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Abstract 

In recent years, a new class of models has been proposed to exhibit the bathtub-shaped failure rate 

functions. The Weibull extension model is one of these models, which is asymptotically related to the 

ordinary Weibull model and is capable of modeling the bathtub-shaped and increasing failure rate lifetime 

data. This paper presents the conditional inference for constructing the confidence intervals for the Weibull 

extension parameters based on the generalized order statistics. For measuring the performances of this 
approach comparing to the Asymptotic maximum likelihood estimates, Simulation studies have been 

carried out, that indicated the conditional intervals possess a good statistical properties and they can 

perform quite well even when the sample size is extremly small. An illustrative examples based on real 

data are given to illustrate the confidence intervals developed in this paper. 

Keywords:  Weibull extension model; Modified Weibull model; Weibull distribution; 

Burr-type XII distribution; Lamox distribution; Generalized Pareto model; Progressive 

type-II censored samples with binomial random removals; Asymptotic maximum 

likelihood estimates. 

1. Introduction 

In the last decade, a new class of distributions has been proposed based on extended 

forms of the Weibull distribution to provide a better fitting than the Weibull distribution. 

This class has been studied extensively in the literature for its various applications in 

reliabiliy and life-data statistics and modeling the lifetimes of electro-mechnical, 

electronic and mechanical products. Aarset (1987) discussed the identification of the 

bathtub-hazrd rate function. Xie and Lai (1996) studied the reliability analysis for the 

bathtub-shaped failure rate function. Wang et al. (2002) presented a general form for the 

bathtub shaped hazard function in terms of reliability. Lai et al. (2003) discussed in 

details the bathtub-shaped failure rate life distributions.  

 

Chen (2000) introduced the Weibull extension model as a new lifetime distribution that 

has bathtub-shaped hazard rate function and discussed some characteristics of this model 

and explained its cabiblity for describing the life time variables of bathtub-shaped hazard 

rate function. The cumulative distribution function of the Weibull extension model 

(WEM ) is given by  

))1)(exp(exp(1)( −−−=  xxF ,              
,0,, x
    (1.1) 

  and   are  shape and scale parameters respectively. 
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Xie et al. (2002) presented the WEM as a distribution with the property of bathtub-

shaped failure rate function. Tang et al. (2003) carried out in details the statistical 

analysis of this distribution and they derived the confidence intervals based on the 

asymptotic maximum likelihood estimates (AMLEs). Wu et al. (2004) derived the exact 

confidence interval for shape parameter. Pham and Lai (2007) discussed most of the 

modifications for the Weibull distribution, and Silva et al. (2009) derived the maximum 

likelihood estimates (MLEs) for the parameters of this model and presented some 

inferential procedures. This paper extends the analysis on the Weibull extension model 

by introducing the conditional inference procedures as a tool for constructing the 

confidence intervals for the parameters based on the generalized order statistics. 

However, the conditional approach as proposed by Sir Fisher (1934) has been applied for 

many lifetime distributions belonging to the location-scale family, see Lawless (1973, 

1974, 1975, 1978, 1980, 1982) or those can be transformed to this family, see Maswadah 

(2003, 2005). Thus as a new application for the conditional approach, the conditional 

confidence intervals for the shape-scale family parameters have been constructed based 

on the generalized order statistics. The cumulative distribution function (cdf) and 

probability density function (pdf)  for the shape-scale family are given, respectively, by:  

 

 

))(exp(1)( xgxF −−=         , 0,, x ,    (1.2) 

))(exp()()()( 1 xgxgxgxf   −= −
, 0,, x   (1.3) 

 

For convenience we assume )(xg to be differentiable as well as strictly increasing 

function of  x ,  0)0( =+g   and   .)( →→ xasxg  

 

The parameters    and   are shape and scale respectively. 
 

This family includes among others the most popular parameteric models in lifetime 

distributions such as the Weibull extension model, modified Weibull model, Weibull 

distribution, Pareto distribution, Burr-type-XII distribution, Lamox distribution and the 

Generalized Pareto distribution according to the values of )(xg
. Some important 

members of this family are shown in Table 1. 

