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Abstract 
A probabilistic approach to build models for paired comparison experiments based on the comparison of 
two Pareto variables is considered. Analysis of the proposed model is carried out in classical as well as 
Bayesian frameworks. Informative and uninformative priors are employed to accommodate the prior 
information. Simulation study is conducted to assess the suitability and performance of the model under 
theoretical conditions. Appropriateness of fit of the model is also carried out. Entire inferential procedure is 
illustrated by comparing certain cricket teams using real dataset.  
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1. Introduction 
The method of paired comparisons (PC) is a technique in which items (objects, stimulus, 
treatments, options, etc) are presented to one or more judges (respondents, raters, jurists, 
etc) in pairs. The judges may prefer one of the two items or declare a tie. The PC method 
is primarily used for subjective judgments where quantitative measurement is impossible 
or impracticable. Hence, it is widely used by psychometricians. The most frequent 
application has been to sensory testing; especially taste testing, consumer tests, personal 
rating in sports, choice behaviors, etc. If several items are to be compared 
simultaneously, then it may be done preferably by a simple ranking. But if the differences 
between items are small, the PC method is the best choice to avoid extraneous source of 
variation caused by a third object and hence to reach a finer decision.  
 
The PC technique can be useful for ranking items related to particular issues that are too 
numerous or too similar to rank mentally. David (1988) provides a detailed review on the 
PC method. Probably, the most-cited among the applied uses of PC is the tournament 
analysis in which items are players or teams competing with each other in pairs.  
 
Different PC models are based on the mechanism of production of sensations/responses 
from human brain regarding the items being compared. Thurstone (1927) assumes 
responses to follow normal distribution but Bradley and Terry (1952) consider the 
Logistic distribution in proposing their models. Thompson and Singh (1967) arrive at the 
Thurstone-Mosteller model by regarding the registered merit or experienced sensation as 
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an average or median of a large number of signals transmitted to judges’ brain. Stern 
(1990) builds his models in terms of probability that one gamma random variable with a 
fixed shape parameter is less than another independent gamma random variable with the 
same shape parameter but a different scale parameter. Different values of the shape 
parameters provide different PC models. Rao and Kupper (1967), Davidson (1970) and 
Glenn and David (1960) extend the basic models by including ties. Henery (1981, 1986) 
and Mak (1985) deal with the order statistics models.  
 
Abbas and Aslam (2011a) extend the renowned Bradley and Terry (1952) model by 
accommodating quantitative weights in the qualitative paired comparisons. Abbas and 
Aslam (2012a) model the factors influencing the judges’ evaluations of items through 
mixture models for the preference datasets. The probabilistic features of the mixture 
distribution are addressed and inferential and computational issues emerging out of the 
maximum likelihood estimation are dealt with. A methodology is proposed by Abbas et 
al. (2011b) to measure the actual comparative worth of the competing items on a finer 
scale by assigning some refined ranks to each of the two competing items on a finer 
scale. The assigned ranks are then converted to a refined paired comparison dataset in the 
form of preference matrix to be used for ranking items. 
 
The break-up of the study is as follows: In Section 2, the logical basis and ideas to 
construct the Pareto model are discussed. It also compares our proposed model with those 
developed by Stern (1990). Section 3 deals with likelihood function and notations used in 
this study. The classical maximum likelihood (ML) estimates along with their standard 
errors are reported in Section 4. Section 6 pertains to uninformative and informative 
priors used in deriving the posterior distributions. The elicitation of hyperparameters – 
the parameters of priors – is also conducted therein. The posterior distributions and the 
marginal posterior distributions are studied in Section 7. Section 8 is concerned with the 
Bayesian analysis of the proposed model. It comprises estimating the posterior means, 
preference probabilities, posterior probabilities of the hypothesis and predictive 
probabilities of preference for future comparisons. Section 9 is reserved for the 
simulation study of the proposed model to assess its performance.  Section 10 compares 
the priors used in the Bayesian analysis. The appropriateness of the model is reviewed in 
Section 11. Section 12 concludes and discusses the entire study. 
 
2. The Pareto model 
The Pareto distribution, named after the Italian economist Vilfredo Pareto, is a power law 
probability distribution found in large number of real world situations and was originally 
used by him to describe allocation of wealth among different individuals. Obviously, a 
large proportion of the wealth of a society is owned by a smaller number of people of a 
society. DeGroot (1970) also declares that the Pareto distribution can be used as an 
income model. Literature also furnishes with the situations where the distribution can be 
used to model words lengths in larger paragraphs, the value of oil reserves in oil fields, 
size of sand particles, standardized price returns on individual stocks, etc, [Logan 
(2012)]. 
 
