i.e. 

 
𝜕𝑇𝐶𝑈(𝑡)

𝜕𝑡
= −

𝑆𝐷

𝑡2𝑃
+
𝐻

2
((1 + 𝛽)(𝑃(1 − 𝛽) − 𝐷) + 𝛽2(𝑃 − 𝐷)) = 0 (2.13) 

 

Solving the Equation (2.13) for 𝑡, the optimal production time is  

𝑡𝑐
∗ = √

2𝑆𝐷

𝐻𝑃((1 + 𝛽)(𝑃(1 − 𝛽) − 𝐷) + 𝛽2(𝑃 − 𝐷))
. (2.14) 

 
It is important to mention that the above model can be considered as an EPQ model given 

by Jamal et al. (2004)when𝑡is replaced by𝑄/𝑃. Further, assume that the proportion of 

defective items produced in regular production process is zero, i.e. 𝛽 = 0. Hence, 

Equation (2.14) reduces to the classical economic production quantity  

 

𝑄∗ = √
2𝑆𝐷

𝐻 (1 −
𝐷

𝑃
)
. (2.15) 
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In Section 4, the fuzzy equivalent of the model given above by Equation (2.12) will be 

discussed. The fuzzy set theory is introduced in the next section. 

3. Preliminaries concepts 

In this section we give the definition of fuzzy numbers and fuzzy arithmetical operations 

in order to make the fuzzy inventory models proposed in this paper.  

3.1. Definition A fuzzy set𝑎̃𝛼 on 𝑅 is called a  𝛼 −cut fuzzy point, where𝛼 ∈ [0,1], 
provided that the membership function of𝑎̃𝛼is 

𝜇𝑎̃𝛼(𝑥) = {
𝛼,         𝑥 = 𝑎,
0,         𝑥 ≠ 𝑎. (3.1) 

3.2. Definition A fuzzy set 𝐸̃ = (𝑎, 𝑏, 𝑐, 𝑑) on𝑅, where, 𝑎 < 𝑏 < 𝑐 < 𝑑is called a 

trapezoidal fuzzy number if its membership function is 

𝜇𝐸̃(𝑥) =

{
 
 

 
 𝑝(𝑥) =

𝑥 − 𝑎

𝑏 − 𝑎
   𝑎 ≤ 𝑥 ≤ 𝑏,

1                       𝑏 ≤ 𝑥 ≤ 𝑐,

𝑟(𝑥) =
𝑑 − 𝑥

𝑑 − 𝑐
   𝑐 ≤ 𝑥 ≤ 𝑑,

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (3.2) 

3.3. Definition A fuzzy interval[𝑎𝛼, 𝑏𝛼]on 𝑅 is called 𝛼 −level fuzzy interval if its 

membership function is 

𝜇[𝑎𝛼,𝑏𝛼](𝑥) = {
𝛼,         𝑎 ≤ 𝑥 ≤ 𝑏 
0, 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

 (3.3) 

 

The 𝛼 −cut of a fuzzy number 𝐸̃ is defined as 

𝐸(𝛼) = {𝑥|𝜇𝐸̃(𝑥) ≥ 𝛼} = [𝐸𝐿(𝛼), 𝐸𝑈(𝛼)] (3.4) 

 

Denote 𝐹 as the family of fuzzy numbers on𝑅. For each fuzzy set𝐸̃ ∈ 𝐹, the set 𝐸(𝛼) is a 

unique closed interval. The membership function of the fuzzy number 𝐸̃ is 

𝜇𝐸̃(𝑥) = ⋃ 𝛼⋀𝐶𝐸𝛼(𝑥)

𝛼∈[0,1]

= ⋃ 𝜇[𝐸𝐿(𝛼),𝐸𝑈(𝛼)](𝑥)

𝛼∈[0,1]

  

= 𝜇⋃ [𝐸𝐿(𝛼),𝐸𝑈(𝛼)]𝛼∈[0,1]
(𝑥) (3.5) 

 

and a fuzzy set 𝐸̃is described as  

𝐸̃ = ⋃ [𝐸𝐿(𝛼), 𝐸𝑈(𝛼)]

𝛼∈[0,1]

 (3.6) 

Where 𝐶𝐸(𝛼)(𝑥) = {
1,        𝑥 ∈ 𝐸𝛼
0,        𝑥 ∉ 𝐸𝛼

. 

 

Now, we define an algebraic operations related with closed interval of real numbers. Any 

point𝑎, 𝑏, 𝑐, 𝑑 and 𝑘on 𝑅 and𝑎 < 𝑏 and 𝑐 < 𝑑, the operations of addition, subtraction and 

scalar multiplication defined as 
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[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑏, 𝑐 + 𝑑], 
[𝑎, 𝑏] − [𝑐, 𝑑] = [𝑎 − 𝑑, 𝑏 − 𝑐], 

𝑘 ∗ [𝑎, 𝑏] = {
[𝑘𝑎, 𝑘𝑏], 𝑘 > 0,

[𝑘𝑏, 𝑘𝑎],        𝑘 < 0.
 

(3.7) 

 

Multiplication and division operations are also described as   

 
[𝑎, 𝑏] ∗ [𝑐, 𝑑] = [𝑚𝑖𝑛{𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑},𝑚𝑎𝑥{𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑}], 

 
[𝑎, 𝑏]

[𝑐, 𝑑]
= [𝑚𝑖𝑛 {

𝑎

𝑐
,
𝑎

𝑑
,
𝑏

𝑐
,
𝑏

𝑑
} ,𝑚𝑎𝑥 {

𝑎

𝑐
,
𝑎

𝑑
,
𝑏

𝑐
,
𝑏

𝑑
}]. 

(3.8) 

 

In particular, let𝑎 > 0, 𝑐 > 0and𝑐, 𝑑 ≠ 0,  then the following equations hold 
[𝑎, 𝑏] ∗ [𝑐, 𝑑] = [𝑎𝑐, 𝑏𝑑], 

 
[𝑎, 𝑏]

[𝑐, 𝑑]
= [

𝑎

𝑑
,
𝑏

𝑐
]. 

(3.9) 

3.4. The fuzzy arithmetical operations under function principle 

Chen (1985) has introduced the Function principle as the fuzzy arithmetical operations by 

using the trapezoidal fuzzy numbers. In this paper, Function Principle’s arithmetical 

operations will be used. Function Principle’s arithmetical operations are elaborated as 

follows: 

 

Assume that  𝐸̃ = (𝑒1, 𝑒2, 𝑒3, 𝑒4) and 𝐹̃ = (𝑓1, 𝑓2, 𝑓3, 𝑓4) are two trapezoidal fuzzy 

numbers. Then, we have 

 

• The addition of 𝐸̃ and 𝐹̃ is 

 

𝐸̃ ⊕ 𝐹̃ = (𝑒1 + 𝑓1, 𝑒2 + 𝑓2, 𝑒3 + 𝑓3, 𝑒4 + 𝑓4), 
where 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑓1, 𝑓2, 𝑓3 and 𝑓4 are any real numbers. 

 

• If  𝑒𝑖, 𝑓𝑖 > 0, for  𝑖 = 1,2,3,4, then the multiplication of 𝐸̃ and 𝐹̃ is 

𝐸̃ ⊗ 𝐹̃ = (𝑒1𝑓1, 𝑒2𝑓2, 𝑒3𝑓3, 𝑒4𝑓4). 
 

• Since ⊖ 𝐹̃ = (−𝑓4, −𝑓3, −𝑓2, −𝑓1), the subtraction of  𝐸̃ and 𝐹̃ is  

𝐸̃ ⊖ 𝐹̃ = 𝐸̃ ⊕ (⊖ 𝐹̃) = (𝑒1 − 𝑓4, 𝑒2 − 𝑓3, 𝑒3 − 𝑓2, 𝑒4 − 𝑓1). 

 

• 1⊘ 𝐹̃ = 𝐹̃−1 = (
1

𝑓4
,
1

𝑓3
,
1

𝑓2
,
1

𝑓1
), 

 where𝑒𝑖 > 0 for each  𝑖 = 1,2,3,4. 
 

