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Abstract 

In this paper, we introduce the length biased form of the Nakagami distribution known as length biased 

Nakagami distribution (LBND). Some properties of the model were studied such as moments, reliability 

function, and the hazard rate function. Maximum likelihood and Bayes estimators of the scale parameter 

are derived. Also, the Posterior risk under different loss functions is obtained. A real life data set is used 

and the results are compared through R-software.  
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1.   Introduction 

Nakagami distribution propounded by M.Nakagami (1960) is a flexible lifetime 

distribution. This distribution has been employed to model attenuation of wireless signals 

travelling manifold paths (see Hoffman (1960)), fading of radio signals, data regarding 

communication engineering, etc. It may also be used to model failure times of diversity 

of products such as vacuum tubes, ball bearing and electrical insulation. It finds wide 

applicability in biomedical fields such as to model the time to the occurrence of tumors 

and appearance of lung cancer. This distribution has applications in medical imaging 

studies to model the ultrasounds especially in Echo (heart efficiency test). Shanker et al. 

(2005) and Tsui et al. (2006) use this distribution to model ultrasound data in medical 

imaging studies. Abdi and Kaveh (2000) have shown that Nakagami distribution is useful 

for modeling multipath faded envelope in wireless channels and also estimated the shape 

parameter of the distribution. Yang and Lin (2000) studied and extracted the statistical 

model of spatial-chromatic distribution of images. Through extensive evaluation of large 

image data bases, they revealed that a two parameter Nakagami distribution suits well the 

purpose. Kim and Latchman (2009) used the Nakagami distribution in their analysis of 

multimedia. Azam Zaka and Ahmad Saeed Akhter (2014) obtained the Bayes estimators 

of the Nakagami distribution.  

 

The probability density function of Nakagami distribution is given as 
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Where 0 is the shape parameter and 0 is the scale parameter. 

mailto:sofimudasir3806@gmail.com


Characterization and Estimation of the Length Biased Nakagami Distribution  

Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp697-715 698 

2. Derivation of Length Biased Nakagami Distribution 

Length biased distribution is a special case of weighted distribution which were first 

introduced by Fisher (1934) to model ascertainment bias. These were later formalized in 

a unifying theory by Rao (1965). Weighted distributions arise when the observations 

generated from a stochastic process are not given equal chances of being recorded; rather 

they are recorded in accordance to some weighted function. When the weight function 

depends on the length of the units of interest, the resulting distribution is called length 

biased. Weighted distributions help us to deal with model specification and data 

interpretation problems. Much work was carried out to characterize relationships between 

original distributions and their length biased versions. Patil and Rao (1978) have given a 

table for some basic distributions and their length biased forms such as Lognormal, 

Gamma, Pareto, Beta distributions. Loppi and Baily (1987) used weighted distributions to 

analyses HPS diameter increment data. Sofi Mudasir and S.P. Ahmad (2015) studied the 

structural properties of length biased Nakagami distribution.  

 

If the random variable X has distribution function );( xf , with unknown parameter ,  

then the corresponding weighted distribution is of the form: 
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When c=1,2 we obtain length biased and area biased distributions respectively. 

 

By applying the weight cx , where c=1, we obtain the length biased Nakagami distribution 

with the pdf given as  
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The distribution function corresponding to (2) is given as  
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The reliability and hazard functions corresponding to equation (2) are given by  
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And 
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Special case: 

If  =1/2 in equation (2), we get 
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This is the probability density function of Rayleigh distribution. 
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Theorem 1: If X follows length biased Nakagami distribution with parameters  and β, 

then the thk  moment about origin is given as follows: 
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Proof: The thk  moment of length biased Nakagami distribution about origin is obtained 
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On solving the above integral, we get 
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Using the equation (4), the first and second moment of length biased Nakagami 

distribution is given by 
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Using equations (5) and (6), the variance of length biased Nakagami distribution is given 

by 
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3. Estimation of the Scale Parameter  

In this section an attempt will be made to estimate the scale parameter of length biased 

Nakagami distribution. 