The motivation of using the Pareto distribution is based on the fact that it models income 
distribution and a Pareto variable has its minimum value equal to its location parameter. 
So the locality with a greater minimum income (location parameter) may be preferred to 
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that with a lower minimum income, while both having identical shape parameters. It is in 
accordance with the model building pattern adopted by Stern (1990), who compares the 
waiting times of two point-scoring competitions using gamma distributions with common 
shape parameters and different location parameters and the player taking less time to 
score points is declared as a winner. 
 
The Pareto distribution with scale parameter α  and location parameters iθ   (specifying 
the least values of the Pareto variable iX ) is given by  

( ) 1= , > 0, > > 0i i i i if x x xα ααθ α θ+ . 
 

 
Figure 1: Derivation of the model 

 
Following the model developing criterion adopted in Stern (1990), the scale parameter α  
is considered identical for both of the competitors and the location parameters vary. For 
𝜃𝜃𝑖𝑖 ≤ 𝜃𝜃𝑗𝑗 , the probability of preferring treatment 'i' over 'j ', denoted by ijφ , is 
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∫ ∫ ∫ ∫  (2.2)  

where iθ  and jθ  denote the location (worth) parameters for the competing items. Here 
= 1ji ijφ φ−  or = 1ji ijφ φ′ ′−  denote the probability of preferring item j over i (ties not being 

allowed). Expressions  (2.1) and (2.2) serve as a full-blown PC model. Since, different 
Pareto models are obtained assuming different values of the parameter α, so it becomes 



Nasir Abbas, Muhammad Aslam 

Pak.j.stat.oper.res.  Vol.XIII  No.4 2017pp875-891 878 

necessary to see how different values of α affect the preference probabilities ijφ  and the 

worth parameters iθ , for 1,...,i t= .  

 

Now it is vital to  elicit a value for the parameter α that best suits a certain data set. To 
accomplish this, we have used the minimum chi-square method suggested by Abbas and 
Aslam (2013). It is inferred therein that α = 0.55 produced minimum chi-square value for 
the given data set and is hence used in the subsequent analyses. 

 
3. Likelihood function 
Let =ij jin n  be the total number of comparisons made between item i and j, ija  be the 
number of times item i is preferred to j and =ji ij ija n a−  denotes its reverse. For the 
present situation, the trials are independent with only two categories of the outcomes for 
all trials, e.g., preferring item i over j, or the vice versa, and each outcome has a constant 
probability ijφ  of preferring item i over j for all ( ) = 1,2,...,i j t≠ . The PC experiment is 
performed a fixed number of times ijn . So the variable ija  follows a Binomial distribution 

( ; , )ij ij ijB a n φ  and the likelihood function 𝐿𝐿(𝒂𝒂;𝜽𝜽) is:  

( ) ( )
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(3.1)  

 
4. ML estimation 
The parametric ML estimates of the proposed model may be found by maximizing the 
likelihood function (3.1) with regards to the unknown model parameters. As the 
logarithm is a non-decreasing function, hence any function and its logarithm are 
maximized at the same points.  However, the maximization of the logarithm of a function 
is analytically easier than the direct maximization. So instead of maximizing (3.1), we 
maximize 
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where 𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝒂𝒂;𝜽𝜽) and 1 2( , ,..., )tθ θ θ=θ  be the set of t parameters designating the 
worth of the competing items under-study.  
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Taking the first partial derivatives of (4.1) with regard to θi and equating to zero, we get 

(< )=1 (< )=1 (< )= 1 (< )= 1

0.5 ( ) 0.5 ( )
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∑ ∑ ∑ ∑
 

for all 1, 2,...,i t= , where θ , the vector of the unknown worth parameters iθ , = 1,...,i t , 

refers to the worth of item i, nij
aij

C  be the number of combinations of  ija  out of ijn and the 

rest of the notations are self-defined.  
 
4.1. Standard deviations of the ML estimates 
Standard deviations of the ML estimates are on the main diagonal of the inverted 
information matrix. The information matrix is given by the expectation of the negative 

Hessian having (i, j) element 
2 log ( )( )ij

i j

LI E
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θ  for all 𝑖𝑖 = 1,2, … , 𝑡𝑡. 

Similarly, the other equations may have been derived but are omitted for the sake of 
brevity. The off-diagonal elements  𝜕𝜕

2log 𝑙𝑙
𝜕𝜕𝜃𝜃𝑖𝑖𝜃𝜃𝑗𝑗
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�

2 ,       𝜃𝜃𝑖𝑖 < 𝜃𝜃𝑗𝑗 , 𝑖𝑖(< 𝑗𝑗) = 1,2, … , 𝑡𝑡. 

