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Abstract 

In this paper Pitman's asymptotic efficiency (AE) as well as Kallenberg's intermediate AE of the goodness-

of-fit tests based on higher-order non-overlapping spacings is considered. We study log statistic as well as 

entropy type statistic based on k-spacings when k may tend to infinity as n approaches infinity. It certainly 

compliments the available results for fixed k and provides more general result. We show that both types of 

statistics based on higher ordered spacings have higher efficiencies in Pitman's sense compared to their 

counterparts based on simple spacings. It is also shown that the Kallenberg's intermediate AE of such test 

coincides with its Pitman's AE, the power of the tests are also discussed. 
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1. Introduction 

Consider a population with continuous cumulative distribution function (cdf) G and 

probability density function (pdf) g . We select an increasing order sample ' ' '

1 2 1, ,..., nZ Z Z −  

from this population. To show that the distribution of G is the same as that of some 

known distribution is the classical goodness-of-fit problem which is an important aspect 

of inferential statistics. A famous procedure adopted by statisticians is to transform the 

available data to uniform one using the probability integral transformation '( )Z U Z= . By 

doing so the support of G is reduced to [0,1] and the known cumulative distribution 

function  reduces to that of a uniform random variable on [0,1]. It is, in fact, the problem 

of testing the null hypothesis  

                                H0: ( ) 1g z = ; 0 1z  ,                                                         (1) 

against alternative that g is  probability density function of some non-uniform random 

variable having support on [0,1]. Suppose our problem is reduced by the above 

mentioned construction. One way of testing the goodness-of-fit problem is based on 

observed frequencies which perform better in detecting differences between the 

distribution functions. The second type of tests is based on spacings and they are useful to 

detect differences between the corresponding densities. It is known that comparable test 

based on k-spacings is better than chi-square test in terms of local power 

(Jammalamadaka & Tiwari 1987). It certainly provides an edge to the spacings based 

tests over frequency based tests.  Let 0 0Z =  and 1nZ =  the no-overlapping k- spacings 

are defined as 
' '

( 1)m mk m kD Z Z −= − , 1,2,...,m N= , ( )

1 1k

N N kD Z + = − , where integer [1, ]k n , 

[ / ]N n k =  is the greatest integer less than or equal to /n k . By putting NN =  if /n k  is 

an integer and 1+= NN otherwise. Note that ( ) ( ) ( )

1 2( , ,..., )k k k

ND D D D= and the quantities

( )k

mD , '

mZ  depend on n also but for simplicity of notation the extra suffix is omitted. We 

are testing hypothesis (1) against the sequence of alternatives 
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                           H1,n: ( ) 1 ( ) ( )g z dl z n= +  , 0 1z  ,                                    (2) 

where ( )n → ,as n→  and d >0 is a distance between 1,nH and 0H , ( )l z  is a 

direction of 1,nH , such that it is continuously differentiable and 

                        
1

0
( ) 0l z dz = ,       

1
2

0
( ) 1l z dz = .                                                  (3) 

Assume that the order of spacing i.e. k and n may tends to infinity jointly. We consider 

test based on the statistic 

                        ( ) ( )( )
1

, 1,2.
N

k

N i m

m

L D g nD i
=

= =                                           (4) 

where ( )1 log( )g nD nD= , ( ) ( ) ( )2 logg nD nD nD= . The large value of ( )NL D  rejects the 

hypothesis. Clearly, statistic ( )NL D  is symmetric in
( ) ,

k

m nD . Though symmetric statistics 

are not efficient in Pitman sense but practically fewer calculations are required in the 

analysis of such statistics. Tests of the form (4) based on simple spacing, i.e. when 

k=1and different ( )g z  , have been proposed by many authors (see, for example, (Pyke, 

1965) and the references contained therein). Distribution theory of such statistics and 

their asymptotic efficiencies have been studied, for instance, by (Rao & Sethuraman, 

1975) (Holst & Rao,1981). For i = 1 statistics (4) is called log- spacings statistics 

suggested by (Darling, 1953) with k=1 (simple spacing) and was able to obtain its limit 

distribution as a special case of its introduced formula. For i = 2 the statistics (4) is called 

entropy type statistics and is studied by (Gebert & Kale,1969 ) using the formula devised 

by (Darling, 1953) for the first two moments. The statistics (4) was also studied by 