3.1 Maximum Likelihood Estimator 

Theorem 2: If nxxx ,...,, 21 is a random sample from LBND given by (2), then the 

maximum likelihood estimator is given by 
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Proof: The likelihood function of equation (2) is 
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By taking logarithm of equation (7) on both sides, we obtain the log likelihood function 

as 
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Differentiating equation (8) w.r.t.   and equate to zero, we get     
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3.2 Bayes Estimator 

Recently Bayesian estimation approach has received great consideration by most 

researchers. In this approach, parameters are treated as random variables and data is 

treated fixed. An important pre-requisite in Bayesian estimation is the appropriate choice 

of prior for the parameters. However, Bayesian analysts have pointed out that there is no 

clear cut way from which one can conclude that one prior is better than the other. Very 

often, priors are chosen according to ones subjective knowledge and beliefs. However, if 

one has adequate information about the parameter(s), one should use informative prior(s); 
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otherwise it is preferable to use non informative prior(s). The other integral part of 

Bayesian inference is the choice of loss function. As there is no specific analytical 

procedure that allows us to identify the appropriate loss function to be used; a number of 

symmetric and asymmetric loss functions have been shown to be functional; see Varian 

(1975), Zellner (1986), Kifayat et al. (2012), Ahmad and Kaisar (2013), etc. 

 

We now derive the Bayes estimator of the parameter β in length biased Nakagami 

distribution when the parameter   is known. We consider two different priors and three 

different loss functions. 

 

(i) Jeffrey’s prior: Jeffrey (1946) proposed a formal rule for obtaining a non-informative 

prior as 

  )()(  Ig   

Where   is k-vector valued parameter and )(I is the Fishers information matrix of order 

k*k. Thus in our problem the prior distribution of   to be  
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(ii) Extension of Jeffrey’s prior: The extension of Jeffery’s prior relating to the scale 

parameter  is given as  
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(iii) Precautionary loss function (PLF): Norstrom (1996) introduced an alternative 

asymmetric precautionary loss function, and also presented a general class of 

precautionary loss functions as a special case. These loss functions approach infinitely 

near the origin to prevent underestimation, thus giving conservative estimators, especially 

when low failure rates are being estimated. These estimators are very useful when 

underestimation may lead to serious consequences. A very useful and simple asymmetric 

precautionary loss function is 
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(ii) Al-Bayyati’s new loss function (ALF): The Al-Bayyati’s new loss function also 

called new loss function is of the form 

 .;, 1

2

1 RCL
C  








−=







 

 

Which is an asymmetric loss function,   and ̂  represent the true and estimated values 

of the parameter. 

 

(iii) Weighted loss function (WLF): As compared to other loss functions, WLF may be 

mathematically more convenient to obtain Bayes estimates. An important thing is that the 
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bayes estimates under WLF may not exist if the weighted function increases too fast to 

infinity. The WLF is defined as  

 





2)(
),(

−
=




L

 

3.2.1 Posterior Distribution under Jeffrey’s prior )(1   

Under )(1  , the posterior distribution is given by 
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where k is independent of   and is given by  
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Thus, from equation (10), posterior distribution is given by 
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Bayesian Estimation using Jeffrey’s prior under different loss function 

Theorem 3: Assuming the Precautionary loss function
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Now, Solving 0
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Theorem 4: Assuming Al-Bayyati’s new loss function
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Now, Solving 0
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3.2.2 Posterior Distribution under Extension of Jeffrey’s prior )(2 

 
Under )(2  , the posterior distribution is given by
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By substituting the value of k  in equation (14), the posterior distribution is given by
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Bayesian estimation using extension of Jeffrey’s prior under different loss function 

Theorem 6: Assuming the Precautionary loss function

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),(L , the Bayes 

estimator of the scale parameter  , when the shape parameter  is known, is of the form.
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Proof: By using Precautionary loss function

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Now, Solving 0
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Remark 1. If C=1/2 in equation (15), we get the Bayes estimator which is same as in 

equation (11). 

 

Theorem 7: Assuming Al-Bayyati’s new loss function
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Proof: By using Al-Bayyati’s new loss function
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Remark 2. If C=1/2 in equation (16), we get the Bayes estimator which is same as in 

equation (12). 

 

Theorem 8: Assuming weighted loss function





2)(
,

−
=












L , the Bayes estimator 

of the scale parameter  , when the shape parameter is known, is of the form      









−++

=

12
2

C
n

n
W LF




  

 

Proof: By using weighted loss function
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Remark 3. If C=1/2 in equation (17), we get the Bayes estimator which is same as in 

equation (13).  