 If 𝑒𝑖, 𝑓𝑖 > 0 for 𝑖 = 1,2,3,4, then we get  

𝐸̃ ⊘ 𝐹̃ = (
𝑒1
𝑓4
,
𝑒2
𝑓3
,
𝑒3
𝑓2
,
𝑒4
𝑓1
). 
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• Let  ℓ ∈ 𝑅, then  

ℓ⊙ 𝐸̃ = ℓ⊗ 𝐸̃ = {
(ℓ𝑒1, ℓ𝑒2, ℓ𝑒3, ℓ𝑒4)    ℓ ≥ 0,
(ℓ𝑒4, ℓ𝑒3, ℓ𝑒2, ℓ𝑒1)    ℓ < 0.

 

3.5. Graded Mean Integration Representation (GMIR) Method  

In order to defuzzify the fuzzy total cost function, as in Hsieh (2002) and Vijayan and 

Kumaran (2009), we will use the graded mean integration representation method 

introduced by Chen and Hsieh (1998).  

 

For the fuzzy number 𝐸̃ in Equation (3.2), let the functions𝑝−1and𝑟−1are the inverse 

functions of𝑝and𝑟(left and right function of𝐸̃), respectively. We also describe the graded 

mean𝛼 −level value of𝐸̃as 

𝛼((𝑝−1(𝛼) + 𝑟−1(𝛼))

2
 (3.10) 

 
For the trapezoidal fuzzy number𝐸̃ = (𝑎, 𝑏, 𝑐, 𝑑), the graded mean integration 

representation of𝐸̃can be obtained as 

𝐷𝐹(𝐸̃) =
∫

𝛼((𝑝−1(𝛼)+𝑟−1(𝛼))

2
𝑑𝛼

1

0

∫ 𝛼𝑑𝛼
1

0

= ∫ 𝛼((𝑝−1(𝛼) + 𝑟−1(𝛼)) 𝑑𝛼
1

0

  

=
𝑎 + 2𝑏 + 2𝑐 + 𝑑

6
, (3.11) 

where 𝑝−1(𝛼) = 𝑎 − (𝑎 − 𝑏)𝛼, 𝑟−1(𝛼) = 𝑑 + (𝑐 − 𝑑)𝛼 . 
 
 Now assume𝑏 = 𝑐 = 𝑒, then the graded mean integration representation of triangular 

fuzzy number 𝐸̃1 = (𝑎, 𝑒, 𝑑), 
 

𝐷𝐹(𝐸̃1) =
𝑎 + 4𝑒 + 𝑑

6
. (3.12) 

3.6. Lagrangean Optimization 

The Karush-Kuhn-Tucker (KKT) conditions are an extension of the Lagrangean method 

to the nonlinear programming problems with inequality constraints, and discussed in 

Taha (2011). For the minimization problem, 

 

𝑀𝑖𝑛 𝑦 = 𝑓(𝑥) 
Subject to𝑔𝑖(𝑥) ≥ 0, 𝑖 = 1,2, … ,𝑚. 

𝑥 ≥ 0, 

 

The procedure of extension of Lagrangean method involves the following steps: 

Step 1. Solve the unconstrained problem𝑀𝑖𝑛 𝑦 = 𝑓(𝑥). If the resulting solution 

satisfies all the constraints, stop the procedure, the solution is optimum. 

Otherwise set the number of constraints𝐾 = 1and go to Step 2. 

Step 2. Activate any𝐾constraints by converting them into equalities and 

minimize𝑓(𝑥)subject to the𝐾active constraints by the Lagrangean method. If the 
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resulting solution is feasible with respect to the remaining constraints, stop the 

procedure, it is a local optimum. Otherwise, take another set of𝐾constraints and 

repeat the step. If all sets of active constraints taken at a time are considered 

without encountering a feasible solution, go to Step 3.  

Step 3. If 𝐾 = 𝑚, stop the procedure, no feasible solution exists. Otherwise set𝐾 = 𝐾 +
1and go to Step 2. 

4. Fuzzy production inventory models 

In order to find the probability distribution of the input parameters, such as the defective 

rate etc., the value changes of those parameters would be not sufficiently enough. 

Furthermore, in reality, uncertainty cannot be avoided due to the imprecision and 

vagueness of the parameter(s) or the decision variable(s) of the inventory model. 

Considering the real-life scenarios, the stochastic methods as well as the statistical 

methods may turn out to be non-productive solutions for the development of the 

inventory models based on the reality. The efficient method to express the various 

factors, which are neither, be evaluated by the crisp values nor by the random processes, 

like the products’ quality, stock out situation in inventory, enhanced demand response, 

and flexibility, is one of the following: linguistic variables, or the fuzzy numbers. 

 

Björk et al. (2012) mentioned that the uncertainties originate from different sources, but 

in many situations, the demand as well as the cycle time is fuzzy. In the context of Nordic 

process industry, the uncertainties in cycle time originates from different sources; for 

example, sometimes because of the unavailability of raw material that is essential at the 

production time, and, hence, the production planning increases the number of items 

produced on a particular machine at the given time. Such kind of reasoning originates 

from the fact that the production units, which are capital intensive, may turn out to be 

uneconomical because of their idleness. Furthermore, the setup times of replacing 

products may also be significant. Few other factors also contribute to the overall situation 

that the complete cycle time and the demand are often fuzzy by default. Hence, this paper 

assumes that the production time is represented as a fuzzy number. 

 

The following two cases regarding the defective productions, which can be reworked or 

repaired, will be discussed in this paper: the first case considers the fuzzy parameters and 

the crisp production time, whereas the second case takes the fuzzy parameters with the 

fuzzy production time. 

4.1. Fuzzy production inventory model for crisp production time  

In this subsection, we analyze the deterministic inventory model given in Equation (2.12) 

with combining the fuzziness of all the input parameters(𝑆, 𝐷, 𝑃, 𝐶, 𝛽, 𝐻 ). In this case, 

the total cost per unit of time in the fuzzy sense is given as 

𝐺̃(𝑡) =  
𝑆̃ ∗ 𝐷̃

𝑡 ∗ 𝑃̃
+ 𝐶̃ ∗ 𝐷̃ ∗ (1 + 𝛽)

+
𝐻̃ ∗ 𝑡

2
{(1 + 𝛽) ∗ ((1 − 𝛽) ∗ 𝑃̃ − 𝐷̃) + 𝛽2 ∗ (𝑃̃ − 𝐷̃)} 

(4.1.1) 

where+, −, ∗ and/are the fuzzy arithmetical operations. In this equation, we assume that 

𝑆̃ = (𝑆 − 𝑆1, 𝑆 − 𝑆2, 𝑆 + 𝑆3, 𝑆 + 𝑆4), 𝐷̃ = (𝐷 − 𝐷1, 𝐷 − 𝐷2, 𝐷 + 𝐷3, 𝐷 + 𝐷4), 
𝑃̃ = (𝑃 − 𝑃1, 𝑃 − 𝑃2, 𝑃 + 𝑃3, 𝑃 + 𝑃4), 𝐶̃ = (𝐶 − 𝐶1, 𝐶 − 𝐶2, 𝐶 + 𝐶3, 𝐶 + 𝐶4), 
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𝛽 = (𝛽 − 𝛽1, 𝛽 − 𝛽2, 𝛽 + 𝛽3, 𝛽 + 𝛽4),𝐻 ̃ = (𝐻 − 𝑣1, 𝐻 − 𝑣2, 𝐻 + 𝑣3, 𝐻 + 𝑣4) 
are trapezoidal fuzzy numbers. For 𝑖 = 1,2,3,4,𝑆𝑖, 𝐷𝑖 , 𝑃𝑖 , 𝐶𝑖, 𝛽𝑖 and 𝑣𝑖 are arbitrary 

positive numbers which satisfy  𝑆1 > 𝑆2, 𝑆3 < 𝑆4, 𝐷1 > 𝐷2, 𝐷3 < 𝐷4, 𝑃1 > 𝑃2, 𝑃3 < 𝑃4, 

𝐶1 > 𝐶2, 𝐶3 < 𝐶4, 𝛽1 > 𝛽2, 𝛽3 < 𝛽4, 𝑣1 > 𝑣2 and 𝑣3 < 𝑣4. 