(Kale,1969) in a general way for k=1 and i=1,2. The entropy type statistics based on 

simple spacings is studied by (Jammalamadaka and Tiwari, 1985) using the famous 

characterization of (Rao and Sethuraman, 1975). For the first time the asymptotic 

normality of the statistics based on disjoint k-spacings was discussed by Del Pino,1979) 

and has shown that it is more efficient in Pitman sense than simple spacings statistics. We 

also refer to (Morgan Kuo & Jammalamadaka, 1981) who have studied statistic of the 

form (4). The entropy statistics based on higher order spacings is studied by 

(Jammalamadaka and Tiwari, 1987) for fixed k using the characterization of (Del Pino, 

1979). The asymptotic normality of statistics equivalent to log-spacings statistics is 

proved by (Cressie, 1976) for overlapping k-spacings. A statistics based on disjoint k-

spacings involve considerably less calculation as compared to that based on overlapping 

k-spacings. Although statistics based on disjoint k-spacings is less efficient than the one 

based on overlapping k-spacings but its efficiency can be made even greater than 

overlapping based statistics by increasing the order of k. In his paper, (Czekala, 1999) 

studied statistics (4) for fix 1k  and calculated Bahadur efficiency for it. The present 

paper, using the characterization of (Mirakhmedov, 2005), discusses the test of goodness 

of fit based on (4) with 1k  which may increase jointly with n. We show, particularly, 

that logarithms tests based on higher ordered spacings has higher efficiency in Pitman 

sense compared to their counterparts based on simple spacings, the (Kallenberg, 1983) 

intermediate efficiency of statistics (4) is discussed, furthermore, the power of the tests is 

also studied. 
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Asymptotic normality of NL  under hypothesis. 

We present here two results on asymptotic normality and Cramer’s type large deviation 

theorem obtained by (Mirakhmedov, 2005) and (Mirakhmedov et al. 2011), respectively, 

for the sum of functions of uniform spacings (i.e. under null hypothesis). Suppose 

0 1 10 ... 1n nZ Z Z Z−=     =  be an ordered sample from uniform [0,1] distribution and 
( )

,

k

m nT their non-overlapping k-spacings.  Let , ( ),m nf u  m =1,2, …, N, be measurable 

functions. Consider the statistics 

                                           ( ) ( )

,

1

, ( )
N

k

N m n

m

m n nTG T f
=

= .                                                   (5) 

   Let Z and ,m kZ , m =1,2,…,N be independent and identically distributed random variables 

with common density function 1
( )( ) /k u

k ku u e
−

= , 0u  , where ( )k  is well known 

gamma function. If family of functions, , ( ), 1,2,...,m nf u m N=  are the same for all m 

then statistic given in (5) is said to be symmetric. Except this section we will consider 

symmetric form of our statistic in this article. For simple uniform spacing 

, 1,2,...,mT m n=  it is well known ( )1 2 1 2

1

, ,..., , ,..., | 0 ,
n

n n m

m

T T T Z Z Z Z
=

 
= = 

 
L L where 

( )XL represent the distribution of a random vector X and 1 2, ,..., nZ Z Z  are independent 

random variables of common exponential distribution with mean 1. 

By putting , 1, ,......N k k N kS Z Z= + +   , ( ) , ,

1

( )
N

N m n m k

m

Q Z f Z
=

= , ,
( , ),

N N kN corr Q S =
 

  , , , , ,( ) ( ) ( ) ( ) N
m n m n m k m n m k N

VarQ
h Z f Z Ef Z Z k

Nk
= − − − , , ,

1

( ),
N

N m n m k

m

A Ef Z
=

=  

                                      2

, ,

1

( )
N

N m n m k

m

Var h Z
=

=                                                   (6) 

( )
3

, ,

3,

1

N
m n m k

n

m N

h Z
E

=

= ( ) ( ) .N N Nand P Z P Q Z Z=   It is to be noted that

( ) ( )2 21N N NVarQ Z = − and clearly ( ) ( )NN NQ T G T A= −

 

also, by the well-known 

inequality 1/ 2

3, 4,N N   where 
4,N can be easily calculated from corresponding statistics, we 

have the following Theorem.  

