
Pak.j.stat.oper.res.  Vol.XIV  No.2 2018  pp289-303 

Comparison of Significant Approaches of Penalized Spline Regression 

(P-splines) 

Saira Sharif 
College of Statistical and Actuarial Sciences - University of the Punjab, Pakistan 

saira.sharif@ucp.edu.pk 

 

Shahid Kamal 
College of Statistical and Actuarial Sciences - University of the Punjab, Pakistan 
kamal_shahid@yahoo.com 

Abstract  

Over the last two decades P-Splines have become a popular modeling tool in a wide class of statistical 

contexts. Fundamentally, semiparametric regression methods combine the leads of parametric and 

nonparametric approaches to regression analysis, while in precise, penalized spline regression uses the 

knowledge of nonparametric spline smoothing as a generalization of smoothing splines that let more 

suppleness in a choice of model with respect to the basis functions and the penalty. The present article 
compares two significant approaches of penalized spline regression models named as p-splines based on 

different basis functions with numerous knot selections and various types of penalties. These model fits 

have been applied on Wood Strength data to compare by calculating nonlinear least square method; also 

approaches are compared on several aspects: numerical immovability, quality of fit, derivative estimation 

and smoothing. This comparison will help us to fit best suitable model for conforming best suitable 

conditions and scenarios.  

Keywords:  Penalized Splines, B-splines Basis, Truncated Power Basis, Ridge Penalty 

and Difference Penalty. 

1. Introduction 

Up until the mid-1990s most literature on spline-based nonparametric regression was 

concerned with smoothing splines and their multivariate extension, where the penalty 

takes a particular form and the number of basis functions roughly equals the sample size. 

P-splines are keen methods for modeling nonlinear smooth effects of covariates within 

the additive models framework. It’s a great approach of smoothing in handling a wide 

range of nonparametric and semi-parametric modeling situations. These are the 

regressions which uses splines, or piecewise continuous polynomials, paired with a 

mathematical penalization to find the best fit to the data. P-splines are generally 

regression splines fit by least-squares with a roughness penalty. It is very flexible idea 

that can be seen as a generalization of spline smoothing with a more flexible choice of 

bases, penalties and knots.  

 

Namely, one chooses a spline basis based on some sufficiently large set of knots and 

penalizes unnecessary structure. Different basis functions, form of the penalties, amount 

and location of knots all provide a wide spectrum of smoothers. In husk, penalized 

regression splines as simple smoothing model is fitted by usurping   

 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥2 + ∑ 𝑏𝑗

𝑘

𝑗=1

(𝑥 − 𝑡𝑗)
+

2
= 𝐵(𝑥)𝜃 
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as an average function for the knots 𝑡1, 𝑡2, … , 𝑡𝑗 with large k. A combine recipe is to take 

high dimensional basis 𝐵(𝑥) by choosing open-handedly large number of knots. Then to 

minimize the criterion (𝑦 − 𝐵𝜃)′(𝑦 − 𝐵𝜃) + λ𝜃′𝐷𝜃 with sufficiently chosen D as 

penalty matrix and data driven penalty parameter λ. However, in recent years, there has 

been a great deal of research on more general spline/penalty strategies. Besides for 

selecting the number of knots, Eilers & Marx (1996) suggest to use a generous numbers, 

while Rupert (2002) suggests min (40, n/4) knots and Wood (2006) proposes k = 10 

*3(m-1) with m as dimension of covariates. Although practical significance has two 

selection flairs; one to choose adequate number of knots to fit the model and increase the 

numbers until the likelihood does not further increase and secondly choose a large k and 

decrease it slightly to check that the likelihood does not decrease. Whereas for Model 

selection Wager, Vaida & Kauermann (2007) and Kneib & Greven (2010) suggested 

automatic correction of degree of freedom.  

 

In 1986 O’Sullivan introduced a class of penalized splines that is a direct generalization 

of smoothing splines based on B-spline basis functions provided by de Boor (1978). After 

that Eilers & Marx (1992; 1996) again raised the issue. In 1996, they introduced a 

modified version of O’Sullivan’s estimator and coined the term P-splines. This P-spline 

combines regression on B-spline basis, with an equidistant grid of knots and a discrete 

roughness penalty, i.e., higher-order differences in the penalty to smooth scatterplots. 

They proposed to use a relatively large number of knots and a difference penalty on the 

coefficients of adjacent B-splines. While Claeskens, Krivobokova & Opsomer (2009) and 

Li & Ruppert (2008) presented that if generous no. of knots are chosen then penalty 

asymptotically dominates and Kauermann, Krivobokova & Fahrmeir (2009) revealed that 

if moderate no. of knots are chosen then there is no asymptotically influence at penalty. 

Setup presented by Eilers & Marx (1996) is easy to use, and allows great flexibility, that 

any order of penalty can be combined with any order of the B-spline basis. 