 
5. Numerical illustration 
For illustration, we collected a real dataset on five top-ranked one-day-international 
cricket teams, namely, Australia, India, New Zealand, Pakistan and South Africa from the 
website www.howstat.com and is given in Table 1. In the light of the dataset, the binomial 
variable ija  attains the respective values 15, 12, 10, 15, 3, 9, 6, 6, 6, 3 for 
(< ) = 1,2,...,5i j ; and 4, 6, 7, 4, 8, 11, 9, 7, 10, 6 for (> ) = 1,2,...,5i j  and zero for =i j . 

 

Table 1: Observed Dataset of ODI Cricket Matches 

Teams  Australia  India  New Zealand  Pakistan  South Africa  
Australia  0  15  12  10  15  
India  4  0  3  9  6  
New Zealand  6  7  0  6  6  
Pakistan  4  8  11  0  3  
South Africa  9  7  10  6  0  

 
To find solution to the likelihood equations 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 (𝒂𝒂;𝜽𝜽)

𝜕𝜕𝜽𝜽
= 0, we develop computer 

program in SAS software using PROC SYSNLIN procedure, the resulting ML 
estimates are displayed in Table 2. 
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Table 2: ML estimates for the observed dataset 

Teams Parameters Estimates 
Australia 1θ  0.381424 
India 2θ  0.123290 
New Zealand 3θ  0.135773 
Pakistan 4θ  0.145787 
South Africa 5θ  0.213726 

 
Here we see that the teams under-consideration may be ranked as follows: The 
Australians stand first, the South Africans are the second, Pakistanis being the third, New 
Zealanders being the fourth and finally Indians being the last and have lowest rank.  

 
6. Prior distributions 
Bayesian inference necessitates the use of certain prior distributions. Frequently used 
uninformative priors include the uninform and Jeffreys’ priors. Informative distribution 
must represent the information about the parameters and, obviously, it must be in 
agreement with the parameter space. 

 
6.1. The uninformative uniform prior 
The uninformative uniform prior assigns equal weights to all of the items and may be 
defined as: 

( ) 1,p =θ  0 < < , 1,2,..., .i i tθ ∞ = , 
where 1 2( , ,..., )tθ θ θ=θ  is the vector of unknown parameters. 
 
6.2. The uninformaitive Jeffreys’ prior 
The Jeffreys' prior for the vector of the unknown parameters 𝜽𝜽 is 𝑝𝑝(𝜽𝜽) ∝ �|𝐼𝐼(𝜽𝜽)|, where 

𝐼𝐼(𝜽𝜽) = −𝐸𝐸 �𝜕𝜕
2log 𝐿𝐿(𝒂𝒂;𝜽𝜽)
𝜕𝜕𝜃𝜃𝑖𝑖𝜃𝜃𝑗𝑗

� is the Fisher’s Information Matrix. E  stands for the expectation 

on the dataset and i and j respectively denote the row and column of the determinant.  
  

6.3. The informative Dirichlet prior 
The nature and the range of parameters generally determine the prior distribution to be 
assigned to the parameters. For the present case, we have location parameter of the Pareto 
distribution as the parameter of interest with a support in the interval (0, ∞). But we have 
witnessed that maximum area of the parameter is condensed within the range (0, 1). 
Hence we have chosen a multivariate Dirichlet prior for all the parameters of interest iθ , 
for = 1,2,...,i t , that is 

( )
( ) ( ) ( )

11 2

=1=11 2

...
( ) = , 0 1, = 1,

...

t t
at i
i i i

iit

a a a
p

a a a
θ θ θ−Γ + + +

≤ ≤
Γ Γ Γ ∑∏θ  > 0, = 1,2,...,ia i t∀ ,  

be the set of hyperparameters. After choosing the prior, one still needs to elicit the 
hyperparameters.  
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6.4. Elicitation of the Hyperparameters  
Using the prior predictive distribution approach discussed in Abbas and Aslam (2009), 
we elicit the hyperparameters of the Dirichlet prior. Using the proposed model and the 
Dirichlet prior, the prior predictive distribution ( )ijp  for the variable ija  is:  

 { } { }1

( ) 0
= 1 ,     for  = 0,1,..., ,

ij

a aij ji
a ij ij ij i ij ijp K M d a nφ φ θ −  ∫   

 where ( ) ( )1 1= 1a ai j
i iM θ θ− −− , 1j iθ θ= − , =ij ij jin a a+  and = /{2 ( , )}

n aij ij
ij a i jij

K C B a a .  