Table 1: 

No. )(xg
 F(x) Distribution 

1 1)exp( −x  ))1)(exp(exp(1 −−−  x  Weibull Extension 

2 )exp( xx 

 ))exp(exp(1 xx −−  Modified Weibull 

3 x  )exp(1 x−−  Weibull 

4 )1ln( x+  
 −+− )1(1 x  Burr-type XII 

5 )/1ln( x+   −+− )/1(1 x  Lamox 

6 )/1ln( x−−  )/1(1 x−−  Generalized Pareto 

7 )/ln( x   −− )/(1 x  Pareto-type I 
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For the importance of this family, the conditional inference has been proposed  for 

constructing the confidence intervals for its parameters based on the generalized order 

statistics (GOS), that introduced by Kamps (1995) as a unified approach to ordinary OS, 

progressive type-II OS, record values and k-th record values, which can be outlined as: 

 

Let )(xF  be an absolutely continuous function with pdf )(xf . The random variables 

),~,,(),....,,~,,1( kmnnXkmnX  are called GOS, with noting that 0),~,,0( =kmnX , 

1k ,  if their joint  pdf  can be written in the form: 

   
−

=

−

−−=
1

1

21 )()(1)(1)(),...,,(
1

n

i

nniin xfxFxFxfCxxxf
kim

,  (1.4) 

on the cone )(....)( 11Fnx1x01F −−
 of nR , where
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represents the number of units withdrawn at the corresponding failure times. 

 

• If 0~ =m and 1=k then (1.4) is the joint pdf of the ordinary order 

statistics. 

• If 0~ =m and  1−= kmn  and 
=

+=
n

i

imnN
1

then (1.4) is the 

joint pdf of the type-II censored order statistics. 

• If 0~ m , 1−= kmn  and 
=

+=
n

i

imnN
1

 
then (1.4) is the joint 

pdf of the type-II progressively censored order statistics. 

 

2. Conditional inference  methodology  

For the first time, we will give outline for the conditional approach to inference on the 

shape-scale family (1.2).   

 

Given a set of n   GOS  ),~,,(),....,,~,,1( kmnnXkmnX  with sampling density 

function belonging to (1.2), thus by substituting (1.2 ) and (1.3) in (1.4) we can derive the 

joint pdf as   
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(2.1)
 

 

For the shape-scale family (1.2), if  ̂  and ̂   be any equivariant estimators such as the 

MLEs of   and   , then   ˆ/1 =Z  and  ˆ/1/1

2

z
Z =  are pivotal quantities and 
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)(ˆ ˆ

ii xga =  , ni ,...,2,1=  form a set of ancillary statistics. Thus based on the 

following theorem, we can derive the conditional densities for the pivotal quantities 

conditional on the ancillary statistics and the confidence intervals can be constructed and 

converting them for   and   fiducially.   

Theorem: 

Let ̂  and ̂  be any equivariant estimators of   and   for the shape-scale family (1.2), 

based on the generalized order statistics 
),~,,(),....,,~,,1( kmnnXkmnX . Then 

the conditional pdf of 1Z  and 2Z  given ),...,,( 221 −= naaaA  can be derived in the 

form 

)exp()|,( 111
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, (2.2) 

D is a normalizing constant depends on A only, ia is the derivative of
 ia  and 
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z

ii amkamU .   

 

Proof 

Make the change of variables from ),~,(),...,,,1( kmnXkmX with pdf (2.1) 

to  ( 21,...,,ˆ,ˆ −naa ). This transformation can be written as: 


ˆ/1)ˆ/()( ii axg = ,    2...,2,1 −= ni , 


ˆ/1

11 )ˆ/()( −− = nn axg ,   and   

ˆ/1)ˆ/()( nn axg = . 

 

The Jacobian of this transformation is  )(ˆ 2 Ahn− . Thus the joint pdf  of  

( 21,...,,ˆ,ˆ −naa  )  can be derived in the form : 
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Make the change of variables from ( 21,...,,ˆ,ˆ −naa )  to  ( 2121 ,...,,, −naazz ), with 

noting that    
( ) 1

2

ˆ/
/ˆ

ˆ

ˆ
)(ˆ)(

z

iii zaxgxg =









=











. 