 

The following equations can be written using fuzzy arithmetical operations as the 

trapezoidal fuzzy numbers 

𝑆̃ ∗ 𝐷̃ = ((𝑆 − 𝑆1)(𝐷 − 𝐷1), (𝑆 − 𝑆2)(𝐷 − 𝐷2), (𝑆 + 𝑆3)(𝐷 + 𝐷3), (𝑆 + 𝑆4)(𝐷

+ 𝐷4)) 
(4.1.2) 

 

𝑡 ∗ 𝑃̃ = (𝑡(𝑃 − 𝑃1), 𝑡(𝑃 − 𝑃2), 𝑡(𝑃 + 𝑃3), 𝑡(𝑃 + 𝑃4)) (4.1.3) 

 
𝑆̃ ∗ 𝐷̃

𝑡 ∗ 𝑃̃
=  

= (
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

𝑡(𝑃 + 𝑃4)
,
(𝑆 − 𝑆2)(𝐷 − 𝐷2)

𝑡(𝑃 + 𝑃3)
,
(𝑆 + 𝑆3)(𝐷 + 𝐷3)

𝑡(𝑃 − 𝑃2)
,
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

𝑡(𝑃 − 𝑃1)
), (4.1.4) 

 
1 + 𝛽 = (1 + 𝛽 − 𝛽1, 1 + 𝛽 − 𝛽2, 1 + 𝛽 + 𝛽3, 1 + 𝛽 + 𝛽4) (4.1.5) 

 

𝐶̃ ∗ 𝐷̃ ∗ (1 + 𝛽)

= ((𝐶 − 𝐶1)(𝐷 − 𝐷1)(1 + 𝛽 − 𝛽1), (𝐶 − 𝐶2)(𝐷 − 𝐷2)(1 + 𝛽

− 𝛽2), 

(𝐶 + 𝐶3)(𝐷 + 𝐷3)(1 + 𝛽 + 𝛽3), (𝐶 + 𝐶4)(𝐷 + 𝐷4)(1 + 𝛽 +
𝛽4)), 

(4.1.6) 

 
𝐻̃ ∗ 𝑡

2
= (

(𝐻 − 𝑣1)𝑡

2
,
(𝐻 − 𝑣2)𝑡

2
,
(𝐻 + 𝑣3)𝑡

2
,
(𝐻 + 𝑣4)𝑡

2
), (4.1.7) 

 
1 − 𝛽 = (1 − (𝛽 + 𝛽4), 1 − (𝛽 + 𝛽3), 1 − (𝛽 − 𝛽2), 1 − (𝛽 − 𝛽1)) (4.1.8) 

 

(1 − 𝛽) ∗ 𝑃̃ − 𝐷̃ 

= ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4), (1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2)

− (𝐷 + 𝐷3), 

1 − (𝛽 − 𝛽2)(𝑃 + 𝑃3) − (𝐷 − 𝐷2), (1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) −

(𝐷 − 𝐷1)), 

(4.1.9) 

 

(1 + 𝛽) ∗ ((1 − 𝛽) ∗ 𝑃̃ − 𝐷̃) 
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= ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4)) , (1 + 𝛽

− 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3)) , (1 + 𝛽

+ 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2)) , (1 + 𝛽

+ 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))) 

(4.1.10) 

 

𝛽2 = ((𝛽 − 𝛽1)
2, (𝛽 − 𝛽2)

2, (𝛽 + 𝛽3)
2, (𝛽 + 𝛽4)

2) (4.1.11) 

 

𝛽2 ∗ (𝑃̃ − 𝐷̃) = ((𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4)),(𝛽 − 𝛽2)

2(𝑃 − 𝑃2

− (𝐷 + 𝐷3)), 

(𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2)), (𝛽 + 𝛽4)

2(𝑃 + 𝑃4

− (𝐷 − 𝐷1))). 

(4.1.12) 

 
Substituting Equations (4.1.2)-(4.1.12) in Equation (4.1.1), we have the trapezoidal fuzzy 

number 

𝒢̃(𝑡) = (𝒢1, 𝒢2, 𝒢3, 𝒢4) (4.1.13) 

where 

 

𝒢1 =
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

𝑡(𝑃 + 𝑃4)
+ (𝐶 − 𝐶1)(𝐷 − 𝐷1)(1 + 𝛽 − 𝛽1)

+
(𝐻 − 𝑣1)𝑡

2
((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4))), 

𝒢2 =
(𝑆 − 𝑆2)(𝐷 − 𝐷2)

𝑡(𝑃 + 𝑃3)
+ (𝐶 − 𝐶2)(𝐷 − 𝐷2)(1 + 𝛽 − 𝛽2)

+
(𝐻 − 𝑣2)𝑡

2
((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3))

+ (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3))), 

𝒢3 =
(𝑆 + 𝑆3)(𝐷 + 𝐷3)

𝑡(𝑃 − 𝑃2)
+ (𝐶 + 𝐶3)(𝐷 + 𝐷3)(1 + 𝛽 + 𝛽3)

+
(𝐻 + 𝑣3)𝑡

2
((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2))

+ (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2))), 
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𝒢4 =
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

𝑡(𝑃 − 𝑃1)
+ (𝐶 + 𝐶4)(𝐷 + 𝐷4)(1 + 𝛽 + 𝛽4)

+
(𝐻 + 𝑣4)𝑡

2
((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))

+ (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1))). 

 
The graded mean integration representation of the fuzzy number 𝐺̃(𝑡) is obtained from 

Equation (3.11) as  

𝐷𝐹 (𝒢̃(𝑡)) =
1

6
[
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

𝑡(𝑃 + 𝑃4)
+ (𝐶 − 𝐶1)(𝐷 − 𝐷1)(1 + 𝛽 − 𝛽1)

+
(𝐻 − 𝑣1)𝑡

2
((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1)

− (𝐷 + 𝐷4)) + (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4)))] 

 

+
2

6
[
(𝑆 − 𝑆2)(𝐷 − 𝐷2)

𝑡(𝑃 + 𝑃3)
+ (𝐶 − 𝐶2)(𝐷 − 𝐷2)(1 + 𝛽 − 𝛽2)

+
(𝐻 − 𝑣2)𝑡

2
((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2)

− (𝐷 + 𝐷3)) + (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3)))] 

 

+
2

6
[
(𝑆 + 𝑆3)(𝐷 + 𝐷3)

𝑡(𝑃 − 𝑃2)
+ (𝐶 + 𝐶3)(𝐷 + 𝐷3)(1 + 𝛽 + 𝛽3)

+
(𝐻 + 𝑣3)𝑡

2
((1 + 𝛽

+ 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2))

+ (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2)))] 

 

+
1

6
[
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

𝑡(𝑃 − 𝑃1)
+ (𝐶 + 𝐶4)(𝐷 + 𝐷4)(1 + 𝛽 + 𝛽4)

+
(𝐻 + 𝑣4)𝑡

2
((1 + 𝛽

+ 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))

+ (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))]. 

(4.1.14) 
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Our objective is to minimize the defuzzified total cost function𝐷𝐹 (𝒢̃(𝑡)). In order to 

show that𝐷𝐹 (𝒢̃(𝑡))is convex, the first and second order partial derivatives of  

𝐷𝐹 (𝒢̃(𝑡)) with respect to𝑡 are given the following equations, respectively.  

𝜕𝐷𝐹 (𝒢̃(𝑡))

𝜕𝑡
=
1

6
[−
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

𝑡2(𝑃 + 𝑃4)

+
(𝐻 − 𝑣1)

2
((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4)))] 

+
2

6
[−
(𝑆 − 𝑆2)(𝐷 − 𝐷2)

𝑡2(𝑃 + 𝑃3)

+
(𝐻 − 𝑣2)

2
((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2)

− (𝐷 + 𝐷3)) + (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3)))] 

+
2

6
[−
(𝑆 + 𝑆3)(𝐷 + 𝐷3)

𝑡2(𝑃 − 𝑃2)

+
(𝐻 + 𝑣3)

2
((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3)

− (𝐷 − 𝐷2)) + (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2)))] 

+
1

6
[−
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

𝑡2(𝑃 − 𝑃1)

+
(𝐻 + 𝑣4)

2
((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4)

− (𝐷 − 𝐷1)) + (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))], 

 
After some development, we have 

𝜕𝐷𝐹 (𝒢̃(𝑡))

𝜕𝑡
=
1

12
[(𝐻 − 𝑣1) ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4))) 

+2(𝐻 − 𝑣2) ((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3))

+ (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3))) 
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+2(𝐻 + 𝑣3) ((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2))

+ (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2))) 

+(𝐻 + 𝑣4) ((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))

+ (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))] 

−
1

6𝑡2
(
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

(𝑃 + 𝑃4)
+
2(𝑆 − 𝑆2)(𝐷 − 𝐷2)

(𝑃 + 𝑃3)
+
2(𝑆 + 𝑆3)(𝐷 + 𝐷3)

(𝑃 − 𝑃2)

+
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

(𝑃 − 𝑃1)
) = 0 

(4.1.15) 

 

and the second-order partial derivative of 𝐷𝐹 (𝒢̃(𝑡)) is 

𝜕2𝐷𝐹 (𝒢̃(𝑡))

𝜕𝑡2
=

1

3𝑡3
(
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

(𝑃 + 𝑃4)
+
2(𝑆 − 𝑆2)(𝐷 − 𝐷2)

(𝑃 + 𝑃3)

+
2(𝑆 + 𝑆3)(𝐷 + 𝐷3)

(𝑃 − 𝑃2)
+
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

(𝑃 − 𝑃1)
). 