  

Theorem 2.1 

There exists a positive constant C such that  

                                      ( ) ( ) 3,sup ,N NP Z Z C Z R as N−   →  

where ( )Z is the standard normal distribution.  

Theorem 2.1 is the corollary -2 of Mirakhmedov (2005). 

 

Theorem 2.2 

If 



Muhammad Naeem 

Pak.j.stat.oper.res.  Vol.XIV  No.4 2018  pp839-851 842 

                                             
21

lim 0 (7)
NN N


→


 

                                             ( )
3

, ,

1

1
lim (8)

N

m n m k
N

m

E h Z
N→

=

   

( )' '0 ln 0,1then for y such that Z N where   
 

                                           ( ) ( )( ) ( )( ) ( )1 1 1 1 9NP Z Z o− = − +
 

 

Proof: 

Due to conditions (7) and (8), inequality in Theorem2.1 gets the form  

                                            ( ) ( )
' 2

1 (10)NP Z Z C N −− 
 

 

Theorem 2.1 is readily proved from inequality (10) if 0 Z C  .  

Let 
' lnC Z N   

then by the well-known inequality  

                         
( )

( )
2 22 2

2
1 0

2 1 2

Z ZZe e
Z Z

Z Z 

− −

 −   
+

 and inequality (10) we have 

                          

( )

( )
( ) ( )  

'2 1 2 2

1 2

1
1 exp 2 ln (1)

1

N

N

P Z
C P Z Z Z Z C N N N o

Z

−
−

−  −  =
−

 

It completes the proof of Theorem 2.2. 

 

By virtue of Theorem 2.1 it is clear that random variable 
NG has asymptotically normal 

distribution with expectation 
NA and variance 2

N .

 It is obvious that for the statistic ( )NG Z  Cramer’s condition: there exists 0H   such 

that ( ) , ,exp | |m n m kE H f Z   , is satisfied. Therefore, by Theorem of (Mirakhmedov et 

al. 2011), it follows 

 

Theorem 2.3: 

For all 0Z  , ( )Z o n=  

( ) 
3

0

1
( )exp 1N N N N

Z Z Z
P G Z Z N NA Z O

N N N


  +   
 + =  − −  − +     

     
, 

where 0 1( ) ...N N Nu u  = + + is a special Cramer’s type power series; for N large enough  

jN C    , 0,1,2,...j = .  

 

The statistic NL  of equation (4) is a special case of (5) with  

              , ( ) ( ) ( ), 1,2m n if u f u g u i= = = ,                                                        (11) 
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where ( )1 logg u u= and ( )2 logg u u u= . Therefore, as a consequence of Theorem 2.1, we 

get the following Theorem  

 

Theorem 2.4: 

Under H0 the statistics NL  has asymptotically normal distribution with expectation  

( )iNA g  and variance ( )2

iN g  as N → . Here  

( )1

1 1
1 ...

2 1
A g

k
= + + + −

−
, ( )

2
2

1 2
1

1 1

6

k

j

g
j k




=

= − −
  

and

( ) ( ) ( )
2

2

2 2 2
1

1 1 1
1 ... , 1

2 6

k

j

A g k g k k k
k j




=

  
= + + + = + − −   

   
  

where   is the well-known Euler function. 

 

From Theorem 2.4 and well known theorem on convergence of moments ( Moran 1984) 

it follows that  

            ( )0 ( ) ( )N iE L Z NA g o N= + and ( ) ( )( )2

0 ( ) 1 1N iVar L Z N g o= + ,              (12) 

here and what follows 
J

P , JE and JVar denotes the probability, expectation and variance 

accounted under , 0,1JH J = . 

 

Asymptotic normality of ( )NL Z  under alternatives. 

We need two lemmas in order to study ( )NL Z  under alternatives (2). Recall that
( )

,

k

m nD , 

m=1, 2,…, N are the k- spacings under alternatives (2). Then 
( )

,

k

m nD  can be reduced to 

uniform spacings ( )
,
k

m nT , see (Morgan & Jammalamadaka 1981). The corresponding relation 

presented here as    

 

Lemma 3.1: Under alternative (2) 

            
( ) ( ) ( )2

, , 1 ( ) ( )
k k

m n m n p

m
nD nT l n O n

N
 

  
= − +  

  
,                                             (13) 

where ( ).pO  is uniform in m.  