4. Posterior Risks under Different Loss Functions 

4.1 Posterior risk of the Bayes estimator under Jeffrey’s prior 

 

Under precautionary loss function, the posterior risk is
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From equation (19), we have 
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Under Al-Bayyati’s new loss function, the posterior risk is 
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Substitute the value of equations (24), (25) and (26) in equation (23), we get 
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Under weighted loss function, the posterior risk is 
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By Substituting the value of equations (20) and (29) in equation (28), we get 
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4.2 Posterior risk of the Bayes estimator under extension of Jeffrey’s prior  

Under precautionary loss function, the posterior risk is 
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From equation (32), we have 
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Substitute the value of equations (33) and (34) in equation (31), we get 

( )























−++

−

















−++








−++

=

22
2

1

32
2

22
2

1
2

2

1
C

n
n

C
n

nC
n

n

P PLF






         

(35) 

 

Remark 4. If C=1/2 in equation (35), we get the posterior risk which is same as in 

equation (22). 
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Under Al-Bayyati’s new loss function, the posterior risk is
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Substitute the value of equations (37), (38) and (39) in equation (36), we get 
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Remark 5. If C=1/2 in equation (40), we get the posterior risk which is same as in 

equation (27). 

 

Under weighted loss function, the posterior risk is 
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By Substituting the value of equations (33) and (42) in equation (41), we get 
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Remark 6. If C=1/2 in equation (43), we get the posterior risk which is same as in 

equation (30). 
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Table 1:  Bayes estimator under Jeffrey’s and Extension of Jeffrey`s Priors, using 

different Loss Functions 

 
              Loss 

function 

 

 Prior 

        

                     Jeffrey’s prior 

  

                      Extension of Jeffrey’s prior 

   

 

Precautionary                                                                                                                                                   

loss                                                                    

function 
2

1

2
2

1
2

















−+








−+

n
n

n
n 


 

2

1

32
2

22
2

















−++








−++ c

n
nc

n
n 


 

 

Al-Bayyati’s new 

loss function 







−−+ 1

2
1C

n
n


 









−−++ 22

2
1Cc

n
n


 

 

Weighted loss 

function 







+

2

n
n



  









−++ 12

2
c

n
n



 

 

Table 2:  Posterior risks under Jeffrey’s and Extension of Jeffrey`s Priors, using 

different Loss Functions 
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5.   Real Life Data 

The following real data set is considered for illustration of the proposed methodology. 

The data below are from an accelerated life test of 59 conductors, failure times are in 

hours, and there are no censored observations Lawless (2003). 

 

2.997, 4.137, 4.288, 4.531, 4.700, 4.706, 5.009, 5.381, 5.434, 5.459, 5.589, 5.640, 5.807, 

5.923, 6.033, 6.071, 6.087, 6.129, 6.352, 6.369, 6.476, 6.492, 6.515, 6.522, 6.538, 6.545, 

6.573, 6.725, 6.869, 6.923, 6.948, 6.956, 6.958, 7.024, 7.224, 7.365, 7.398, 7.459, 7.489, 

7.495, 7.496, 7.543, 7.683, 7.937, 7.945, 7.974, 8.120, 8.336, 8.532, 8.591, 8.687, 8.799, 

9.218, 9.254, 9.289, 9.663, 10.092, 10.491, 11.038 

 

Programs have been developed in R language to obtain the Bayes estimates and posterior 

risks and are presented in the tables below: 

Table 3:   Estimates and (Posterior risk) of   under Jeffrey’s prior 

  

 

MLE PLF ALF WLF 

11 =c  21 =c  11 −=c  21 −=c  

        

0.312 19.704 20.343 

(0.436) 

20.563 

(14.001) 

21.021 

(83.648) 

19.704 

(1.545) 

19.302 

(0.277) 

19.704 

(0.420) 

0.467 24.766 25.436 

(0.456) 

25.666 

(22.699) 

26.140 

(167.370) 

24.766 

(1.625) 

24.340 

(0.233) 

24.766 

(0.442) 

0.564 27.183 27.851 

(0.453) 

28.079 

(26.920) 

28.548 

(58.717) 

27.183 

(1.619) 

26.757 

(0.212) 

27.183 

(0.440) 

0.785 31.328 31.961 

(0.429) 

32.177 

(33.355) 

32.619 

(82.631) 

31.328 

(1.540) 

30.920 

(0.176) 

31.328 

(0.419) 

MLE=Maximum Likelihood Estimate, PLF= Precautionary Loss Function, ALF= Al-Bayyati’s New  

loss Function, WLF=Weighted Loss Function 
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Table 4:  Bayes Estimates and (Posterior risk) of   under extension of Jeffrey’s 

prior 

  c  PLF ALF WLF 

11 =c  21 =c  11 −=c

 

21 −=c

 

        

 

 

 

0.312 

0.5 20.343 

(0.436) 

20.563 

(14.001) 

21.021 

(83.648) 