 

The Jacobian of this transformation is  21/1 zz ,  thus the joint pdf of 1z and 2z  given 

),...,,( 221 −= naaaA  is in the form (2.2) ▪ 

3. Confidence  interval  procedures 

3.1   Conditional confidence intervals 

The marginal density of 1Z   and the distribution function of 2Z  can be derived from 

(2.2) respectively as: 
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D  is a normalizing constant does not depend on 1Z  and 2Z   and  can be derived as: 
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To obtain the confidence intervals for   (say), from (3.1) the probability statement for 

1
Z  can be obtained as −= 1)( 1 RZLP , which is the )%1(100 −   

confidence interval for 
1

Z and then transformed fiducially for   as 

 −= 1)ˆˆ( RLP  . Such an interval is not unique, thus using symmetrical 

probability tails, the lower ( L ) and upper ( R ) limits of such an interval are the 

solutions of 2/)0( 1 = LZP  and 2/1)0( 1 −= RZP  

respectively. Similarly the confidence interval for  can be constructed from (3.2).  

3.2   Asymptotic confidence intervals 

The maximum likelihood estimation is a popular statistical method used for deriving the 

classical confidence intervals for the distribution parameters, it provides satisfactory 

estimates for these parameters and can be regarded as a reference technique as in our 

study. For purpose of comparison  we obtain the approximate confidence intervals for the 

parameters, thus the asymptotic variance covariance matrix (AVC) of the MLEs can be 
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derived, which is the inversion of the Fisher information matrix whose elements are the 

negatives of the expected values of the second order partial derivatives of the logarithm 

of the likelihood function. In the present situation, it seems appropriate to approximate 

the expected values by their maximum likelihood estimates.  

 

The first and second derivatives of the log likelihood function of (2.1) with respect to 
and , with application to the Weibull extension model can be derived as follows: 
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Thus, the approximate )%1(100 − two sided confidence intervals for   and 

can be obtained respectively by 

  ˆ2/
ˆ Z
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,

 

where 2/Z  is the upper th_2/  percentile of a standard normal distribution,  ˆ , 
 ˆ   

are the standard deviations of the MLEs of the parameters   and  respectively, 

where they are elements of the

 

following AVC matrix: 
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4. Simulation studies 

In this section we mainly present some Monte Carlo simulation results, to measure the 

performances of the conditional inference comparing to the AMLEs  inference in terms 

of the following criteria: 

1- The Covering percentage ( CP ), which is defined as the fraction of times the 

confidence interval (CI) covers the true value of the parameter in repeated 

sampling. Thus if the CP  is greater than (less than) the nominal level then the 

procedure is conservative (anti-conservative).   

2- The mean lengths of the intervals ( MLIs ), which is defined as the average lengths 

of the intervals in repeated sampling. If a short interval has high CP , the data 

allows us to estimate the parameter accurately. Though, higher CP  generally 

requires a longer interval and short intervals generally have lower CP . Therefore 

the procedures which have the same CPs , the one that provides shorter intervals 

is better.  

3- The standard error of the covering percentage ( SDE  ), which is defined for the 

nominal level )100%(1 −  by 
M

SDE
)ˆ(1ˆ

=)ˆ(



−

,  where )100%ˆ(1 −  denote 

the corresponding Monte Carlo estimate and M is the number of Mote Carlo 

trials. Thus for the nominal level 95%  and 1000  simulation trials, say, the 

standard error of the covering percentage is 0.0049 , which is approximately 

1% . Therefore, we say the procedure is adequate if the SDE  is within 2%  

error for the nominal level 95% .  

 

The comparative results, based on 1000  Monte Carlo simulation trials are given for 

sample sizes 8060,40,20,=n  and 100  with censoring levels  0.0%, 0.25% and 

0.50%, that have been generated from the Weibull extension model for shape parameter 

values 1,0.5=  and 2  and scale parameter values 0.5=  and 2 . The 

progressive type-II censoring sampling has been carried out with binomial random 

removals with probablity 5.0=P , that means the number of units removed at each 

failure time follows a binomial distribution with probability P , where different values of

P does not affect the calculations.    

     

From the simulation results that reported in Tables 2 to 7, we can summarize the 

following main points:   
 

1- It is worthwhile to note that for different values of  , the CPs  are the same for 

the pivotal 1z as expected because its distribution is independent from the 

parameter   for fixed  , however the MLIs for the parameter  will be 

changed for increasing  . On the contrary the CPs  for the pivotal 2z  and the 
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MLIs  will be the same for all the values of  as expected.   