(4.1.16) 

 

Note that, the second order partial derivative  𝜕2𝐷𝐹 (𝒢̃(𝑡)) /𝜕𝑡2 is continuous and 

positive for all 𝑡 > 0.This implies that the function in Equation (4.1.16) is strictly convex 

for positive 𝑡. The optimal production time 𝑡∗is found by solving the first order partial 

derivative of Equation (4.1.16) equal to zero. This yield to 

𝑡∗ = √
2(

(𝑆−𝑆1)(𝐷−𝐷1)

(𝑃+𝑃4)
+
2(𝑆−𝑆2)(𝐷−𝐷2)

(𝑃+𝑃3)
+
2(𝑆+𝑆3)(𝐷+𝐷3)

(𝑃−𝑃2)
+
(𝑆+𝑆4)(𝐷+𝐷4)

(𝑃−𝑃1)
)

𝐹1 + 2𝐹2 + 2𝐹3 + 𝐹4
, 

(4.1.17) 

where 

𝐹1 = (𝐻 − 𝑣1) ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4))), 

𝐹2 = (𝐻 − 𝑣2) ((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3))

+ (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3))) , 

 

𝐹3 = (𝐻 + 𝑣3) ((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2))

+ (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2))). 
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𝐹4 = (𝐻 + 𝑣4) ((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))

+ (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1))). 

 

The value of defuzzified total cost function𝐷𝐹 (𝒢̃(𝑡))is obtained by direct substitution of 

Equation (4.1.17) into Equation (4.1.14). 

 

When the input parameters(𝑆, 𝐷, 𝑃, 𝐶, 𝛽, 𝐻 )are real numbers, that is 

𝑆 = 𝑆 − 𝑆1 = 𝑆 − 𝑆2 = 𝑆 + 𝑆3 =  𝑆 + 𝑆4 , 𝐷 = 𝐷 − 𝐷1 = 𝐷 − 𝐷2 = 𝐷 + 𝐷3 =  𝐷 + 𝐷4,  
𝑃 = 𝑃 − 𝑃1 =  𝑃 − 𝑃2 =  𝑃 + 𝑃3 =  𝑃 + 𝑃4 , 𝐶 = 𝐶 − 𝐶1 =  𝐶 − 𝐶2 =  𝐶 + 𝐶3 =  𝐶 +
𝐶4 
𝛽 = 𝛽 − 𝛽1 = 𝛽 − 𝛽2 =  𝛽 + 𝛽3 =  𝛽 + 𝛽4 , 𝐻 = 𝐻 − 𝑣1 = 𝐻 − 𝑣2 =  𝐻 + 𝑣3 =  𝐻 +
𝑣4, 
 
Then the deterministic production inventory model is presented. So, the following 

reduced form of Equation (4.1.17) is obtained: 

𝑡𝑐
∗ = √

2𝑆𝐷

𝑃𝐻 ((1 + 𝛽)((1 − 𝛽)𝑃 − 𝐷) + 𝛽2(𝑃 − 𝐷))
. (4.1.18) 

 

If we assume that the input parameters are triangular fuzzy numbers as 

𝑆̃ = (𝑆 − 𝑆1, 𝑆, 𝑆 + 𝑆4), 𝐷̃ = (𝐷 − 𝐷1, 𝐷, 𝐷 + 𝐷4),  𝑃̃ = (𝑃 − 𝑃1, 𝑃, 𝑃 + 𝑃4), 𝐶̃ = (𝐶 −
𝐶1, 𝐶, 𝐶 + 𝐶4), 𝛽 = (𝛽 − 𝛽1, 𝛽, 𝛽 + 𝛽4) and 𝐻 ̃ = (𝐻 − 𝑣1, 𝐻, 𝐻 + 𝑣4),  
then the following equations are attained 

 

𝑆̃ ∗ 𝐷̃ = ((𝑆 − 𝑆1)(𝐷 − 𝐷1), 𝑆𝐷, (𝑆 + 𝑆4)(𝐷 + 𝐷4)) (4.1.19) 

 

𝑡 ∗ 𝑃̃ = (𝑡(𝑃 − 𝑃1), 𝑡𝑃, 𝑡(𝑃 + 𝑃4)) (4.1.20) 

 

𝑆̃ ∗ 𝐷̃

𝑡 ∗ 𝑃̃
= (

(𝑆 − 𝑆1)(𝐷 − 𝐷1)

𝑡(𝑃 + 𝑃4)
,
𝑆𝐷

𝑡𝑃
,
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

𝑡(𝑃 − 𝑃1)
), (4.1.21) 

 

1 + 𝛽 = (1 + 𝛽 − 𝛽1, 1 + 𝛽, 1 + 𝛽 + 𝛽4) (4.1.22) 

 
𝐶̃ ∗ 𝐷̃ ∗ (1 + 𝛽)  

= (((𝐶 − 𝐶1)(𝐷 − 𝐷1)(1 + 𝛽 − 𝛽1), 𝐶𝐷(1

+ 𝛽), (𝐶 + 𝐶4)(𝐷 + 𝐷4)(1 + 𝛽 + 𝛽4))), 
(4.1.23) 

𝐻̃ ∗ 𝑡

2
= (

(𝐻 − 𝑣1)𝑡

2
,
𝐻𝑡

2
,
(𝐻 + 𝑣4)𝑡

2
), (4.1.24) 

1 − 𝛽 = (1 − (𝛽 + 𝛽4), 1 − 𝛽, 1 − (𝛽 − 𝛽1)) (4.1.25) 

(1 − 𝛽) ∗ 𝑃̃ − 𝐷̃ (4.1.26) 
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= ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4), (1 − 𝛽)𝑃 − 𝐷, 

(1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1)), 

(1 + 𝛽) ∗ ((1 − 𝛽) ∗ 𝑃̃ − 𝐷̃) 

= ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4)) , (1

+ 𝛽)((1 − 𝛽)𝑃 − 𝐷), (1 + 𝛽

+ 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))), 

(4.1.27) 

𝛽2 = ((𝛽 − 𝛽1)
2, 𝛽2, (𝛽 + 𝛽4)

2) (4.1.28) 

𝛽2 ∗ (𝑃̃ − 𝐷̃) = ((𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4)), 𝛽

2(𝑃 − 𝐷), (𝛽 + 𝛽4)
2(𝑃

+ 𝑃4 − (𝐷 − 𝐷1))). 
(4.1.29) 

 
Substituting Equations (4.1.19)-(4.1.29) in Equation (4.1.1), then the fuzzy total 

inventory cost is represented by a triangular fuzzy number as 

𝒢̃(𝑡) = (𝒢1, 𝒢2, 𝒢3) (4.1.30) 

 

Where 

𝒢1 =
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

𝑡(𝑃 + 𝑃4)
+ (𝐶 − 𝐶1)(𝐷 − 𝐷1)(1 + 𝛽 − 𝛽1)

+
(𝐻 − 𝑣1)𝑡

2
((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4))), 

𝒢2 =
𝑆𝐷

𝑡𝑃
+ 𝐶𝐷(1 + 𝛽) +

𝐻𝑡

2
((1 + 𝛽)((1 − 𝛽)𝑃 − 𝐷) + 𝛽2(𝑃 − 𝐷)), 

𝒢3 =
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

𝑡(𝑃 − 𝑃1)
+ (𝐶 + 𝐶4)(𝐷 + 𝐷4)(1 + 𝛽 + 𝛽4)

+
(𝐻 + 𝑣4)𝑡

2
((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))

+ (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1))). 