 

Subsequently Ruppert & Carroll (1997) used the truncated power basis (TPB) to 

represent the components as penalized splines with smoothness controlled by a ridge type 

penalty over the coefficients of the parametrization. Rather than placing the knots on an 

equidistant grid, they chose to use quantiles of the observations for the variable X as knot 

locations. Later Wand (1999) derived an asymptotic approximation of P-splines mean 

squared error, when penalties are used in combination with fixed basis. Ruppert & 

Carroll (2000) and Ruppert (2002) provide a strong support to Penalized splines.  

 

Afterwards, Ruppert, Wand & Carroll (2003) present an excellent overview of theory and 

applications of semi-parametric models based on penalized splines and named their 

approach as P-splines too. They proposed the use of P-splines as a low rank smoother that 

can be seen as a compromise between smoothing and regression splines.  Ruppert, Wand 

& Carroll (2003) used truncated power functions in the basis with quantile based knots of 

the independent variable and a ridge penalty. P-splines are becoming more and more 

popular and achieved general recognition since Eilers & Marx (1996) and Ruppert, Wand 

& Carroll (2003) introduced it. 
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2. Methodology 

This article is presented to compare and document strengths and weaknesses of the two 

approaches of P-splines, one of Eilers and Marx (1996) which uses B-spline basis, 

equally-spaced knots and difference penalties and second is Ruppert, Wand and Carroll 

(2003), which uses a truncated power basis, knots based on quantiles of the independent 

variable and a ridge penalty. Here is a great collaboration to make well-informed choices 

for what type of splines should be used, how knots should be spaced and what penalty 

should be chosen. This article is organized as follows: section 1 give details about spline 

models of both approaches and compares their components. Section 2 compares both 

approaches of P-splines by example using wood strength data.  

Table 3.1:   Wood Strength data 

Concentration 1.0 1.5 2 3 4.0 4.5 5.0 5.5 6.0 6.5 7 8.0 9.0 10 11 12 13 14 15 

Strength 6.3 11.1 20 24 26.1 30.0 33.8 34.0 38.1 39.9 42 46.1 53.1 52 52.5 48 42.8 27.8 21.9 

 

Here variable “Concentration” is used as explanatory variable while variable “Strength” 

as dependent variable.  

 

And in Section 3 in order to gain more insight into the practicability and the limitations of 

approaches both approaches are discussed in some aspects, including: numerical 

immovability, quality of the fit & visualization, derivative estimation and smoothing. In 

present article, we will call Eilers and Marx (1996) approach as E&M P-Spline, while 

Ruppert, Wand and Carroll (2003) approach as RWC P-spline. The methodology of this 

article is implemented in R-language. 

3. Spline Models 

3.1 Model 1: (E&M P-Spline) 

As discussed above E&M P-Splines combine regression based on B-splines basis with 

equally spaced grid of knots and used discrete roughness higher-order finite differences 

as penalty to smooth scatter plots. Mathematically, Eilers & Marx (1996) presented 

penalized spline model is: 

𝑆(𝑋) = ∑ {𝑦𝑖 − ∑ �̂�𝑗𝐵𝑗(𝑋)

𝑛

𝑗=1

}

2

+ 𝛾 ∑ (∆𝑘�̂�𝑗)
2

                            𝐌𝐨𝐝𝐞𝐥 𝟏

𝑛

𝑗=𝑘+1

𝑚

𝑖=1

 

 

Whereas penalty proposal based on finite differences i.e., ∆𝑘�̂�𝑗 

 

If suppose Dk = k, then the matrix Dk is the kth differences of , and   > 0. Where 

�̂� = B(B′B + D𝑘)−1B′𝑦 

 

In other words, If XB is the X-matrix corresponding to the t B-spline basis i.e.,  

XB = X𝑇L𝑝,          (4.1) 
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where Lp is a square invertible matrix. Then fitted values for a penalized spline can be 

writing as 

�̂� = X(X′X + 
2D)

−1
X′𝑦 

 

Substitution of eq (4.1) allow us to express a penalized spline fit of degree p in terms of 

the B-spline basis as 

�̂� = XB(XB
′ XB + 

2pLp
′ DpLp)

−1
XB

′ y                                (4.2) 

 

An important component of P-splines is number and position of knots as it is crucial 

problem especially with regression splines. Small number of knots results in a not 

flexible function space to capture the enough variability of the data. The position of the 

knots may possibly have a strong influence on estimation and large number of knots may 

lead to serious over fitting. For this Eilers & Marx (1996) proposed a remedy based on 

roughness penalty. Also they chose a moderate number of equally spaced knots within 

the domain of x to ensure enough exibility. Sufficient smoothness of the fitted curve is 

achieved through a difference penalty on adjacent B-spline coefficients. 