 
Considering the real data set described in Section 5, we take at most 4 (say) 
preferences/wins of item i over  j and use the predictive distribution ( )ijap  

to find the 

predicted probability of at most four wins as 4
0( ) ( )0

( 4)
ijij

ij ij aa
p P a p

=
= ≤ =∑ . The 

corresponding elicited probability of the same number of preferences/wins (i.e., at most 
4) of the item i over  j is found using the binomial law as 

( )4
0( ) 0

= ( 4) = ; ,
ij

ij ij ij ij ija
P P a B a n ψ

=
≤ ∑ , where ijn  (known) and ijψ  (unknown). Here ijψ  

is the probability of success (preferring or winning) in single trial for all the team-pairs 
and is obtained from the cricket-experts. We may calculate ijψ  based on the observed 
dataset given in Table 1 under the assumption that the preference probabilities furnished 
by cricket-experts will not be significantly different from those found using the observed 
dataset, that is, the preference probabilities ijψ  are found using = /ij ij ij ija nψ φ≈  for 
(< ) = 1,2,...,5i j .  

 
Now we need to find values of the hyperparameters , = 1,2,...,5ia i∀ , that minimize the 
difference between the fitted predictive probabilities ( )ijp  and the elicited probabilities 

0( )ijp . To accomplish this, a program is written in SAS package using its PROC SYSNLIN 

procedure, and the elicited values of the hyperparameters are found to be 1a = 38.86711, 

2a = 45.45095, 3a = 59.48605, 4a = 20.61834 and 5a = 92.21675 , and the desired elicited 
informative Dirichlet prior is:  

 

( )
38.86711 1 45.45095 1 59.48605 1 20.61834 1 92.21675 1

1 2 3 4 5( ) = , 0 < < 1,
38.86711,45.45095,59.48605,20.61834,92.21675 ip θ θ θ θ θ θ

β

− − − − −

θ  

 for = 1,2,..,5i  and 5 1 2 3 4= (1 )θ θ θ θ θ− − − − . 
 
7. Posterior distribution 
So far as the selection of prior is concerned, we may choose uninformative or informative 
priors. Using any of the above-stated priors and the likelihood function, the joint 
posterior distribution ( | )p θ a of the model parameters θ , conditional upon the observed 
dataset of  Table 1, is  
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{ } { }1

(< )=1

( | ) = ( , ) 1 , > 0,
t a aij ji

U i j ij ij i
i j

p K p θ θ φ φ θ−  −  ∏θ a  

where ( , )i jp θ θ  may be any of the chosen priors, and the normalizing constant is: 

{ } { }
(< )=1

( , ) 1
t a aij ji

U i j ij ij
i j

K p dθ θ φ φ = −  ∏∫
θ

θ . 

Notice that we impose the constraint 
=1

1t
ii
θ =∑  for identification and use five items 

taking t = 5 throughout the analysis made in this study. 
 
7.1. Marginal posterior distributions  
To see the nature of variation of the individual worth parameters  for , we 
find their marginal posterior distributions based on the observed dataset. Such 
distribution for any parameter  may be found by integrating out all the nuisance 
parameters. For instance, the marginal posterior distribution of the parameter  for the 
Australian team is  

𝑝𝑝(𝜃𝜃1|𝑎𝑎) = � � � 𝑝𝑝(𝜽𝜽|𝒂𝒂)𝑑𝑑𝜃𝜃4𝑑𝑑𝜃𝜃3𝑑𝑑𝜃𝜃2

1−𝜃𝜃1−𝜃𝜃2−𝜃𝜃3

0

1−𝜃𝜃1−𝜃𝜃2

0

1−𝜃𝜃1

0

,    0 ≤ 𝜃𝜃1 ≤ 1. 

The joint posterior distribution has a complicated expression and the marginal posterior 
distributions cannot be derived in closed form. However, we can make use of the 
numerical integration to evaluate it. Plotting the values of the worth parameters against 
their ordinates, we draw graphs to view the behavior of the worth parameters using the 
uniform prior. The desired graphs are given in Figure 2. 

 

 
Figure 2: Marginal posterior distributions via the uniform prior 

iθ = 1,2,...,5i

iθ

1θ
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Here, we see that the marginal posterior distributions of the worth parameters have 
varying dispersions with highest ordinates at the values (joint posterior modes) close to 
the posterior means. 
 