 
 
The graded mean integration representation of the fuzzy number 𝐺̃(𝑡) is obtained from 

Equation (3.12) as  
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𝐷𝐹 (𝒢̃(𝑡)) =
1

6
[
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

𝑡(𝑃 + 𝑃4)
+ (𝐶 − 𝐶1)(𝐷 − 𝐷1)(1 + 𝛽 − 𝛽1)

+
(𝐻 − 𝑣1)𝑡

2
((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4)))] 

+
4

6
[
𝑆𝐷

𝑡𝑃
+ 𝐶𝐷(1 + 𝛽) +

𝐻𝑡

2
((1 + 𝛽)((1 − 𝛽)𝑃 − 𝐷) + 𝛽2(𝑃 − 𝐷))] 

+
1

6
[
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

𝑡(𝑃 − 𝑃1)
+ (𝐶 + 𝐶4)(𝐷 + 𝐷4)(1 + 𝛽 + 𝛽4)

+
(𝐻 + 𝑣4)𝑡

2
((1 + 𝛽

+ 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))

+ (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))]. 

(4.1.31) 

 

Proceeding as in the case Equation (4.1.14), the optimal production time is given by 

𝑡∗ = √
2(

(𝑆−𝑆1)(𝐷−𝐷1)

(𝑃+𝑃4)
+
4𝑆𝐷

𝑃
+
(𝑆+𝑆4)(𝐷+𝐷4)

(𝑃−𝑃1)
)

𝐹1 + 4𝐹2
1 + 𝐹4

, (4.1.32) 

where 

𝐹2
1 = 𝐻 (((1 + 𝛽)((1 − 𝛽)𝑃 − 𝐷) + 𝛽2(𝑃 − 𝐷))). 

4.2. Fuzzy production inventory model for fuzzy production time  

In this subsection, the deterministic inventory model given in Equation (2.12) is fully 

fuzzified. That is, the input parameters(𝑆, 𝐷, 𝑃, 𝐶, 𝛽, 𝐻 )and the decision variable(𝑡)are 

fuzzified. Let each input parameters and the decision variablebe positive trapezoidal 

fuzzy numbers as follows: 

𝑆̃ = (𝑆 − 𝑆1, 𝑆 − 𝑆2, 𝑆 + 𝑆3, 𝑆 + 𝑆4), 𝐷̃ = (𝐷 − 𝐷1, 𝐷 − 𝐷2, 𝐷 + 𝐷3, 𝐷 + 𝐷4) 
𝑡̃ = (𝑡 − 𝑢1, 𝑡 − 𝑢2, 𝑡 + 𝑢3, 𝑡 + 𝑢4), 𝑃̃ = (𝑃 − 𝑃1, 𝑃 − 𝑃2, 𝑃 + 𝑃3, 𝑃 + 𝑃4) 

𝐶̃ = (𝐶 − 𝐶1, 𝐶 − 𝐶2, 𝐶 + 𝐶3, 𝐶 + 𝐶4), 𝛽 = (𝛽 − 𝛽1, 𝛽 − 𝛽2, 𝛽 + 𝛽3, 𝛽 + 𝛽4), 
𝐻 ̃ = (𝐻 − 𝑣1, 𝐻 − 𝑣2, 𝐻 + 𝑣3, 𝐻 + 𝑣4). 

 

Then, the total cost per unit time in fuzzy sensein Equation (2.12) is given as 

𝐺̃(𝑡̃) =  
𝑆̃ ∗ 𝐷̃

𝑡̃ ∗ 𝑃̃
+ 𝐶̃ ∗ 𝐷̃ ∗ (1 + 𝛽)

+
𝐻̃ ∗ 𝑡̃

2
{(1 + 𝛽) ∗ ((1 − 𝛽) ∗ 𝑃̃ − 𝐷̃) + 𝛽2 ∗ (𝑃̃ − 𝐷̃)} 

(4.2.1) 

where+, −, ∗ and/are the fuzzy arithmetical operations, andthe following additional 

equations can be written 
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𝑡̃ ∗ 𝑃̃ = ((𝑡 − 𝑢1)(𝑃 − 𝑃1), (𝑡 − 𝑢2)(𝑃 − 𝑃2), (𝑡 + 𝑢3)(𝑃 + 𝑃3), (𝑡 + 𝑢4)(𝑃

+ 𝑃4)) 
(4.2.2) 

 
𝑆̃ ∗ 𝐷̃

𝑡̃ ∗ 𝑃̃
= (

(𝑆 − 𝑆1)(𝐷 − 𝐷1)

(𝑡 + 𝑢4)(𝑃 + 𝑃4)
,
(𝑆 − 𝑆2)(𝐷 − 𝐷2)

(𝑡 + 𝑢3)(𝑃 + 𝑃3)
,
(𝑆 + 𝑆3)(𝐷 + 𝐷3)

(𝑡 − 𝑢2)(𝑃 − 𝑃2)
,
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

(𝑡 − 𝑢1)(𝑃 − 𝑃1)
), (4.2.3) 

 
𝐻̃ ∗ 𝑡̃

2

= (
(𝐻 − 𝑣1)(𝑡 − 𝑢1)

2
,
(𝐻 − 𝑣2)(𝑡 − 𝑢2)

2
,
(𝐻 + 𝑣3)(𝑡 + 𝑢3)

2
,
(𝐻 + 𝑣4)((𝑡1 + 𝑢4))

2
), 

(4.2.4) 

 
Substituting Equations.(4.1.2.), (4.1.5), (4.1.6) and (4.1.8)-(4.1.12), and (4.2.2)- (4.2.4) in 

Equation(4.2.1), then the fuzzy total inventory cost function is represented as a 

trapezoidal fuzzy number 

𝐺̃(𝑡̃) = (𝐺1, 𝐺2, 𝐺3, 𝐺4), (4.2.5) 

where 

𝐺1 =
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

(𝑡 + 𝑢4)(𝑃 + 𝑃4)
+ (𝐶 − 𝐶1)(𝐷 − 𝐷1)(1 + 𝛽 − 𝛽1)

+
(𝐻 − 𝑣1)(𝑡 − 𝑢1)

2
((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1)

− (𝐷 + 𝐷4)) + (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4))), 

𝐺2 =
(𝑆 − 𝑆2)(𝐷 − 𝐷2)

(𝑡 + 𝑢3)(𝑃 + 𝑃3)
+ (𝐶 − 𝐶2)(𝐷 − 𝐷2)(1 + 𝛽 − 𝛽2)

+
(𝐻 − 𝑣2)(𝑡 − 𝑢2)

2
((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2)

− (𝐷 + 𝐷3)) + (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3))), 

𝐺3 =
(𝑆 + 𝑆3)(𝐷 + 𝐷3)

(𝑡 − 𝑢2)(𝑃 − 𝑃2)
+ (𝐶 + 𝐶3)(𝐷 + 𝐷3)(1 + 𝛽 + 𝛽3)

+
(𝐻 + 𝑣3)(𝑡 + 𝑢3)

2
((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3)

− (𝐷 − 𝐷2)) + (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2))) 

and 

𝐺4 =
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

(𝑡 − 𝑢1)(𝑃 − 𝑃1)
+ (𝐶 + 𝐶4)(𝐷 + 𝐷4)(1 + 𝛽 + 𝛽4)

+
(𝐻 + 𝑣4)((𝑡 + 𝑢4))

2
((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4)

− (𝐷 − 𝐷1)) + (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1))). 
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The graded mean integration representation of the fuzzy number 𝐺̃(𝑡̃) is obtained from 

Equation (3.11) as  

𝐷𝐹 (𝐺̃(𝑡̃)) =
1

6
[
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

𝑡4(𝑃 + 𝑃4)
+ (𝐶 − 𝐶1)(𝐷 − 𝐷1)(1 + 𝛽 − 𝛽1)

+
(𝐻 − 𝑣1)𝑡1

2
((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4)))] 

+
2

6
[
(𝑆 − 𝑆2)(𝐷 − 𝐷2)

𝑡3(𝑃 + 𝑃3)
+ (𝐶 − 𝐶2)(𝐷 − 𝐷2)(1 + 𝛽 − 𝛽2)

+
(𝐻 − 𝑣2)𝑡2

2
((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2)

− (𝐷 + 𝐷3)) + (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3)))] 

+
2

6
[
(𝑆 + 𝑆3)(𝐷 + 𝐷3)

𝑡2(𝑃 − 𝑃2)
+ (𝐶 + 𝐶3)(𝐷 + 𝐷3)(1 + 𝛽 + 𝛽3)

+
(𝐻 + 𝑣3)𝑡3

2
((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3)

− (𝐷 − 𝐷2)) + (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2)))] 

+
1

6
[
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

𝑡1(𝑃 − 𝑃1)
+ (𝐶 + 𝐶4)(𝐷 + 𝐷4)(1 + 𝛽 + 𝛽4)

+
(𝐻 + 𝑣4)𝑡4

2
((1 + 𝛽

+ 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))

+ (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))] 

(4.2.6) 

 

In order to find the parameters which minimize the defuzzified function𝐷𝐹 (𝐺̃(𝑡̃)), we 

have to solve the following partial derivatives of𝐷𝐹 (𝐺̃(𝑡̃))with respect to𝑡̃ =

(𝑡1, 𝑡2, 𝑡3, 𝑡4)each equal to zero, i.e. 

𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡1

=
(𝐻 − 𝑣1) ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4)) + (𝛽 − 𝛽1)

2(𝑃 − 𝑃1 − (𝐷 + 𝐷4)))

12

−
(𝑆 + 𝑆4)(𝐷 + 𝐷4)

6(𝑃 − 𝑃1)𝑡1
2 = 0 

(4.2.7) 
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𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡2

=
(𝐻 − 𝑣2) ((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3)) + (𝛽 − 𝛽2)

2(𝑃 − 𝑃2 − (𝐷 + 𝐷3)))

6

−
2(𝑆 + 𝑆3)(𝐷 + 𝐷3)

6(𝑃 − 𝑃2)𝑡2
2 = 0 

(4.2.8) 

 
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡3

=
(𝐻 + 𝑣3) ((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2)) + (𝛽 + 𝛽3)

2(𝑃 + 𝑃3 − (𝐷 − 𝐷2)))

6

−
2(𝑆 − 𝑆2)(𝐷 − 𝐷2)

6(𝑃 + 𝑃3)𝑡3
2 = 0 

(4.2.9) 

and 
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡4

=
(𝐻 + 𝑣4) ((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1)) + (𝛽 + 𝛽4)

2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))

12

−
(𝑆 − 𝑆1)(𝐷 − 𝐷1)

6(𝑃 + 𝑃4)𝑡4
2 = 0 

(4.2.10) 

 
Solving the above equations, we get 

𝑡1 = √
2(𝑆 + 𝑆4)(𝐷 + 𝐷4)

(𝑃 − 𝑃1)(𝐻 − 𝑣1) ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4)) + (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4)))

 (4.2.11) 

 

𝑡2 = √
2(𝑆 + 𝑆3)(𝐷 + 𝐷3)

(𝑃 − 𝑃2)(𝐻 − 𝑣2) ((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3)) + (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3)))

 (4.2.12) 

 

𝑡3 = √
2(𝑆 − 𝑆2)(𝐷 − 𝐷2)

(𝑃 + 𝑃3)(𝐻 + 𝑣3) ((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2)) + (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2)))

 (4.2.13) 

 

𝑡4 = √
2(𝑆 − 𝑆1)(𝐷 − 𝐷1)

(𝑃 + 𝑃4)(𝐻 + 𝑣4) ((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1)) + (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))

 (4.2.14) 

Note that, due to the construction of the defined fuzzy numbers we have 𝑡1 > 𝑡2 > 𝑡3 >
𝑡4 , then the conditions𝑡1 < 𝑡2 < 𝑡3 < 𝑡4are not satisfied. Then, we adopt the Lagrangean 

method described in Section 3.To do this, we convert the inequality constraint𝑡2 − 𝑡1 ≥
0into equality constraint𝑡2 − 𝑡1 = 0and minimizethe defuzzified function subject to𝑡2 −
𝑡1 = 0.We have the Lagrangian function as 

ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4) = 𝐷𝐹 (𝐺̃(𝑡̃)) − 𝜆(𝑡2 − 𝑡1), (4.2.15) 

Where 𝜆is the Lagrangean multiplier. 

 
Taking the partial derivatives ofℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4) with respect to𝑡1, 𝑡2, 𝑡3, 𝑡4and𝜆and putting 

the derivatives equal to zero, i.e. 
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𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡1
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡1
+ 𝜆 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡2
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡2
− 𝜆 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡3
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡3
= 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡4
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡4
= 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝜆
= −𝑡2 + 𝑡1 = 0. }

 
 
 
 
 
 

 
 
 
 
 
 

 (4.2.16) 

 
Solving the above equality system, we have 

𝑡1 = 𝑡2 =
√
2(

(𝑆+𝑆4)(𝐷+𝐷4)

(𝑃−𝑃1)
+
2(𝑆+𝑆3)(𝐷+𝐷3)

(𝑃−𝑃2)
)

𝐹1 + 2𝐹2
, 

(4.2.17) 

 

𝑡3 = √
2(𝑆 − 𝑆2)(𝐷 − 𝐷2)

(𝑃 + 𝑃3)(𝐻 + 𝑣3) ((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2)) + (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2)))

, (4.2.18) 

 

𝑡4 = √
2(𝑆 − 𝑆1)(𝐷 − 𝐷1)

(𝑃 + 𝑃4)(𝐻 + 𝑣4) ((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1)) + (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))

, (4.2.19) 

where 

𝐹1 = (𝐻 − 𝑣1) ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4))), 

𝐹2 = (𝐻 − 𝑣2) ((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3))

+ (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3))). 

 
Since𝑡1 = 𝑡2 > 𝑡3 > 𝑡4, the constraint𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 is not satisfied. We get the 

similar result if repeat the procedure by selecting any one of the other inequality 

constraints. Hence, we convert two of the inequality constraints𝑡2 − 𝑡1 ≥ 0 and 𝑡3 − 𝑡2 ≥
0as equality and minimizethe defuzzified function subject to𝑡2 − 𝑡1 = 0and𝑡3 − 𝑡2 = 0. 

The Lagrangean function with multipliers𝜆1 and 𝜆2 is given as 

ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4) = 𝐷𝐹 (𝐺̃(𝑡̃)) − 𝜆1(𝑡2 − 𝑡1) − 𝜆2(𝑡3 − 𝑡2). (4.2.20) 

 
The solution is obtained by putting the partial derivatives ofℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)with respect 

to𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝜆1and𝜆2are equate to zero, i.e. 



Optimization of Fuzzy Production Inventory Models for Crisp or Fuzzy Production Time  

Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp661-695 685 

 

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡1
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡1
+ 𝜆1 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡2
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡2
− 𝜆1 + 𝜆2 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡3
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡3
− 𝜆2 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡4
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡4
= 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝜆1
= −𝑡2 + 𝑡1 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝜆2
= −𝑡3 + 𝑡2 = 0.

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 (4.2.21) 

 
Solving the above, we have 

𝑡1 = 𝑡2 = 𝑡3 =
√
2(

(𝑆+𝑆4)(𝐷+𝐷4)

(𝑃−𝑃1)
+
2(𝑆+𝑆3)(𝐷+𝐷3)

(𝑃−𝑃2)
+
2(𝑆−𝑆2)(𝐷−𝐷2)

(𝑃+𝑃3)
)

𝐹1 + 2𝐹2 + 2𝐹3
, 

(4.2.22) 

 

𝑡4 = √
2(𝑆 − 𝑆1)(𝐷 − 𝐷1)

(𝑃 + 𝑃4)(𝐻 + 𝑣4) ((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1)) + (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1)))

, (4.2.23) 

where 

𝐹1 = (𝐻 − 𝑣1) ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4))) , 

 

𝐹2 = (𝐻 − 𝑣2) ((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3))

+ (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3))) , 

 

𝐹3 = (𝐻 + 𝑣3) ((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2))

+ (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2))). 