4.2 Model 2: (RWC P-Spline) 

Another approach of p-spline models was offered by Ruppert et al., (2003). They used 

truncated power functions, F, as basis with quantile based knots and have a ridge penalty 

on the truncated power function (TPF), whatever their degree. For a given degree p, 

column j of F is given by   

𝑓ij = {
       0                     𝑥 < 𝑡𝑗

(𝑥𝑖 − 𝑡𝑗)
𝑝

           𝑥 ≥ 𝑡𝑗

 

 

The vector t contains the knots chosen as quantiles of the xs. The model for E(y) = μ is 

given by        

𝜇 = 𝛽0 + 𝛽1𝑋 + ⋯ + 𝛽𝑝𝑋𝑝 + ∑ 𝑏𝑗(𝑋 − 𝑡𝑗)
+

𝑝
𝐾

𝑗=1

 

or 𝜇𝑗 = ∑ 𝛽𝑘𝑋𝑖
𝑘𝑝

𝑘=0 + ∑ 𝑓𝑖𝑗𝑏𝑗
𝑛−1
𝑗=1           

or μ = X + Fb, 

where X is a m by p+1 matrix with to in row i. So mathematically, Ruppert, Wand and 

Carroll (2003) presented p-spline model as: 

𝑆(𝑋) =  ∑ {𝑦𝑖 − (𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽𝑝𝑥𝑝 + ∑ 𝑏𝑗
𝑘
𝑗=1 (𝑥 − 𝑡𝑗)

+

𝑝
)}

2
𝑚
𝑖=1 + 𝜆|𝑏|2       Model 2 

i.e. minimization function as        

QF = |y − X− Fb|2 + |b|2, 

in which we recognize a ridge penalty on b. Minimization of QF leads to the system of 

equations 

[X′X                 X′F   
F′X           F′F + I

] [
𝛽
𝑏

] = [
X′y

F′y
] 
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For the number of basis functions in B chosen “too large”, means very small value of , 

the fitted curve over-fitted the data giving too many fluctuations. Increasing  increases 

the smoothness and in the limit a polynomial fit of degree p is obtained. Quantiles of x 

are chosen for the positions of the knots. By increasing λ the smoothness can be tuned. 

Also, we can express the eq (4.2) in form of penalty used by B-Splines basis as  

 �̂� = Xp(Xp
′ Xp + D̃)

−1
Xp

′ 𝑦  

 

That is a type of ridge regression.  

 

While a ridge penalty on TPF is equivalent to a difference penalty of (fixed order) on B-

splines; B-splines allow a flexible choice of the order of the penalty, such as B-splines 

can be computed almost trivially from TPF.  

 

As to apply p-splines, different spline bases will be chosen for a balance of numerical 

stability and ease of implementation. Thus in next section we look at basis functions used 

for both P-spline models and their mutual relationships.  

Truncated Power Function basis vs. B-Spline basis 

Truncated polynomials as basis are simple and useful for understanding spline regression 

but not numerically stable when the number of knots is large and the smoothing 

parameter λ close to zero. In this case the computation has to be organized carefully, 

involving QR or Demmler-Reinsch decomposition While B-Spline basis are easy to 

calculate and numerically superior alternatives. 

 

We begin with TPF and equally-spaced knots since they are a little easier to explain, as 

TPFs Basis are ( ) ( )11, , , , , ,
p pp

kx x x t x t
+ +

− −K K and B-splines can be derived from them 

as differences of TPF. 

Bj(x; 0) = fj−1(x; 0) − fj(x; 0) = −fj(x; 0) 

Bj(x; 1) = fj−2(x; 1) − 2 fj−1(x; 1) + fj(x; 1) = 2fj(x; 1) 

M 

Bj(x; p) = −1p+1p+1fj(x; p)/(hpp!) 

 

Where B-splines based on a K+1 non decreasing set of knots,𝑡0, 𝑡1, 𝑡2, … 𝑡𝑘  are defined 

by de Boor (1978), as the ith B-splines function of degree p is obtained by recurrence 

from first-order B-splines 

𝐵𝑖,𝑝,𝑡(𝑋) =
𝑋 − 𝑡𝑖

𝑡𝑖+𝑝 − 𝑡𝑖
𝐵𝑖,𝑝−1,𝑡(𝑋) +

𝑡𝑖+1+𝑝 − 𝑋

𝑡𝑖+1+𝑝 − 𝑡𝑖+1
𝐵𝑖+1,𝑝−1,𝑡(𝑋) 

for all real numbers x, with 

𝐵𝑖,0,𝑡(𝑋) = {
1,                        𝑖𝑓 𝑡𝑖 ≤ 𝑋 < 𝑡𝑖+1,

0,                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
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Now by using example of wood strength data, we derive B-splines from differences of 

TPFs. Thus the matrix of TPF basis and matrix of B-spline basis derived from TPFs are 

given below. 
 