The following simple Lemma stated without proof. 

 

Lemma 3.2: Let ( )p u defined on (0,1) be continuous except possibly for finitely many  u 

and be bounded in absolute value by an integrable function. Then 

             

1

1 0

1
( ) (1)

N

m

m
p p u du o

N N=

 
= + 

 
  , as N → . 

In what follows the functions ( )h u  (symmetric form) and ( ), 1,2ig u i =  are from (6) and 

(11) respectively. 

 

Theorem 3.1:  

Let 
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                                                ( )( ) 1k n o = .                                                               (14) 

Then 

( ) ( )( ) ( )2

1 ( ) ( )N i N iE L Z N A g B g o N n= + + , ( ) ( )2

1 (1 (1))N iVar L Z N g o= + ,       (15) 

where ( ) ( )2 21
( ) 2 ( 1) ( )

2
N i i iB g n g k k g d  = + ,and

( ) ( )( )2( ) ( ), 2 1 1ig corr h Z Z k Z k k = − + + +  

 

Proof. Let ( ) ( )J N JN iE L Z A g= . Due to (12), Lemma 3.1 and Lemma 3.2 we have

( ) ( )( )
1

2

1

0

1 ( ) ( ) ( ( ) (1)N i i pA g N Eg Z dl u n O n du o = − + + =
1

0

( ; , ) (1)N u k du o  + ,   (16) 

where 

                           ( )2( , ) ( ) ( ) ( )n u dl u n O n    = + ,                                                 (17) 

and 

                           ( ) ( )
0

; , (1 ( , )) ( )iu k g t n u t dt   


= − . 

We have 

                           ( )  
0

1
; , ( ) ( )exp /(1 )

(1 )
i kk

u k g v v v dv    




= − −
−  . 

 

According to Laplace’s method of asymptotic expansion of integrals ( Keener 1987) we 

can use the following expansion 

                           ( )
2

3

2

( )
exp /(1 ) 1 ( )

1 2(1 )

v v
v O v

 
  

 
− − = − + +

− −
. 

in order to get an asymptotic expansion of the integral in (16).  By using the above and 

                         ( ) ( )2 31
1 1 ( 1) ( )

2

k
k k k O k   − = + + + + , 

since under (14) (1)k O = , we find 

( ) ( ) ( )1 2 2 3

0

1 1
; , ( ) 1 ( ) 2( 1) ( 1) ( )

( ) 2

k v

iu k g v v e v k v k v k k O v dv
k

    


− −  
= − − + − + + + + 
  

  

= ( )( ) ( ) ( )iEg Z E Z k g Z− −  + ( )( ) ( )2 2 3 31
( ) 2( 1) ( 1) ( )

2
i iE g Z Z k Z k k O Eg Z Z − + + + +  

By putting this result into (16), use (17) instead of   and take into account (3) to get

( ) ( ) ( )( ) ( )
2

2 2 3 3

1, ( ) ( ) 2( 1) ( 1) ( ) ( )
2

N i i i

Nd
A g NA g n E g Z Z k Z k k O N n Eh Z Z = + − + + + +      (18) 

By direct calculations we find 

                          
( )2 2( 1) ( 1) 0E Z k Z k k− + + + = , 

                         
( )( )2 2( 1) ( 1) 0E Z k Z k Z k k− − + + + = , 

                         
( )2 2( 1) ( 1) 2 ( 1)Var Z k Z k k k k− + + + = + , 
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( )( ) ( ) ( )( )
1

1 2

1 1

1 1
,

k k

j j

E g Z k E g Z k
j j

 
−

= =

 
= − − = − 

 
   

( )2( ) ( ), 2( 1) ( 1)ig corr h Z Z k Z k k = − + + + , 

( ) ( )2( ) 2( 1) ( 1) ( 1) ( )i i iEg Z Z k Z k k g k k g − + + + = + .                                (19) 

The first relation in (15) follows from these and (18). The second relation in (15) can be 

proved by similar manner. Proof of Theorem 3.1 is completed. 