 
The results from Equations (4.2.22) and (4.2.23) show that𝑡1 = 𝑡2 = 𝑡3 > 𝑡4, and then 

the condition𝑡1 < 𝑡2 < 𝑡3 < 𝑡4is not satisfied. We get the similar result if repeat by 
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selecting any two of the inequality constraints. Hence, the inequality constraints𝑡2 − 𝑡1 ≥
0, 𝑡3 − 𝑡2 ≥ 0and𝑡4 − 𝑡3 ≥ 0are converting into equalities as, 𝑡2 − 𝑡1 = 0 and 𝑡3 − 𝑡2 =
0and𝑡4 − 𝑡3 = 0. The Lagrangean function with multipliers𝜆𝑖,𝑖 = 1,2,3,4 is 

 

ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4) = 𝐷𝐹 (𝐺̃(𝑡̃)) − 𝜆1(𝑡2 − 𝑡1) − 𝜆2(𝑡3 − 𝑡2) − 𝜆3(𝑡4 − 𝑡3). (4.2.24) 

 

In order to minimize the functionℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)given in Equation (4.2.24), we take the 

partial derivatives ofℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)with respect to𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝜆1, 𝜆2 and 𝜆3,and putting 

the resultsequal to zero. That is 

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡1
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡1
+ 𝜆1 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡2
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡2
− 𝜆1 + 𝜆2 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡3
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡3
− 𝜆2 + 𝜆3 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝑡4
=
𝜕𝐷𝐹 (𝐺̃(𝑡̃))

𝜕𝑡4
− 𝜆3 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝜆1
= −𝑡2 + 𝑡1 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝜆2
= −𝑡3 + 𝑡2 = 0,

𝜕ℒ(𝑡1, 𝑡2, 𝑡3, 𝑡4)

𝜕𝜆3
= −𝑡4 + 𝑡3 = 0.

}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 (4.2.25) 

Thus, we have𝑡1 = 𝑡2 = 𝑡3 = 𝑡4 = 𝑡∗, that is 

𝑡∗ = √
2(

(𝑆+𝑆4)(𝐷+𝐷4)

(𝑃−𝑃1)
+
2(𝑆+𝑆3)(𝐷+𝐷3)

(𝑃−𝑃2)
+
2(𝑆−𝑆2)(𝐷−𝐷2)

(𝑃+𝑃3)
+
(𝑆−𝑆1)(𝐷−𝐷1)

(𝑃+𝑃4)
)

𝐹1 + 2𝐹2 + 2𝐹3 + 𝐹4
, 

(4.2.26) 

where 

𝐹1 = (𝐻 − 𝑣1) ((1 + 𝛽 − 𝛽1) ((1 − (𝛽 + 𝛽4))(𝑃 − 𝑃1) − (𝐷 + 𝐷4))

+ (𝛽 − 𝛽1)
2(𝑃 − 𝑃1 − (𝐷 + 𝐷4))) , 

 

𝐹2 = (𝐻 − 𝑣2) ((1 + 𝛽 − 𝛽2) ((1 − (𝛽 + 𝛽3))(𝑃 − 𝑃2) − (𝐷 + 𝐷3))

+ (𝛽 − 𝛽2)
2(𝑃 − 𝑃2 − (𝐷 + 𝐷3))) , 
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𝐹3 = (𝐻 + 𝑣3) ((1 + 𝛽 + 𝛽3) ((1 − (𝛽 − 𝛽2))(𝑃 + 𝑃3) − (𝐷 − 𝐷2))

+ (𝛽 + 𝛽3)
2(𝑃 + 𝑃3 − (𝐷 − 𝐷2))). 

𝐹4 = (𝐻 + 𝑣4) ((1 + 𝛽 + 𝛽4) ((1 − (𝛽 − 𝛽1))(𝑃 + 𝑃4) − (𝐷 − 𝐷1))

+ (𝛽 + 𝛽4)
2(𝑃 + 𝑃4 − (𝐷 − 𝐷1))). 

 
In Equation (4.2.26), since the solution𝑡∗satisfies all inequality constraints, 𝑡∗will be the 

optimum solution to the model. Since the optimal solution is the only one feasible 

solution, it is the optimum solution of the inventory model.  

 

It is interesting to note that the optimal solution for the fuzzy model with fuzzy 

production time period given by Equation (4.2.26) is the same as the optimal solution for 

the fuzzy model with crisp production time period in Equation (4.1.17). 

  

5. Numerical Examples 

This section provides numerical examples to illustrate the behaviour of the fuzzy model 

and compare the results between the fuzzy case and crisp case using the parameters given 

by Jamal et al. (2004). Note that, Cárdenas-Barrón (2007) presented the correct solutions 

to the two numerical examples presented in Jamal et al. (2004).Consider an inventory 

model with crisp parameters having the following:𝐷 = 300units/year𝑃 = 550 units/year, 

𝑆 = $50/batch, 𝐻 = $50/unit/year, 𝛽 = 0.05,𝐶 = $7/unit. 
 
The optimal production time𝑡𝑐

∗and the total cost per unit time𝑇𝐶𝑈(𝑡𝑐
∗)of the crisp case 

can be derived from Equations. (2.12) and (2.14), respectively. Then, we get𝑡𝑐
∗ =

0.068yearsand𝑇𝐶𝑈(𝑡𝑐
∗) = $3004.289.Let𝑡𝑡𝑟𝑖

∗ and𝑡𝑡𝑟𝑎
∗ be the optimal production time 

periods and𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑖
∗ ))and𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑎

∗ ))be the defuzzified total cost functions for the 

triangular and trapezoidal fuzzy numbers, respectively. In Tables 1-3, we set some 

trapezoidal fuzzy numbers of the input parameters(𝑆, 𝐷, 𝑃, 𝐶, 𝛽, 𝐻 ). For each of these 

parameters, the variations in the values are arranged arbitrary and their defuzzified values 

are determined by using the GMIR method and are shown in the second columns of the 

tables. Besides, the percentage difference between the fuzzy values and crisp case 

denoted by𝐷𝐹𝑘for the parameter𝑘, which is also called the level of fuzziness, are also 

shown in the third and sixth columns of the tables. 

 

In order to facilitate the computation process, the formulas were written in Microsoft 

Excel 2016. Based on these values, the results of the inventory policies for the proposed 

model for various sets of trapezoidal fuzzy numbers are given in Table 4.Table 4 

indicates the optimal policy of the model presented in Section 4 and lists the optimum 

values of the total cost𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑎
∗ )) and the production time 𝑡𝑡𝑟𝑎

∗  computed from 

Equation (4.2.6) and Equation (4.2.26), respectively. 
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Table 1: Fuzzy trapezoidal values for the input parameters 𝑺 and 𝑫. 

𝑆̃ 𝐷𝐹(𝑆̃) 𝐷𝐹𝑆 𝐷̃ 𝐷𝐹(𝐷̃) 𝐷𝐹𝐷 

(15,24.5,60,71) 42.5 -15% 
(180,216,304,310) 255 -15% 

(20,27,60.5,75) 45 -10% 
(210,238.5,309,315) 270 -10% 

(25,31,61,76) 47.5 -5% 
(237,262.5,314,320) 285 -5% 

(15,42.5,65,85) 
52.5 +5% 

(262,280,319,430) 
315 +5% 

(20,43,68,88) 
55 +10% 

(265,290,342.5,450) 
330 +10% 

(20,45,71,93) 57.5 +15% (270,295,375,460) 345 +15% 

 

Table 2: Fuzzy trapezoidal values for the input parameters 𝑷 and 𝑪. 

𝑃̃ 𝐷𝐹(𝑃̃) 𝐷𝐹𝑃 𝐶̃ 𝐷𝐹(𝐶̃) 𝐷𝐹𝐶  

(340,345,555,665) 467.5 -15% 
(1.7,2.5,8.5,12) 5.95 

-
15% 

(345,367.5,600,690) 
495 -10% 

(1.8,2.55,8.95,13) 
6.3 

-
10% 

(365,370,650,730) 
522.5 -5% 

(2,3,9,13.9) 
6.65 -5% 

(475,478,651,732) 577.5 +5% 
(2.5,3.5,10.05,14.5) 7.35 +5% 

(500,510,685,740) 605 +10% (3.6,3.8,10.2,14.6) 7.7 
+10
% 

(510,525,700,835) 
632.5 +15% 

(3.5,4,11,14.8) 
8.05 

+15
% 

 

Table 3: Fuzzy trapezoidal values for the input parameters 𝑯 and 𝜷. 

𝐻̃ 𝐷𝐹(𝐻̃) 𝐷𝐹𝐻  𝛽 𝐷𝐹(𝛽) 𝐷𝐹𝛽 

(19,25,61,64) 
42.5 -15% 

(0.015,0.02,0.06,0.08) 
0.0425 -15% 

(20,30,62,66) 
45 -10% 

(0.016,0.021,0.0635,0.085) 
0.045 -10% 

(22,30,63,77) 
47.5 -5% 

(0.02,0.025,0.064,0.087) 
0.0475 -5% 

(28,35,68.5,80) 
52.5 +5% 

(0.022,0.03,0.07,0.093) 
0.0525 +5% 

(29,38,70,85) 
55 +10% 

(0.024,0.035,0.071,0.094) 
0.055 +10% 
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(30,40,72.5,90) 
57.5 +15% 

(0.025,0.037,0.0755,0.095) 
0.0575 +15% 

 
Table 4 shows the changes in the optimal values of the decision variable and the total 

costs between fuzzy and crisp cases. The results indicate that the percentage changes for 

the input parameters is set to be from-15 to +15%corresponding to percentage difference 

in the defuzzified total cost value ranging from-9.26%to+51.19%. A -15% in the values 

of the input parameters results in an increase in the production time value 

of+4.13%,corresponding to a reduction in the total cost value of -9.26%, and an increase 

of+15% in the values of input parameters decreases the production time value by -

10.36% but increases the total cost value by +51.19%. 