From wood strength data presented in section 3, we have: 

min(x) is 1.0 i.e. minimum concentration 

and 

max(x) is 15.0 i.e. maximum concentration. 

 

If we use 3 breaks and 3rd degree polynomial for this data, then 10 equally spaced knots 

are found as: 

                 -13.000,           -8.333,            -3.667,            1.000,             5.667, 

                    0.333,           15.000,           19.667,          24.333,            29.000. 

Table 4.1:    Thus the matrix of truncated power basis for wood strength data is as 

follows: 

2744.000 813.0370 101.6296 0.000 0.00000000 0.0000000 0 0 0 0 

3048.625 950.8287 137.9213 0.125 0.00000000 0.00000000 0 0 0 0 

3375.000 1103.3704 181.9630 1.000 0.00000000 0.00000000 0 0 0 0 

4096.000 1455.7037 296.2963 8.000 0.00000000 0.00000000 0 0 0 0 

4913.000 1876.0370 450.6296 27.000 0.00000000 0.00000000 0 0 0 0 

5359.375 2113.5787 544.6713 42.875 0.00000000 0.00000000 0 0 0 0 

5832.000 2370.3704 650.9630 64.000 0.00000000 0.00000000 0 0 0 0 

6331.625 2647.1620 770.2546 91.125 0.00000000 0.00000000 0 0 0 0 

6859.000 2944.7037 903.2963 125.000 0.00000000 0.00000000 0 0 0 0 

7414.875 3263.7454 1050.8380 166.375 0.57870370 0.00000000 0 0 0 0 

8000.000 3605.0370 1213.6296 216.000 2.37037037 0.00000000 0 0 0 0 

9261.000 4357.3704 1587.9630 343.000 12.70370370 0.00000000 0 0 0 0 

10648.000 5207.7037 2032.2963 512.000 37.03703704 0.00000000 0 0 0 0 

12167.000 6162.0370 2552.6296 729.000 81.37037037 0.00000000 0 0 0 0 

13824.000 7226.3704 3154.9630 1000.000 151.7037037 0.2962963 0 0 0 0 

15625.000 8406.7037 3845.2963 1331.000 254.0370370 4.6296296 0 0 0 0 

17576.000 9709.0370 4629.6296 1728.000 394.3703703 18.9629630 0 0 0 0 

19683.000 11139.3704 5513.9630 2197.000 578.7037037 49.2962963 0 0 0 0 

21952.000 12703.7037 6504.2963 2744.000 813.037037 101.6296296 0 0 0 0 
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Table 4.2:   And the required difference matrix is: 

0.00164 -0.00656 0.00984 -0.00656 0.00164 0.00000   0.00000   0.00000   0.00000  0.00000  

0.00000  0.00164 -0.00656 0.00984 -0.00656 0.00164 0.00000  0.00000   0.00000   0.00000  

0.00000  0.00000  0.00164 -0.00656 0.00984 -0.00656 0.00164 0.00000  0.00000   0.00000  

0.00000  0.00000  0.00000  0.00164 -0.00656 0.00984 -0.00656 0.00164 0.00000  0.00000  

0.00000  0.00000  0.00000  0.00000  0.00164 -0.00656 0.00984 -0.00656 0.00164 0.00000  

0.00000  0.00000  0.00000  0.00000  0.00000  0.00164 -0.00656   0.00984 -0.00656 0.00164 

Table 4.3:   Thus our required B-spline basis matrix using truncated power basis is: 

1.66667e-01 1.66667e-01 1.66667e-01 0 0 0 

1.18630e-01 6.55802e-01 2.25363e-01 0.000205 0 0 

8.08431e-02 6.25668e-01 2.91849e-01 0.001640 0 0 

3.10982e-02 5.22352e-01 4.33431e-01 0.013120 0 0 

7.59232e-03 3.86237e-01 5.61893e-01 0.044278 0 0 

2.60417e-03 3.15104e-01 6.11979e-01 0.070313 0 0 

4.85909e-04 2.46842e-01 6.47716e-01 0.104956 0 0 

7.59232e-06 1.85139e-01 6.65413e-01 0.149440 0 0 

2.43978e-15 1.33443e-01 6.61747e-01 0.204750 6.07386e-05 0 

4.25213e-15 9.23758e-02 6.37626e-01 0.269050 9.49040e-04 0 

2.96663e-15 6.07386e-02 5.96696e-01 0.338678 3.88727e-03 0 

3.59338e-15 2.08333e-02 4.79167e-01 0.479167 2.08333e-02 0 

5.42536e-15 3.88727e-03 3.38678e-01 0.596696 6.07386e-02 0 

6.15294e-15 6.07386e-05 2.047450e-01 0.661747 1.33443e-01 0 

8.30050e-15 5.27105e-16 1.049563e-01 0.647716 2.46842e-01 0.000486 

5.98387e-15 -7.98833e-16 4.427843e-02 0.561893 3.86237e-01 0.007592 

-4.30970e-17 9.69566e-15 1.31195e-02 0.433431 5.22352e-01 0.031098 

-1.24162e-14 1.35755e-14 1.63994e-03 0.291849 6.25668e-01 0.080843 

-1.18928e-14 1.50358e-14 -6.96356e-15 0.166667 6.66667e-01 0.166667 

 