From Theorem 2.1 and Lemma 3.1 taking into account (19) immediately we have the 

following 

 

Theorem 3.2: 

Under alternatives (2) the random variable ( ) ( )( )N iL Z NA g N−  has asymptotically 

normal distribution with expectation ( ) ( )N i iN B g g and variance 1. 

Note that  

           ( ) ( ) ( )2 2( 1)
( )

2
N i i i

n k
N B g g n g d  

+
= ,                                       (20) 

where 

                                                   
( ) ( )

2 3

2

0

( )
2 1

i

i

k
g

k g




−

=
+

.                                      (21) 

 

Asymptotic Efficiency.  

We investigate here the asymptotic efficiency (AE) of the goodness of fit tests based on 

statistics of type (4). There are several approaches to define AE of tests which differ by 

the conditions imposed on the asymptotic behaviors of  , the power   and the sequence 

of alternatives ,1nH . The most common is the Pitman's approach. The alternatives (2) 

with ( ) ( )( )
1 4

1n k n
−

= + are Pitman's alternative. The Pitman asymptotic relative 

efficiency (ARE) of a test relative to another test is defined to be the limit of the inverse 

ratio of the sample sizes required to obtain the same limiting power at a sequence of 

alternative converging to the hypothesis. The limiting power should be a value between 

the limiting sizes and the maximum power 1, in order that it can give information about 

the power of the test. When this converges to a number in ( ),1 then a measure to the 

rate of this convergence called the efficacy can be computed. Following the idea of 

(Fraser, 1957) we define efficacy of the test based on statistic, say, L as 

                                                  ( )
4

2

L

L

e L



=                                                          (22) 

Under Bahadur's approach the power 1  and the alternative 1H  are fixed, more 

precisely, 1H  does not approach 0H  and the test is characterized by the rate of decrease 

of size . Similarly, one can fix   and 1H  and measure the performance of the test by 
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the rate of convergence of   to 1 this is Hodges Lehman approach. Finally , one can 

consider two intermediate settings : (i) 0 1   is fixed while 0→ and 1 0H H→  not 

too fast". (ii) 0  is fixed while 1 → and 1 0H H→ " not too fast" . These situations 

give rise to the concept of intermediate asymptotic efficiencies (IAE) due to (Kallenberg, 

1983) the reader is also suggested to go through paper (Inglot, 1999). Sometimes,

IAE−  is used in the first case i.e. intermediate between Pitman's and Bahadur;s 

settings and IAE − in the second case i.e. intermediate between Pitman's and Hodges-

Lehman's settings (Ivchenko & Mirakhmedov, 1995). Investigation of the AE of the test 

is based on the probabilistic limit theorems for the test statistics. The asymptotic 

normality result of proved by (Mirakhmedov, 2005) and Cramer's type large deviation 

theorem of (Mirakhmedov et al. 2011) of section (Asymptotic Normality) serve the 

purpose in this paper. Let ( )N ig be the power of  NL with size 0  and

1 0 0( ) ( ( ) ( )) / ( )N N N i i iL N A g A g g = − , 1(1 )u −= − .  

 

Theorem 4.1: 

Let 1H be specified by (2) with ( ) ( )( )
1 4

1n n k
−

= + Then  

(i) the critical region of test NL  is ( ) ( )( ) 0 0: i iZ Z u N g NE g Z  +  and the 

asymptotic power is 

 ( )
2

;
2

i

d
k g u

 
 − 
 

 where ( )
( ) ( )

3
2

2

0

;
2 1

i

i

i

k
k g

k g




−

=
+

 and

( ) ( )( ) ( )( )( )22 1

0 cov ,i i ig Var g Z k g Z Z −= − ,  is the standard normal distribution 

function and ( )1 1u −= −  

(ii) Asymptotically most powerful test is the Greenwood test based on statistics 

2 2

,

1

N

N m k

m

V Z
=

= for which the critical region is ( ) ( ) : 2 1 1Z Z u n k n k + + + and the 

asymptotic power is
2

.
2

d
u

 
 − 
 

 

(iii) Asymptotic relative efficiencies of NL  w.r.t. Greenwood test is ( )2 ; .ik g  

 

Proof: By putting ( )
( ) ( )