2- The values of MLIs  generally decrease and the CPs  almost getting increase 

and the values of SDEs   almost getting decrease as the sample size increases for 

both parameters  and  . Moreover, the values of MLI  for  and   

generally increase with the same average of increasing the values of  and 
respectively.  

3- The values of MLI  for   and   based on the conditional inference are quite 

shorter than those based on the AMLEs, in spite of they have almost higher CPs  

based on complete and type-II progressively censored samples. However, the 

values of MLIs  for   based on the AMLEs inference are almost shorter than 

those based on the conditional inference when
 

0.5=
 
and both approaches 

have greater MLIs values for 10=n ,  based on type-II censored samples. 

4- Both approaches are almost conservative for estimating   
and  , however the 

AMLEs approach is anti-conservative when the sample size is less than or equal 

to 20.  

5- Generally, the results based on the type-II progressive censored samples are better 

than those based on the type-II censored samples, in which they have shorter 

MLIs and higher CPs . 

6- Finally, both approaches are adequate because their SDEs are less than  2%   

for the nominal level 95% .  

 

Thus the simulation results indicated that the conditional intervals possess good statistical 

properties and they can perform quite well even when the sample size is  extremly small. 

However, the AMLEs approach turns out to be impercise or even unreliable for small or 

highly type-II censored samples. 

4. Numerical  examples  

Example 1: 

Consider the data in Aarset (1987) that represent the lifetime of 50 industrial devices, 

which fit the Weibull extension model.  

 

0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 

55, 60, 63, 63, 67, 67, 67, 67,72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.  

 

Thus for purpose of comparison, the 90% and 95% confidence intervals for the 

parameters   and  are derived based on the conditional and the AMLEs approaches. 

The results in Table 8 have been indicated that, the length of intervals for the parameters 
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 and  based on the conditional approach are shorter than those based on the 

AMLEs approach which ensure the simulation results.   

Example 2: 

Consider the data given in Chen (2000 ) and  Wu et al. (2004) that represents 11 

observations of a computer-generated sample of size n = 15  from the Weibull extension 

model  with parameters 02.0= and 5.0= : 
 

0.29 , 1.44 , 8.38 ,  8.66 , 10.20 , 11.04 , 13.44 , 14.37, 17.05 , 17.13 , 18.35. 

 

It was found by Chen (2000) that the 95% confidence interval for the shape parameter 

  is ( 0.19, 0.62 ) with interval length 0.43, based on a pivotal quantity for  . Wu et 

al. (2004) proposed a new pivotal quantity for the shape parameter and evaluated the 95% 

confidence interval for the shape parameter as ( 0.27, 0.60 ) with interval length 0.33 

which is shorter than Chen (2000) interval. Thus for purpose of comparison the 95% 

conditional confidence interval for the shape parameter is ( 0.35, 0.59 ) with interval 

length 0.24 . Also the 95% AMLEs for the shape parameter is ( 0.37, 0.64 ) with interval 

length 0.27. Thus the conditional and the AMLEs confidence intervals are shorter than 

both Chen (2000) and Wu et al. (2004) intervals. 

5. Conclusion 

In this paper, a new application for the conditional inference has been applied  to 

inference on the shape-scale family parameters with application to the Weibull extension 

model based on the generalized order statistics. Moreover, for purpose of comparison the 

asymptotic maximum likelihood estimates has been applied to measure the performances 

of the proposed approach based on the Monte Carlo simulations that indicated the 

conditional approach possess good statistical properties and can perform quite well even 

when the sample size is  extremly small. However, the AMLEs turn out to be impercise 

or even unreliable for small or highly censored samples. 
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Table 2: The (MLIs), (CPs) and (SDEs) for the conditional and the AMLEs 

approaches when the nominal level is 95%  for the parameter  with 

5.0=  to the complete and censored  samples with censored levels 

(50%, 25% and 0.0%) 

App.                       Conditional                         AMLs 

 

n 

 

m 

MLI ,    

CP  

 

SDE  

                MLI ,          

CP  

 

SDE 
0.5 1.0 2.0 0.5 1.0 2.0 

 

 