The main advantage of the truncated power function basis is the simplicity of its 

construction and the ease of interpreting the parameters in a model that corresponds to 

these basis functions. However, there are two weaknesses when to use this basis for 

regression. These functions grow rapidly without bound as increases, resulting in 

numerical precision problems when the data span a wide range. Furthermore, many or 

even all of these basis functions can be nonzero when evaluated at some value, resulting 

in a design matrix with few zeros that precludes the use of sparse matrix technology to 

speed up computation. This weakness can be addressed by using a B-spline basis. 

 

The simplest system of TPF uses p = 0; it consists of step functions with jumps of size 1 

at the knots. The right branch of a TPF of degree p looks like (𝑥 − 𝑡𝑗)
𝑝

; the left branch is 

zero. Following figure shows quadratic TPF bases vs quadratic B-Spline basis, with 

equally-spaced knots. 
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Figure 1: B-spline bases with equally spaced knots    vs Truncated Power bases with equally spaced knots 

5.   Comparisons of Models by Example: 

For Model 1: 

𝑆(𝑥) = ∑ {𝑦𝑖 − ∑ �̂�𝑗𝐵𝑗

𝑛

𝑗=1

(𝑋)}

2
𝑚

𝑖=1

+  ∑ (∆𝑘�̂�𝑗)
2

𝑛

𝑗=𝑘+1

 

 

Cubic B-spline basis with equally spaced knots and squared difference penalty are used. 

For calculating smoothing parameter GCV criterion is customized.   

By setting 10 equally spaced knots as:  

                                     1,              2.556,             4.112,             5.668,             7.224,                    

                              8.778,            10.336,           11.889,           13.448,                  15 

Table 4.4:  We construct cubic b-spline basis at wood strength data as shown below 

0 0 0 0 0 0 0 0 0 0 0 

0.557472 0.124527 0.005534 0 0 0 0 0 0 0 0 

0.533812 0.37635 0.04427 0 0 0 0 0 0 0 0 

0.091122 0.566338 0.338653 0.003886 0 0 0 0 0 0 0 

0.000091 0.20475 0.661739 0.133412 0 0 0 0 0 0 0 

0 0.070331 0.612005 0.31506 0.002602 0 0 0 0 0 0 

0 0.013126 0.433478 0.522309 0.031086 0 0 0 0 0 0 

0 0.000205 0.225412 0.65579 0.118597 0 0 0 0 0 0 

0 0 0.080871 0.625701 0.291789 0.001638 0 0 0 0 0 

0 0 0.016691 0.456614 0.501085 0.0256096 0 0 0 0 0 

0 0 0.000487 0.246909 0.647688 0.104916 0 0 0 0 0 

0 0 0 0.020849 0.479247 0.479086 0.0208173 0 0 0 0 

0 0 0 0 0.105010 0.647754 0.2467516 0.0004844 0 0 0 

0 0 0 0 0.001644 0.291955 0.6256086 0.0807920 0 0 0 

0 0 0 0 0 0.031128 0.5224586 0.4333094 0.013104 0 0 

0 0 0 0 0 0 0.1335298 0.6617565 0.204623 0.000090 0 

0 0 0 0 0 0 0.0038963 0.3387756 0.566281 0.0910469 0 

0 0 0 0 0 0 0 0.0442955 0.376451 0.533756 0.045497 

0 0 0 0 0 0 0 0 0 0 1 
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Table: 4.5:   And we found difference penalty matrix of order 3 as 

1 -3 -3 -1 0 0 

-3 10 -12 6 -1 0 

3 -12 19 -15 6 -1 

-1 6 -15 19 -12 3 

0 -1 6 -12 10 -3 

0 0 -1 3 -3 1 

 

For fitting Model1 at wood strength data we use 10 equally spaced knots, 3rd order 

difference penalty, and calculated by using GCV criterion with GCV =  83.3827 with 6 

df.  Plot of the model1 fit is shown below: 

 

Figure 2:        Model1 Fit (GCV =83.3827,  df= 6)

 

Table 4.6:   We found the residual table by above p-spline (model 1) fit as follow:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concentration Residuals 

1 0.60452391 

1.5 -2.25444024 

2 2.18956401 

3 0.99529131 

4 -1.75211456 

4.5 -0.27581749 

5 1.10047958 

5.5 -1.12322335 

6 0.55307371 

6.5 -0.07062922 

 

Concentration Residuals 

7 -0.39433215 

8 -1.04115275 

9 2.20970088 

10 -0.73938135 

11 0.03696717 

2 -0.67702568 

13 2.31202487 

14 -2.83762416 

15 1.16411551 
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Here      SSe  = 39.04372     and      SSt = 3416.885   and  R2 is  0.9885733. 