19.704 

(1.545) 

19.302 

(0.277) 

19.704 

(0.420) 

1.0 19.913 

(0.418) 

20.125 

(12.845) 

20.563 

(74.983) 

19.302 

(1.482) 

18.915 

(0.271) 

19.302 

(0.403) 

2.0 19.107 

(0.385) 

19.302 

(10.869) 

19.704 

(60.697) 

18.543 

(1.367) 

18.186 

(0.260) 

18.543 

(0.371) 

2.5 18.728 

(0.370) 

18.915 

(10.023) 

19.301 

(54.784) 

18.186 

(1.314) 

17.842 

(0.256) 

18.186 

(0.357) 

 

        

 

 

 

0.467 

0.5 25.436 

(0.456) 

25.666 

(22.699) 

26.104 

(167.379) 

24.766 

(1.625) 

24.340 

(0.233) 

24.766 

(0.442) 

1.0 24.986 

(0.440) 

25.208 

(21.122) 

25.666 

(152.823) 

24.340 

(1.569) 

23.927 

(0.229) 

24.340 

(0.427) 

2.0 24.132 

(0.410) 

24.340 

(18.358) 

24.766 

(127.990) 

23.529 

(1.466) 

23.143 

(0.221) 

23.529 

(0.398) 

2.5 23.723 

(0.397) 

23.927 

(17.146) 

24.340 

(117.415) 

23.143 

(1.418) 

22.770 

(0.218) 

23.143 

(0.385) 

 

        

 

 

 

0.564 

0.5 27.851 

(0.453) 

28.079 

(26.920) 

28.548 

(58.717) 

27.183 

(1.619) 

26.757 

(0.212) 

27.183 

(0.440) 

1.0 27.402 

(0.438) 

27.623 

(25.218) 

28.078 

(198.918) 

26.757 

(1.568) 

26.344 

(0.209) 

26.757 

(0.426) 

2.0 26.550 

(0.411) 

26.757 

(22.200) 

27.183 

(169.356) 

25.944 

(1.473) 

25.555 

(0.203) 

25.944 

(0.400) 

2.5 26.143 

(0.399) 

26.344 

(20.860) 

26.757 

(156.563) 

25.555 

(1.429) 

25.178 

(0.199) 

25.555 

(0.388) 

 

        

 

 

 

0.785 

0.5 31.961 

(0.429) 

32.177 

(33.355) 

32.619 

(82.631) 

31.328 

(1.540) 

30.920 

(0.176) 

31.328 

(0.419) 

1.0 31.537 

(0.417) 

31.747 

(31.607) 

32.177 

(77.211) 

30.920 

(1.500) 

30.523 

(0.174) 

30.920 

(0.409) 

2.0 30.720 

(0.396) 

30.920 

(28.441) 

31.328 

(67.597) 

30.136 

(1.425) 

29.758 

(0.169) 

30.136 

(0.387) 

2.5 30.327 

(0.386) 

30.523 

(27.007) 

30.920 

(63.330) 

29.758 

(1.389) 

29.390 

(0.167) 

29.758 

(0.377) 
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6. Conclusion 

In this paper, we define length biased Nakagami distribution and study its various 

characteristics. The estimates and the posterior risk of the scale parameter of the model 

have been obtained. The application of the new model has been demonstrated with the 

help of real life data set. The results are shown in the tables above. 

 

Table 3 and table 4 shows the Bayes estimates and posterior risk of the scale parameter

 for different values of the shape parameter under the Jeffrey’s and extension of 

Jeffrey’s priors. The initial value of the shape parameter  is obtained through R-

software. The value of the loss parameter 1c is taken as ±1 and ±2. We also take different 

values of the hyper-parameter c as 0.5, 1.0, 2.0, and 2.5 respectively. From both the 

tables it is clear that as we increase the value of ,  the value of estimates of 

increases. The estimates obtained under extension of Jeffrey’s prior coincides with the 

estimates obtained under Jeffrey’s prior when the value of c is 0.5. It is also observed 

that as we increase the value of hyper-parameter ,c the value of posterior risk decreases. 

Also the value of posterior risk obtained under extension of Jeffrey’s prior coincides with 

the values of posterior risk obtained under Jeffrey’s prior when the value of c is 0.5. We 

also observe that it is the Al-Bayyati’s new loss function which has the minimum value 

of posterior risk as compared to other loss functions. So we can say that the Al-Bayyati’s 

new loss function is the better loss function as compared to other loss functions which are 

compared in this manuscript. 
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