20 

10 0.7595 1.5191 3.0382 0.948 0.0070 0.8295 1.6589 3.3179 0.966 0.0057 

15 0.5254 1.0508 2.1016 0.961 0.0061 0.5472 1.0943 2.1886 0.964 0.0059 

20 0.3466 0.6933 1.3865 0.943 0.0073 0.3527 0.7054 1.4108 0.931 0.0080 

 

 

40 

20 0.4974 0.9949 1.9897 0.947 0.0071 0.5177 1.0353 2.0706 0.954 0.0066 

30 0.3488 0.6976 1.3952 0.952 0.0068 0.7109 1.4217 2.1326 0.956 0.0065 

40 0.2326 0.4653 0.9305 0.936 0.0077 0.2347 0.4694 0.9388 0.933 0.0079 

 

 

60 

30 0.3986 0.7973 1.5945 0.943 0.0073 0.4089 0.8179 1.6357 0.953 0.0067 

45 0.2811 0.5623 1.1246 0.946 0.0071 0.2847 0.5693 1.1386 0.949 0.0069 

60 0.1864 0.3729 0.7458 0.946 0.0071 0.1875 0.3751 0.7502 0.945 0.0072 

 

 

80 

40 0.3401 0.6801 1.3602 0.957 0.0064 0.3465 0.6929 1.3859 0.957 0.0064 

60 0.2414 0.4828 0.9655 0.959 0.0063 0.2436 0.4873 0.9745 0.963 0.0059 

80 0.1602 0.3205 0.6409 0.954 0.0066 0.1609 0.3219 0.6438 0.951 0.0068 

 

 

100 

50 0.3043 0.6089 1.2172 0.954 0.0066 0.3089 0.6178 1.2354 0.959 0.0063 

75 0.2158 0.4315 0.8623 0.956 0.0065 0.2174 0.4348 0.8695 0.957 0.0064 

100 0.1427 0.2853 0.5707 0.954 0.0066 0.1432 0.2864 0.527 0.953 0.0067 
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Table 3: The (MLIs), (CPs) and (SDEs) for the conditional and the AMLEs 

approaches when the nominal level is 95%  for the parameter  with 

2= to the complete and censored samples with censored levels 

(50%, 25% and 0.0%) 

   
Appro.                         Conditional                               AMLs 

 

n 

 

m 

MLI ,    

CP  

 

SDE  

            MLI ,    

CP  

 

SDE 
0.5 1.0 2.0 0.5 1.0 2.0 

 

 

20 

10 0.7262 1.4523 2.9046 0.948 0.0070 0.7813 1.5625 3.1251 0.956 0.0063 

15 0.5584 1.1167 2.2335 0.962 0.0060 0.5844 1.1688 2.3375 0.958 0.0064 

20 0.4291 0.8582 1.7164 0.94 0.0075 0.4396 0.8712 1.7584 0.943 0.0073 

 

 

40 

20 0.4824 0.9648 1.9295 0.944 0.0073 0.4994 0.9987 1.9974 0.947 0.0071 

30 0.3748 0.7495 1.4991 0.949 0.0069 0.3832 0.7663 1.5327 0.946 0.0071 

40 0.2872 0.5743 1.1487 0.94 0.0075 0.2906 0.5811 1.1622 0.946 0.0071 

 

 

60 

30 0.3882 0.7764 1.5527 0.944 0.0073 0.3970 0.7941 1.5881 0.942 0.0074 

45 0.3027 0.6053 1.2106 0.946 0.0071 0.3071 0.6143 1.2286 0.948 0.0071 

60 0.2299 0.4599 0.9198 0.947 0.0071 0.2318 0.4635 0.9271 0.947 0.0071 

 

 

80 

40 0.3327 0.6654 1.3309 0.953 0.0067 0.3384 0.6768 1.3536 0.953 0.0067 

60 0.2605 0.5209 1.0419 0.956 0.0065 0.2634 0.5268 1.0536 0.957 0.0064 

80 0.1979 0.3957 0.7914 0.955 0.0066 0.1989 0.3978 0.7959 0.953 0.0076 

 

 