Similarly for Model 2:  

 
 

Truncated power basis with 10 quantile based knots and ridge penalty are used. For 

calculating smoothing parameter GCV criterion is customized.   

Table 4.7:   10 quantile based knots are calculated as: 

9.090909% 18.18182% 27.27273% 36.36364% 45.45455% 54.54545% 63.63636% 72.72727% 81.81818% 90.90909% 

1.818182 3.272727 4.454545 5.272727 6.090909 6.909091 8.454545 10.090909 11.727273 13.363636 

 

By using above code ‘tbs’ applied on wood strength data with 10th degree and 10 quantile 

based knots, we construct the following truncated power basis matrix in table 4.9 (shown 

on next page).  

 

For fitting Model 2 at wood strength data we use 10th degree polynomial and 10 quantile 

knots. Here smoothing parameter is calculated by using GCV criterion with GCV = 10.83 

with degree of freedom as 11 (It includes 1 df for intercept). So, plot of the above Fit of 

model 2 at original fit of given data is shown below: 

 

 
Figure 3:   Model2 Fit (GCV = 10.82,  df = 11) 

Table 4.8:   Calculated residuals of model 2 for above fit of P-spline are: 

Concentration Residuals  Concentration Residuals 

1 0.18278469  7 -0.06268281 

1.5 -0.79271766  8 -0.46362547 

2 0.98937231  9 1.64615185 

3 -0.39981358  10 -1.78414969 

4 -0.84202914  11 0.76135459 

4.5 0.59500398  12 0.10433867 

5 1.43657058  13 -0.24706469 

5.5 -1.29464984  14 0.09802063 

6 0.23541956  15 -0.01363087 

6.5 -0.14865309    

( ) ( )
2

2

0 1

1 1

...
+

= =

   
= − + + + + − +  

   
 
m K

p
p

i p j j

i j

S x y x x b x t b   



Comparison of Significant Approaches of Penalized Spline Regression (P-splines) 

Pak.j.stat.oper.res.  Vol.XIV  No.2 2018  pp289-303 299 

Table 4.9 

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

1 1.5 2.25 3.38 5.0625 7.5938 11.39063 17.08594 25.62891 38.44336 57.66504 0 0 0 0 0 0 0 0 0 0 

1 2 4 8 16 32 64 128 256 512 1024 3.947963e-8 0 0 0 0 0 0 0 0 0 

1 3 9 27 81 243 729 2187 6561 19683 59049 5.315042 0 0 0 0 0 0 0 0 0 

1 4 16 64 256 1024 4096 16384 65536 262144 1048576 2444.475 4.13974e-2 0 0 0 0 0 0 0 0 

1 4.5 20.25 91.13 410.06 1845.28 8303.766 37366.95 168151.3 756680.6 3405063 19243.91 7.751948 3.7651e-14 0 0  0 0 0 0 0 

1 5 25 125 625 3125 15625 78125 390625 1953125 9765625 106353.9 236.3791 2.33123e-3 0 0 0 0 0 0 0 

1 5.5 30.25 166.38 915.06 5032.84 27680.64 152243.5 837339.4 4605367 2.532952e7 457744.8 3004.236 1.559738 3.67683e-7 0 0 0 0 0 0 

1 6 36 216 1296 7776 46656 279936 1679616 1.00777e7 6.046618e7 1635503 22765.95 77.72529 4.13974e-2 0 0 0 0 0 0 

1 6.5 42.25 274.63 1785.06 11602.91 75418.89 490222.8 3186448 2.071191e7 1.346274e8 5059941 122562.2 1282.030 7.751948 1.3128e-4 0 0 0 0 0 

1 7 49 343 2401 16807 117649 823543 5764801 4.035361e7 2.824752e8 1.395795e7 517501.6 11419.67 236.3791 3.8554e-1 3.8554e-11 0 0 0 0 

1 8 64 512 4096 32768 262144 2097152 1.677722e7 1.342177e8 1.073742e9 8.150088e7 5573225 313847.9 22765.95 643.0816 2.387182 0 0 0 00 

1 9 81 729 6561 59049 531441 4782969 4.304672e7 3.874205e8 3.486784e9 3.650430e8 3.797333e7 3765071 517501.6 43408.32 1597.171 2331.233 0 0 0 