8. Bayesian analysis – An illustration 

 
8.1. Posterior means 
We first assume a squared error loss function and find the posterior means as the Bayes 
estimates of the worth parameter iθ  of the ith team as  

𝐸𝐸(𝜃𝜃𝑖𝑖 |𝒂𝒂) = � 𝑝𝑝(𝜃𝜃𝑖𝑖 |𝒂𝒂)𝑑𝑑𝜃𝜃𝑖𝑖 ,    0 ≤ 𝜃𝜃𝑖𝑖 ≤ 1,
1

0
 

where ( | )ip θ a , the  marginal posterior distribution of the model parameter iθ , is  

𝑝𝑝(𝜃𝜃𝑖𝑖 |𝒂𝒂) = � 𝑝𝑝(𝜽𝜽|𝒂𝒂)𝑑𝑑𝜽𝜽′,    0 ≤ 𝜃𝜃𝑖𝑖 ≤ 1
1

0
. 

Here 𝜽𝜽′ and 𝜃𝜃𝑖𝑖  form partition of 𝜽𝜽 such that 𝜽𝜽′ ∪ 𝜃𝜃𝑖𝑖 = 𝜽𝜽 and 𝜽𝜽′ ∩ 𝜃𝜃𝑖𝑖 = ∅.  
 
To evaluate the complicated integrals we use the Quadrature method of numerical 
integration, which refers to numerically approximating the value of a definite integral 
∫ 𝑝𝑝(𝜽𝜽)𝑑𝑑𝜽𝜽𝑏𝑏
𝑎𝑎 . To accomplish this, we calculate it at a number of points in the range a to b 

and find the result as a weighted average as ∫ 𝑝𝑝(𝜽𝜽)𝑑𝑑𝜽𝜽𝑏𝑏
𝑎𝑎 ≅ ∑ 𝜀𝜀𝑖𝑖𝑝𝑝(𝜽𝜽)𝑛𝑛

𝑖𝑖=1 , where iε  denotes 
the increment used to b  through a . Here it is important to note that accuracy of the 
integral is inversely proportional to the size of increment. A two-dimensional integration 

may be found as ( ) ( )
= =0

, ,
nn ji

i j i j i j i j
i o j

i j

p d d p
θ θ

θ θ θ θ ε ε θ θ≅ ∑∑∫ ∫ , where the notations are pre-

defined. Likewise the higher-order integrals may be evaluated.  
 
For our case, expression involves five parameters and integration seems intractable. So 
we take the scale parameter 𝛼𝛼 = 0.55 and assume the sum of parameters to be unity for 
identification. We also calculate the Jeffreys' prior by numerical differentiation and use it 
for the calculation of the posterior means of the parameters by numerical integration 
through the quadrature method by developing computer programs in in C and SAS 
languages and the resulting posterior means, their standard errors within parentheses, chi-
square values and p-values are displayed in Table 3. The motivation for furnishing here 
the p-values and chi-square values is to test the hypothesis of the appropriateness of the 
proposed model under study. A detailed account on the appropriateness of the model is 
however given in Section 11. 
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Table 3: Bayes estimates via the uninformative and informative priors for the  
   observed dataset 

Teams Parameters 
Bayes Estimates 

Uniform prior Jeffreys’ prior Dirichlet prior 

Australia 1θ  0.37557 
(0.06701) 

0.36497 
(0.065088) 

0.21527 
(0.01911) 

India 2θ  0.12614 
(0.02900) 

0.12070 
(0.029535) 

0.15812 
(0.01910) 

New Zealand 3θ  0.13562 
(0.03076) 

0.13404 
(0.032242) 

0.19190 
(0.01884) 

Pakistan 4θ  0.14579 
(0.03228) 

0.14279 
(0.033347) 

0.11621 
(0.01440) 

South Africa 5θ  0.21688 
(0.04695) 

0.23751 
(0.053079) 

0.31850 
(0.02427) 

Chi-square values 3.96834 4.17025 20.45579 
p-values 0.68096 0.65365 0.00230 

 
From the results we observe that for the uninformative priors, the Australia stands first, 
South Africa the second, Pakistan the third, New Zealand the fourth and India the fifth 
and last one. We observe that the posterior estimates under the uniform and the Jeffreys' 
priors substantially agree.  
 
However, the Bayes estimates using the informative prior reflect a change in ranking 
order of the teams under-study. South Africa is now on the top, Australia the second, 
New Zealand the third, India the fourth and Pakistan being the fifth and the last one. It 
reveals that a potential prior information may change the inference about the parametric 
values. It may further be added that the observed insignificant p-values and chi-square 
values for all the uninformative priors establish the appropriateness of the proposed 
model.  