( )
0

0

N i

N

i

L Z NA g
L Z

N g

−
=% , by Theorem 2.4 

( )  ( )
( )

( )
0

0 0

0

i

N N

i

c NA g
P L Z c P L Z

N g

 − 
 =  

  

%

 

( )

( )
( )0

0

1 1
i

i

c NA g
o

N g

 − 
= − + 

  

 

( ) ( )1u o= − +  

where ( ) ( )0 0 ,i ic u N g NA g = + the first relation in (i) is proved. 
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By using the above results, Theorem 2.4 and Theorem 3.2 we get power N  as given by

( ) 
( ) ( )

( )

( )

( )
1 1

1 1

0 0

N i i

N N

i i

L Z NA g c NA g
P L Z c P

N g N g


 

 − − 
=  =  

  

 

                                  
( ) ( )

( )
1

1

0

N i

N

i

L Z NA g
P u

N g
 



 − 
=  − 

  

 

                                   ( )( ) ( )1N ig u o= − +  

Where for our statistics ( )
( )

( ) ( ) ( )( )2 2 2 2
1

; 1 1 .
2

N N i

n k
L n k g d o  

+
= +  

Since ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2

0 0, 1 , 1 2 1N N NE Z Var Z k V E V k k and Var V k k= = = = + = +  

We have ( )
( )

( ) ( )( )2 2 2
1

1 1 .
2

N N

n k
V n d o 

+
= +

 
From this we can easily find out the 

rejection region and power which is given by ( )( ) ( )2 1 .N N NV u o = − +  This for the 

Pitman’s alternatives i.e. ( ) ( )( )
1 4

1n n k
−

= + yields 
2

.
2

N

d
u

 
=  − 

 
 Thus, part (ii) is 

proved. 

Now  

                               ( )( ) ( ) ( ) 1 1N N N Ne L Z Log P L Z NE L Z= −   

                                                  ( )
( )( ) ( )( )

( )( )
1 0

1

0

N N

N

N

NE L Z NE L Z
Log P L Z

NVar L Z

 − 
= −  

  

%  

                                                  ( )( ) ( )( )2 .N N N NLog L o L = −  +
 

For our statistics, pitman's alternatives and due to the relation

( ) ( )( )1 22 1 1Log Z Z o−− − = +  we get ( )( ) ( ) ( )( )
12 2 3

0 8 1i

N N ie L Z g k k 
−− −= +  and 

( ) ( )
12 4N Ne V −

=  it yields 

                          

( )
( )

( ) ( ) ( )
( )

2 3
2 2

22
0

, ; .
2 1

i
N N

N N i

iN N

e L k
ARE L V k g

k ge V








−

= = =
+

 

This completes the proof of the Theorem 3 

 

Theorem 4.2: 

Let 1H  be specified by (2) and ( ) 0n → ( )2, .nk n → If  

(i) ( )
2

iE g Z
+

   for some 0  then in the family of alternatives logP  or  

(ii) ( ) ( )exp iE H g Z    for some 0H   then in the family alP          

   
( )

( )
( )

( )
( )( )

4 2 3 2

0

2
1 1 .

2 1

i

N N i

N N

e L d k g
o

ke V





− −

= +
+
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Proof: For statistics ( )nL Z   we have ( )( ) ( ) ( )( )2 2 1

0N N iL Z N n d g  − =  

So 

                                       
( )( ) ( )( )( ) ( )( )( )

( ) ( ) ( )( )4 4 2

0

1
1 1

2

N N N N N N

i

e L Z Log L Z o L Z

N n d g o

  

  −

= −  − +

= +

 

Which can be written as 

                                  

( )( )
( ) ( )

( )

( )
( )( )

( ) ( )( )

4 2 3 2

0

4

4 2

1 1
1 2 1

; 1 1 , 1,2.

i
N N i

i

e L Z d k g
o

n k n k

d k g o j








− −

= +
+ +

= + =

 

This completes the proof. 