1 10 100 1000 10000 100000 1000000 1.00e7 1.00e8 1.00e9 1.00e10 1.344306e9 1.898411e8 2.750246e7 5573225 833216.2 79590.7 77.72529 0 0 0 

1 11 121 1331 14641 161051 1771561 1.948717e7 2.143589e8 2.357948e9 2.593742e10 4.258796e9 7.590361e8 1.443438e8 3.797333e7 8128506 1312799 11419.67 3.8554e-1 0 0 

1 12 144 1728 20736 248832 2985984 3.583181e7 4.299817e8 5.159780e9 6.191736e10 1.197439e10 2.563218e9 5.982106e8 1.898411e8 5.190470e7 1.169374e7 313847.9 643.0816 2.2766e-6 0 

1 13 169 2197 28561 371293 4826809 6.274852e7 8.157307e8 1.060450e10 1.378585e11 3.055795e10 7.584220e9 2.076594e9 7.590361e8 2.478615e8 7.027829e7 3765071 43408.32 11.1520 0 

1 14 196 2744 38416 537824 7529536 1.054135e8 1.475789e9 2.066105e10 2.892547e11 7.196497e10 2.017870e10 6.280094e9 2.563218e9 9.577798e8 3.213802e8 2.750246e7 8.33216.2 3876.83 0.01089 

1 15 225 3375 50625 759375 11390630 1.70859e8 2.562891e9 3.844336e10 5.766504e11 1.583993e11 4.920058e10 1.70079e10 7.584220e9 3.150169e9 1.202190e9 1.443438e8 8128506 140960.7 137.657 
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Here from table 4.8, SSe = 13.4542,    SSt = 3416.885      and    R2 is 0.9960624. 

To test the statistical significance of difference we use the approximate F-test, which is 

based on the following statistic 

𝐹 =
𝑅𝑙𝑎𝑟𝑔𝑒𝑟

2 − 𝑅𝑠𝑚𝑎𝑙𝑙𝑒𝑟
2

(1 − 𝑅𝑙𝑎𝑟𝑔𝑒𝑟
2 ) (𝑑𝑓𝑟𝑒𝑠,   𝑠𝑚𝑎𝑙𝑙𝑒𝑟 − 𝑑𝑓𝑟𝑒𝑠,   𝑙𝑎𝑟𝑔𝑒𝑟) 𝑑𝑓𝑟𝑒𝑠,   𝑙𝑎𝑟𝑔𝑒𝑟⁄

 

 

Under the null hypothesis this statistic will have an approximate F-distribution with dfres, 

smaller – dfres, larger and dfres, larger degrees of freedom.  

 

For the given dataset the value of the corresponding F-statistic is 4.184 and the 

corresponding p-value is 0.165, which means that the difference between both P-spline 

fits is neither statistically nor practically significant. 

6. Comparison on different aspects: 

a. Numerical Immovability 

Technically TPF can be used directly as a basis for regression. But it is not to be 

recommended especially for the large-scale data or when the number of knots is large and 

p ≥1 their numerical condition can be poor. If smoothing is the only goal, TPF of degree 

1 might be workable, but higher degrees, which are needed when one wishes to smoothly 

estimate (second) derivatives are essentially unusable.  

 

In very large problems extra care is also needed for using B-spline basis. For example in 

an engineering application of long series (e.g. 15000 observations) of echo sounding 

measurements had to be smoothed and reduced to a uniform grid, we can use bases with 

2000 B-splines, but not possible for TPF basis. Another technique is available, i.e. to first 

fill a matrix of this size with a TPF basis and then compute differences to reduce it to a 

sparse matrix. But it is not a good idea. A nice property of B-splines with equi-spaced 

knots is that we get the same set of values, but shifted by k columns. Hence compute the 

basis in a matrix with p + 1 columns and transfer the results to the right columns of a 

sparse matrix.  

b. Quality of Fit 

The details of a P-spline model can be envisaged in an attractive way. Figure below on 

left illustrates fit with a rich B-spline basis and a second-order penalty. The coefficients 

of the individual B-splines are shown, scaled by their coefficients at the positions of their 

maxima. These points are close to the fitted curve and present the skeleton of the fit. And 

Figure below on right illustrates fit with a Truncated Power function basis and a ridge 

penalty. Here the estimated curves (bold) are shown together with the used cubic 

truncated polynomial basis functions. 
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Figure 4: cubic B-splines & second order penalty (λ=0.01)   vs   cubic Truncated Powers & a ridge penalty (λ=0.002)  

 

 

This Presentation shows a significant role of Penalized spline using B-splines and 

difference penalties that it forces the skeleton, i.e., the coefficients, to follow a smooth 

pattern. Consequently the full curve that follows from them will also be smooth while 

penalized spline using TPF and ridge penalty do not lend such an insightful presentation. 