Table 4:  The change in optimal policy from the crisp case using the trapezoidal 

fuzzy numbers in Tables 1-3 

𝑡𝑡𝑟𝑎
∗  

Change in  

𝑡𝑡𝑟𝑎
∗ (%) 

𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑎
∗ )) 

Change in 

𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑎
∗ )) (%) 

0.071 4.13 2,726.113 -9.26 
0.069 1.67 2,942.069 -2.07 
0.066 -2.89 3,180.418 +5.86 
0.064 -6.44 3,800.775 +26.51 
0.063 -8.25 4,127.905 +37.40 
0.061 -10.36 4,542.223 +51.19 

 
Variation of the percentage difference between the fuzzy case and crisp case is also 

illustrated in Figure 2. One can notice that while the values of production time decreases 

gradually, the total cost increases significantly, 

 

Figure2: Variation of the percentage difference  𝑫𝑭𝒌 effects on 𝒕𝒕𝒓𝒂
∗  and 

𝑫𝑭(𝑮̃(𝒕𝒕𝒓𝒂
∗ )). 

 

The trapezoidal fuzzy numbers reduce to the triangular fuzzy numbers as shown in 

Tables 5 and 6 when the lower and upper modes are equal to the related crisp value.  

Table 5:   Triangular fuzzy numbers corresponding to trapezoidal fuzzy numbers 

𝑆̃ 𝐷̃ 𝑃̃ 𝐶̃ 
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(15,50,71) (180,300,310) (340,550,665) (1.7,7,12) 

(20,50,75) (210,300,315) (345,550,690) (1.8,7,13) 

(25,50,76) (237,300,320) (365,550,730) (2,7,13.9) 

(15,50,85) (262,300,430) (475,550,732) (2.5,7,14.5) 

(20, 50,88)  (265,300,450) (500,550,740) (3.6,7,14.6) 

(20, 50,93)  (270,300,460) (510,550,835) (3.5,7,14.8) 

Table 6:   Triangular fuzzy numbers corresponding to trapezoidal fuzzy numbers 

𝐻̃ 𝛽 

(19,501,64) (0.015,0.05,0.08) 

(20,50,66) (0.016,0.05,0.085) 

(22,50,77) (0.02,0.05,0.087) 

(28,50,80) (0.022,0.05,0.093) 

(29,50,85) (0.024,0.05,0.094) 

(30,50,90) (0.025,0.05,0.095) 

 
Table 7 shows the changes in the optimal values of the decision variable and the 

defuzzified total cost between the fuzzy and crisp cases. The results indicate that the 

percentage changes for the input parameters is set to be from -15%to +15% 

corresponding to percentage difference in the defuzzified total cost value ranging 

from+2.53 to+30.87%. A -10%  in the values of the input parameters results in a decrease 

in the production time value of -1.12%,corresponding to an increase in the total cost 

value of+5.91%, and an increase of+10% in the values of input parameters decreases 

theproduction time value by -3.33% but increases the defuzzified total cost value by 

+27.09%. 

 

Variation of the percentage difference between fuzzy case and crisp case is displayed in 

Figure 3. One notices that as 𝐷𝐹𝑘 increases, the value 𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑖
∗ )) increases gradually, 

but the value 𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑎
∗ )) increases importantly. Hence, the differences between 

 𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑎
∗ ))and𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑖

∗ ))increases significantly as𝐷𝐹𝑘increases. 

Table 7:   Optimal policy by using triangular fuzzy numbers 
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𝑡𝑡𝑟𝑖
∗  

Change in  

𝑡𝑡𝑟𝑖
∗ (%) 

𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑖
∗ )) 

Change in 

𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑖
∗ )) (%) 

0.0667 -2.2 3,080.172 +2.53 

0.0675 -1.12 3,181,789 +5.91 

0.0648 -5.0 3,301.616 +9.90 

0.0664 -2.73 3,678.598 +22.44 

0.0660 -3.33 3,818.299 +27.09 

0.0628 -7.90 3,931.665 +30.87 

 

 

Figure3:  The behavior of the total cost functions and the production times for fuzzy 

numbers with respect to the percentage difference between fuzzy case and crisp case. 

 

It can be concluded from the results given above that the optimal values of 𝑡∗ and its 

respective 𝐷𝐹(𝐺̃(𝑡∗)), which is the total cost, changes with the variation in the fuzziness 

level in all model’s components. Furthermore, it can be seen above that the variations in 

the component fuzziness levels’ percentage highly affect the fuzzy total cost unlike in the 

case of the production time’s optimal value. For the trapezoidal fuzzy numbers, it can be 

noticed that, while the range of the component fuzziness levels’ percentage change is 

assigned from -15% to +15%, the percentage difference in 𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑎
∗ )) values is from -

9.26% to +51.19%. For instance, −5% variation in the component fuzziness levels 

decreases 𝑡𝑡𝑟𝑎
∗  value of -2.89% and increases the 𝐷𝐹(𝐺̃(𝑡𝑡𝑟𝑎

∗ )) value of +5.86%. On the 

other hand, with the variation of +15% in the component fuzziness levels, the relative 

change of the total cost will extend to +51.19%. Moreover, as it can be seen above that 

the fuzzy total cost changes in the same direction with the percentage increase in the 

component fuzziness levels, whereas the optimal production time slightly variates in the 

opposite direction.  

 

The results shown above signify that if the variation in the component fuzziness levels 

reaches -15%, there will be lowest fuzzy total cost; however, there will be the lowest 

negative relative error with respect to the optimum values of crisp cases. Furthermore, 

due to the fuzziness in all the components, the percentage changes in the optimal values 
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of the fuzzy models with triangular fuzzy numbers are less compared to the percentage 

changes in the case of the fuzzy models with trapezoidal fuzzy numbers. It is evident 

from all the tables that with the use of the trapezoidal fuzzy numbers, there will be 

minimum fuzzy total cost and a -15% decrease can be seen in the component fuzziness 

levels. In this specific case, the fuzzy EPQ model can have the following the optimal 

policy with rework options: optimal production time 𝑡∗ = 0.071 years and fuzzy total 

cost 𝐷𝐹 (𝐺̃(𝑡∗)) = $2,726.113. 

6. Conclusions 

Many applications of the concept of fuzziness in inventory problems have been studied 

by many researchers. The one that we have applied in this study is based on the fuzziness 

of the input parameters and the decision variables. In this paper; we have developed two 

production inventory models for a single-stage production system in fuzzy environment. 

In the first model, input parameters are considered as fuzzy numbers, while production 

time period is considered as crisp value. In the second model, both input parameters and 

the production time are considered as fuzzy numbers. Each fuzzy model are defuzzified 

using the graded mean integration representation (GMIR) method. These models are 

solved for triangular and trapezoidal fuzzy numbers. The optimal policy for the model 

with fuzzy production time is determined using Lagrangean optimization method. It can 

be observed that the optimal solution of using the fuzzy production inventory model with 

the fuzzy production time period is not distinct than that of using the fuzzy production 

inventory model with the crisp production time period; therefore, it is not significant to 

have the production time as a fuzzy number.  

 

Numerical examples are provided for developed models, and effect of changes on 

optimal policy is studied. These examples showed that when the values of the production 

time decrease, the difference in the total cost between the fuzzy and crisp cases increases. 

This relationship may be beneficial to determine the simpler fuzzy inventory models, 

which the decision makers or researchers can use easily. The percentage change in the 

optimal production time is nearly equal of the changes in the input parameters. The 

results also signify that, by using triangular fuzzy numbers instead of trapezoidal fuzzy 

numbers, the total cost and the decision variable’s values are less affected due to the 

fuzziness in the components.  

 

Future research study includes the investigation of a model where different 

defuzzification methods, such as signed distance and centroid method, are applied in 

order to give more realistic applications of fuzzy sets.  
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