 
8.2. Preference probabilities  

Probabilities indicating the expected probabilities of preferences of any item over 
the other in any future contest or comparison are termed as the preference probabilities. 
Such probabilities are calculated using the proposed model for all the priors and its 
estimates are displayed in Table 4. Here the team names are coded for brevity as 'AU' for 
Australia, 'IN' for India, 'NL' for New Zealand, 'PA' for Pakistan and 'SA' for South 
Africa. 
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Table 4: Preference probabilities ijφ  for the observed dataset 
Team-Pairs Uniform prior Jeffreys’ prior Dirichlet prior 
(AU, IN) 0.72562 0.72794 0.57804 
(AU, NL) 0.71446 0.71179 0.53062 
(AU, PA) 0.70287 0.70159 0.64378 
(AU, SA) 0.63033 0.60522 0.40309 
(IN, NL) 0.48046 0.47199 0.44949 
(IN, PA) 0.46173 0.45585 0.57790 
(IN, SA) 0.37112 0.34458 0.34018 
(NL, PA) 0.48050 0.48291 0.62054 
(NL, SA) 0.38621 0.36503 0.37840 
(PA, SA) 0.40188 0.37795 0.28717 

 
Obviously the preference probabilities are compatible with the posterior means of the 
competing teams regarding the ranking order established therein. 
 
8.3. Bayesian hypotheses testing 
We define null and the alternative hypotheses as  

: >ij i jH θ θ  vs : , (< ) = 1, 2, 3, 4, 5.ji i jH i jθ θ≤ ∀  
The posterior probabilities ijp  and ijq  of the respective hypotheses ijH  and jiH  are 

calculated using the density ( )12 1 3 4 5( , , , , ) |p φ ξ θ θ θ a  derived by reparameterization in the 

joint posterior ( | )p θ a  as =ij i jφ θ θ−  and =i iξ θ , (< ) = 1, 2, 3, 4, 5i j∀ .  
 
The following rule applies to draw conclusion about the hypotheses regarding the teams 
being compared. Let  

= min( , )ij ijs p q , 
if ijp  (or ijq ) is large, then ijH  (or jiH ) is accepted with high probability. This implies 
that if ' 's  is small, we can reject one of the hypotheses, otherwise if > 0.1s  (say), then 
the evidence is inconclusive. Being specific, the posterior probability 12p  of the 
hypothesis 12 1 2: >H θ θ  that Australians will defeat India, is evaluated as  

( )12 12= > 0 |p p φ a ( )1 (1 )/2 1 2 1 2 3
12 1 3 4 5 4 3 1 120 0 0

= ( , , , , ) | .ijp a d d d d
φ ξ φ ξ φ θ

φ
φ ξ θ θ θ θ θ ξ φ

+ − + − + −

∫ ∫ ∫ ∫  

Here, as usual, the subscripts 1 through 5 represent the Australians, Indians, New 
Zealanders, Pakistanis and South Africans respectively. The posterior probability of the 
alternative hypothesis 21 1 2:H θ θ≤  is 12 12= 1q p− .  
 
The posterior probabilities are evaluated to be as hight as very close to one in favor of the 
hypotheses consistent with the ranking order established via the ML and the Bayes 
estimates.  
 
8.4. Predictive probabilities 
Having observed sample  a for the number of preferences of item i over j, Bayesians use 
the posterior predictive distribution ( | )ijp a′ a  to predict the future observation ija′  as:  
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𝑝𝑝�𝑎𝑎𝑖𝑖𝑖𝑖′ �𝒂𝒂� = � 𝑃𝑃(
𝜽𝜽

𝑎𝑎𝑖𝑖𝑖𝑖′ |𝜽𝜽)𝑝𝑝(𝜽𝜽|𝒂𝒂)𝑑𝑑𝜽𝜽,       𝑎𝑎𝑖𝑖𝑖𝑖′ = 0,1, … , 𝑛𝑛𝑖𝑖𝑖𝑖  

 where ( | )ijp a′ θ  is the property of the model, and distributions of the variables 𝒂𝒂 and ija′  
are fully characterized by θ . The predictive probability ( )ijP  that item i will be preferred 
to j in a future single comparison is 

( ) = ( > | ) ( | ) ,ij i jP p T T p d∫θ θ θ a θ  

 where ( > | )i jp T T θ  is given by a PC model. The predictive probability of winning of any 
team against another in a single future contest is denoted by ( )ijP , for (< ) = 1,...,5i j , and is 
found as  

( ) = ( | ) , (< ) = 1, 2, 3, 4, 5.ij ijP p d i jφ∫θ θ a θ  

 where ijφ  stand for the winning (preference) probability of the team i against j and 
( | )p θ a  denotes the posterior distribution θ  conditional upon dataset a . The posterior 

predictive probabilities ( )ijP  are evaluated via the numerical integration, and are furnished 
in Table 5. 