Also shows that the larger the values of the smoothing parameter λ, the more the fit 

shrinks towards a polynomial fit, while smaller values of λ result in a wiggly ”over-

fitted” estimate. This is clearly visible in figures where different smoothing parameters 

are selected.  

c. Smoothing 

Like in the case of time series and spectra where the number of large observations in the 

discrete data series, equidistant sampled sometimes only a smoothed discrete series is 

needed. In such problems, B-spline basis of degree zero, with a knot at every observation, 

may be an attractive choice. The basis then is the identity matrix, the system of equations 

becomes (I + λ∆d∆d) α = y and the smooth series μ coincide. Because discrete smoother 

is very attractive for long data series in case, we have to access the sparse matrix 

software. So where the sparseness is vital, TPF will not work in such settings. Eilers and 

Marx (2010) expressed that a smaller-scale application in which the discrete approach 

may be appropriate is histogram smoothing. And to estimate a density one constructs a 

histogram with many, say 150, narrow bins. Such a plotted histogram will look 

unattractive and ambiguous, but generalized linear smoothing with penalized splines 

completely changes performance. Also Eilers and Marx presented histogram smoothing 

with Penalized B-splines in a Poisson regression setting. But did not found any possibility 

by Penalized splines with TPF basis especially with quantile based knots. 

 

Similarly for Multidimensional smoothing applications like image smoothing and for 

many others of large real-world problem, Eilers and Marx (2010) has shown that tensor 

products of B-splines and difference penalties are a practical and effective tool. But by 

contrast, such problems with tensor products are impossible by Penalized Spline 

smoothing using TPF basis. And when smoothing periodic data on a linear axis, it may 

happen that both ends do not join smoothly. In such case again B-spline basis with 

difference penalty seems quite easy.  
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d. Derivative Estimation 

Frequently one is not only interested in a fitted curve, but also in its derivatives. The 

derivative is also quite an intuitive concept. Basically derivatives are used to measure 

how a system changes with time. Like in a chemical reaction of say, oxygen + hydrogen 

goes to water, we can use the derivative of the rate equation to measure how long it will 

take for a certain percentage of the reactants to be turned into products. Also for example, 

in the business world, if we figure out the equation of a curve we can find the values for 

all of the minimums and maximums (that would be where the derivative in equal to zero) 

so that we can determine profit and loss points, etc. 

 

Penalized splines allow easy calculation of derivatives. For penalized splines of Ruppert, 

Wand and Carroll (2003) using TPF basis only need is to differentiate the polynomial 

branches weighted by the estimated coefficients and sum them. But the situation of Eilers 

and Marx (1996) using B-spline basis is little more complicated. But in the case of 

equally-spaced knots, the derivative of a weighted sum of B-splines can be computed by: 

𝑑

𝑑𝑡
∑ 𝐵𝑘

𝑘

(𝑡; 𝑝)𝛼𝑘 = ∑(𝑝 − 1)𝐵𝑘(𝑡; 𝑝 − 1)∆ 𝛼𝑘 ℎ⁄

𝑘

 

 

If the second derivative curve is required then both TPF and B-spline basis has to be 

cubic. But we know that cubic TPF have a very poor condition number, so required great 

attention with the accomplishment of computations for derivative estimation. While cubic 

B-splines do not comprise such problems. 

 

6. Conclusion 

By above comparison, we got that there are two main approaches of Penalized spline 

smoothing (both named as P-Spline), first approach as Model1with B-splines and 

difference penalty and 2nd approach as Model2 with truncated power function (TPF) basis 

besides a ridge penalty. Both Models of P-splines (With B-Spline basis and TPF basis) 

have become popular in statistics and in applied fields, as can be judged from citation 

counts.  

 

So by comparing these two main approaches, we found:  

➢ Ridge Penalty of Model2 has great worth especially in small set of data. 

➢ Equally-spaced knots presented in Model1 are always to be preferred as they 

allow easy smooth interpolation with B-splines as well as TPF. 

➢ As the basis of Model1 (B-spline basis) can be computed almost trivially from 

basis of Model2 (TPF basis). So Model1 allow a flexible choice of order of the 

penalty. 

➢ Both Models allow mixed model approach.  

➢ Model1 have excellent numerical properties over Model2. 

➢ Basis of Model1 allow informative conception. 

➢ Model2 is not applied for large-scale sets, while Model1 is sparse and can lend for 

such problems.  

➢ Both basis and penalties of Model1 are easily adjusted in the smoothing agenda. 
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As Ruppert, Wand and Carroll (2003), even not anyone after that did not provide any 

practical advantage of  Model2 having TPF with non-uniform knots and ridge penalty. So 

there can be conclusion that if truncated power functions are chosen, use equally-spaced 

knots. Otherwise simply use Model1 having B-spline bases with difference penalties. 
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