 

The statistic ( )NL Z  satisfies the condition (ii) of Theorem 4.2, which is known as 

Cramer’s condition, whereas the Greenwood statistics ( )2

NV Z  does not satisfies that 

condition. Due to this fact and the asymptotic normality theorems stated above we argue 

that Greenwood test, satisfying condition (i) of Theorem 4.2, is still most efficient in the 

weak IAE (commonly known as Kallenberg’s IAE) sense i.e. in the family of 1 6P

alternatives while the log-spacings statistics ( )NL Z , satisfying Cramer’s  condition, is 

much more efficient in strong IAE sense i.e. in the family of alternatives allP  except 1 6P  

as compared to Greenwood statistics. These improvements in the efficiency properties of 

Greenwood test are discussed in detail in the unpublished PhD thesis of the author. 

 

Remarks. The IAE considered above is somewhere between pitman’s and Bahadur’s 

efficiency. We may consider IAE between Pitman’s and Hodges-Lehmann’s  by taking 

asymptotic value of ( ) ( ) 1 0n N Ne Log P L Z NE L Z = −  as a measure of efficiency i.e. in 

this case we study the rate of convergence of the second type error. Such approach was 

introduced by (Ivchenko & Mirakhmedov, 1995). The analysis of B IAE−
 
proceeds 

along the same lines as .IAE−  Due to Theorem 3.1 

                                          
( )( )  ( ) 1 , 0

ˆk

N m n NP L D u P L T u = 
                             

Where                              ( ) ( )( ) ( ) ( )( )( ),

1

ˆ ˆ ˆ, 1 , .
N

k

N i m n i i

m

L T g nT g x g x n u
=

= = −  

Recall ( ) ( ) ( ) ( )( )2, .n u d l u n O n    = +
 

We have 

( )  ( )( )  ( )
0

1
ˆexp exp 1 exp

1 1
i i

u
E Hg Z E Hg Z Hg i u du

 


 

= − = − − 
− − 
  

( ) ( )  ( ) 
0 0

1 1
exp exp 2 exp .

1 1 1
i i i

u
Hg u u du Hg u u du E Hg Z



  

 
 

= − −  −  
− − − 
   

 

Thus the conditions of Theorem 2.1 and 2.2 stated in section (Asymptotic Normality) are 

satisfied and large deviation result of Theorem 2.3 can be used for the analysis of 
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( ).N ie g The corresponding calculations show that for ( )N ie g the assertions of Theorems 

4.1 and Theorem 4.2 are still true i.e. ( )N je g and ( )N ie g are asymptotically equivalent. 

Conclusions 

In the Table below the values of ( )2 ; ik g  are given for the different values of k. By 

using the relations in (21) we get the ARE of statistics ( )NL Z . Results are tabulated as 

under. The table is obtained from simulation through Mat lab 

Table 1 comparison of correlation coefficient for different order (k) 

K 2

1( ; )k g  2( ; )k g  

1 0.3750 0.8571 

2 0.5714 0.9000 

3 0.6750 0.9231 

4 0.7385 0.9375 

5 0.7813 0.9474 

10 0.8798 0.9706 

20 0.9368 0.9844 

50 0.9739 0.9935 

100 0.9868 0.9967 

150 0.9912 0.9978 

 

From the table we see that the value of ( )2 ; ik g
 
increases as k increases; although 

( )2lim ; 1i
k

k g
→

=  but the table reveals that enough efficiency is achieved even for 

n=20.Thus we found that 

1. The test based on statistics ( )NL Z , can detect alternatives (2) at a distance

( ) ( )( )
1 4

1n n k
−

 + and these statistics have higher efficiency in Pitman's and 

Kallenberg's sense compared to their counterparts based on simple spacings. 

2. Asymptotic efficiency of test ( )NL Z is defined by the value of ( )2 ; ik g  which is 

correlation coefficient between statistic ( )nL Z and Greenwood's statistic. 

3. The Pitman's and Kallenberg's efficiencies coincide and are defined by ( )2 ; ik g . 

4. Among the tests defined in (5) ,those satisfying Cramer’s condition are more 

efficient compared to  those do not satisfy Cramer’s condition. 

5. The w− IAE and  −  IAE are asymptotically equivalent. 

6. It can be observed that entropy statistics is more efficient than log-statistics for 

small values of n but for large n the efficiency of both statistics are nearly 

equivalent. 
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7. The table reveals that for large enough k the Greenwood statistics is not the only 

most efficient statistics rather logarithm statistics are as efficient as Greenwood 

statistics as .k →  
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