Table 5: Pair-wise posterior ( )ijp predictive probabilities for the observed dataset 

Team-Pairs Uniform prior Jeffreys’ prior Dirichlet prior 
(AU, IN) 0.72210    0.72339 0.57709    
(AU, NL) 0.71068    0.70690 0.52925    
(AU, PA) 0.71068    0.69634 0.64297    
(AU, SA) 0.62557    0.59845 0.37786 
(IN, NL) 0.48700    0.47919 0.45090    
(IN, PA) 0.45188    0.44451 0.57577 
(IN, SA) 0.37721    0.35101 0.34074 
(NL, PA) 0.48606    0.48881 0.66211 
(NL, SA) 0.39225    0.37149 0.37925   
(PA, SA) 0.40867    0.38516 0.28764   

 
Obviously the predictive probabilities support the ranking order of the teams under study 
already established via the posterior means and preference probabilities. However, the 
changes in the results found using the informative Dirichlet prior are due to the utility of 
additional information furnished by the cricket-experts. 
 
9. Simulation study based on different configurations of parametric values 
To assess the sustainability and performance of the proposed model, a simulation study is 
conducted considering a balanced paired comparison experiment each consisting of 50 
trials and taking 100,000 simulations and using different configurations of parametric 
values. To reflect different populations, we have used equal and unequal (increasing and 
decreasing) parametric values to simulate 100,000 datasets from these populations. The 
posterior means of the associated worth parameters and their standard deviations are 
computed based on the simulated datasets via the uniform prior and are displayed in 
Table 6. 
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Table 6: Bayes estimates for datasets simulated for different parametric values  
   using uniform prior 

Teams Parameters 

Results of 100,000 simulations 

Assumed 
equal 
values 

Estimated 
values 

Assumed 
increasing 

values 

Estimated 
values 

Assumed 
decreasing 

values 

Estimated 
values 

Australia 
1θ  0.20000 0.19566    

(0.01829) 
0.0835 0.15726 

(0.01123) 
0.3147 0.24962 

(0.02685) 

India 
2θ  0.20000 0.19125 

(0.01854) 
0.1324 0.17232 

(0.01597) 
0.2235 0.20417 

(0.02128) 

New 
Zealand 

3θ  0.20000 0.19685 
(0.01895) 

0.2054 0.20240 
(0.01924) 

0.1375 0.17421 
(0.01729) 

Pakistan 
4θ  0.20000 0.20192 

(0.01903) 
0.3223 0.23416    

(0.01911) 
0.0579 0.12743 

(0.01352) 

South 
Africa 

5θ  0.20000 0.21432 
(0.02052) 

0.2564 0.23386 
(0.02079) 

0.2664 0.24457 
(0.02575) 

 
From the results reflected in Table 6, it becomes evident that the Bayes estimates and the 
corresponding true parametric values coincide a lot. So it is established that the 
estimation technique utilized therein is efficient. Moreover, the preference probabilities 

ijφ  are also evaluated for all the team pairs on behalf of the posterior parametric estimates 
obtained using the simulated datasets in the three assumed-value configurations for the 
proposed model and are presented in Table 7. 
Table 7: Preference probabilities ijφ based on the estimates for the simulated  

   datasets 

Team-Pairs 
For estimates 

based on assumed 

equal values 

For estimates 
based on assumed 

increasing values 

For estimates 
based on assumed 

decreasing values 
(AU, IN) 0.50623 0.47421 0.55233 
(AU, NL) 0.49833 0.42556 0.58974 
(AU, PA) 0.49126 0.37761 0.65457 
(AU, SA) 0.47431 0.37805 0.50559 
(IN, NL) 0.49213 0.45766 0.54560 
(IN, PA) 0.48529 0.42240 0.64799 
(IN, SA) 0.46964 0.42270 0.45273 
(NL, PA) 0.49306 0.46148 0.59383 
(NL, SA) 0.47716 0.46181 0.41490 
(PA, SA) 0.48388 0.50035 0.34934 

 
Obviously, the preference probabilities second the ranking order established via the 
posterior parametric estimates obtained using the simulated datasets. 
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10. Comparison of the priors 
The uninformative uniform and Jeffreys’ priors may be compared on the basis of the 
estimates produced by them. Here we see that the posterior means found using the 
uniform and Jeffreys’ priors agree up to one decimal place. However the uninformative 
Jeffreys’ and the informative Dirichlet priors may be compared on the basis of the 
Lindly-Shannon information (LSI).  In accordance with the definition of information 
proposed by Lindley (1956), if ( )p θ  denotes prior distribution about a state of nature θ , 
then the amount of information, { ( },I p θ  contained in this prior is defined as 

{ ( )} = ( ) ln{ ( )}J J JI p p p d∫θθ θ θ θ , 

provided that the integral converges. The amounts of the respective LSIs for the 
uninformative Jeffreys’ and the informative Dirichlet priors are found to be 5.7224 ×
1053  and 4.6216 × 10160 . Here it may be said in the present environment that the 
Jeffreys’ prior is less informative than the Dirichlet prior. 

 
11. Appropriateness of the model 
A model is said to give appropriate fit to the observed dataset if the expected frequencies 
obtained using the model are substantially close to the observed frequencies. To test the 
hypothesis of the appropriateness of a model, we evaluate 2χ -values. The smaller the 
value of 2χ , the better the fit would be.  
 
Let the ordered pairs ˆ( , )ij ija a  and ˆ( , )ji jia a  respectively denote the observed and the 
corresponding expected frequencies for the preferences of item i over j and the vice 
versa. Then the 2χ -statistic is defined as  

2 2
2

<

ˆ ˆ( ) ( )
= ,

ˆ ˆ

t
ij ij ji ji

i j ij ji

a a a a
a a

χ
 − − + 
  

∑  

with ( 1)( 2)/2t t− −  degrees of freedom [Stern (1990), Aslam, (1995), Abbas and Aslam 
(2010b)].  
 
The null hypothesis 0H  and the alternative hypothesis 1H  about the values of the model 
parameters are 
  0H  : The model is true for the values of parameter θ . 
  1H : The model is not true for any values of the parameters. 
The expected frequencies are calculated as ˆ = .ij ij ija n φ  and ˆ = .(1 ).ji ij ija n φ−  The statistical 

measures, that is, the 2χ  and the associated p-values are obtained for different values of 
the α and are presented in Table 8.  
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Table 8: 2χ -values with associated p-values for different α-values 

α-values Goodness indicators Classical ML estimates Bayes estimates via the 
uniform prior 

0.05 
2χ -values 98.54342 3.97641 

p-values 0.00000 0.67987 

0.55 
2χ -values 3.94733 3.96834 

p-values 0.68380 0.68096 

1.00 
2χ -values 3.94732 4.01918 

p-values 0.68380 0.67408 

2.00 
2χ -values 3.94732 4.06574 

p-values 0.68381 0.66778 

5.00 
2χ -values 3.94731 4.16597 

p-values 0.68381 0.65423 

10.00 
2χ -values 3.94731 4.91929 

p-values 0.68381 0.55421 

50 
2χ -values 3.94740 17.64618 

p-values 0.68380 0.00718 

100 
2χ -values 3.94747 17.64618 

p-values 0.68379 0.00718 
 

From the results it reveals that there is no evidence to conclude that the proposed Pareto 
model under consideration does not fit to the observed dataset. Moreover, the p-values 
associated with the maximum likelihood estimates and those found using the uniform 
prior are observed to be the highest ones, so these may be declared the most accurate 
estimates. Moreover, highest p-values are observed to exist for  𝛼𝛼 = 0.55, hence this 
value is proved to be the best choice. 
 
12. Concluding remarks with discussion 
Paired comparison models are proposed using the Pareto distribution. Whereas, we have 
estimated the best value of the scale parameter via the sensitivity analysis. Having 
reviewed the facts and figures of the analysis given in terms of the ML and Bayes 
estimates, we notice that the five cricket teams under study may be ranked as Australia 
being the number one, South Africa the second one, Pakistan being the third one, New 
Zealand the fourth and India being the fifth and last one for the uninformative priors. It is 
also worth mentioning that the estimates obtained in the forms of the posterior means 
under the Uniform and the Jeffreys' priors agree considerably. The posterior estimates 
obtained via the informative prior reflect a different ranking order due to incorporating 
some additional information. The preference probabilities, posterior predictive 
probabilities and the posterior probabilities of hypotheses  also favor the same ranking 
order.  
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It has also been observed that the Bayes estimates based on the simulated datasets 
confirm the ranking order of the teams under study that was observed using the real 
dataset and generate very small standard errors indicating the best performance of the 
model in the theoretical conditions. It is also observed that the Bayes estimates and the 
corresponding true parametric values coincide a lot for datasets simulated in different 
populations. So, it is established that the estimation technique utilized therein is efficient. 
The test for goodness of fit of the model conducted through the 2χ -statistic also 
indicates the appropriateness of model. We have witnessed a variation in the inferences 
drawn using the uninformative and the informative priors, which indicates that a potential 
prior information may affect the inferences based on the priors.  
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