100 

50 0.2981 0.5962 1.1924 0.952 0.0068 0.3021 0.6043 1.2086 0.951 0.0068 

75 0.2333 0.4665 0.9331 0.956 0.0065 0.2354 0.4707 0.9414 0.955 0.0065 

100 0.1766 0.3532 0.7067 0.959 0.0063 0.1735 0.3548 0.7096 0.962 0.0060 
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Table 4: The (MLIs), (CPs) and (SDEs) for the conditional and the AMLEs  approaches 

when the nominal level is 95%  for the parameter  with 5.0=
 
to the 

progressive type-II censoring with binomal random removal with probability 

P = 0.5 and censored levels (50% and 75%) 

  
Appro.                         Conditional                               AMLs 

 

n 

 

m 

              MLI ,        

CP  

 

SDE  

              MLI ,    

CP  

 

SDE 
0.5 1.0 2.0 0.5 1.0 2.0 

 

20 

10 0.5310 1.0620 2.1241 0.956 0.0065 0.5512 1.1023 2.2046 0.945 0.0072 

15 0.4092 0.8183 1.6366 0.952 0.0068 0.4189 0.8377 1.6754 0.943 0.0073 

 

40 

20 0.3434 0.6867 1.3735 0.947 0.0071 0.3493 0.6986 1.3973 0.934 0.0079 

30 0.2717 0.5433 1.0867 0.941 0.0075 0.2748 0.5497 1.0993 0.937 0.0077 

 

60 

30 0.2697 0.5394 1.0789 0.953 0.0067 0.2729 0.5457 1.0914 0.952 0.0068 

45 0.2167 0.4333 0.8666 0.955 0.0066 0.2183 0.4367 0.8734 0.956 0.0065 

 

80 

40 0.2328 0.4655 0.9311 0.953 0.0067 0.2348 0.4697 0.9394 0.945 0.0072 

60 0.1864 0.3728 0.7457 0.948 0.0070 0.1875 0.3751 0.7501 0.947 0.0071 

 

100 

50 0.2048 0.4096 0.8192 0.951 0.0068 0.2062 0.4125 0.8249 0.951 0.0068 

75 0.1653 0.3306 0.6613 0.946 0.0071 0.1661 0.3322 0.6644 0.95 0.0069 

Table 5: The (MLIs), (CPs) and (SDEs) for the conditional and the AMLEs approaches 

when the nominal level is 95%  for the parameter   with
 

2= , to the 

progressive type-II censoring with binomal random removal with probability 

P = 0.5 and censored levels (50% and 75%) 

   Appr.                        Conditional                       AMLs 

 

n 

 

m 

             MLI ,    

CP  

 

SDE  

            MLI ,    

CP  

 

SDE 
0.5 1.0 2.0 0.5 1.0 2.0 

 

20 

10 0.6528 1.3056 2.6111 0.959 0.0063 0.6887 1.3774 2.7547 0.96 0.0062 

15 0.5052 1.0104 2.0209 0.957 0.0064 0.5223 1.0447 2.0209 0.954 0.0066 

 

40 

20 0.4245 0.8489 1.6979 0.946 0.0071 0.4349 0.8697 1.7395 0.946 0.0071 

30 0.3354 0.6708 1.3416 0.944 0.0073 0.3407 0.6813 1.3628 0.947 0.0071 

 

60 

30 0.3329 0.6658 1.3315 0.948 0.0070 0.3381 0.6763 1.3525 0.953 0.0067 

45 0.2672 0.5344 1.0688 0.955 0.0066 0.2700 0.5400 1.0800 0.955 0.0066 

 

80 

40 0.2874 0.5748 1.1495 0.952 0.0068 0.2908 0.5816 1.1631 0.953 0.0067 

60 0.2301 0.4602 0.9204 0.95 0.0069 0.2319 0.4638 0.9276 0.955 0.0066 

 

100 

50 0.2532 0.5065 1.0129 0.951 0.0068 0.2556 0.5112 1.0225 0.953 0.0067 

75 0.2444 0.4089 0.8178 0.952 0.0068 0.2057 0.4114 0.8228 0.955 0.0066 
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Table 6: The conditional and the AMLEs (MLIs), (CPs) and (SDEs) based on  the 

nominal level 95%  for the  parameter  with 5.0=
 
based on the type-II 

censored and type-II progressively censoring with binomal random removal 

with probability P = 0.5  and censored levels (50%, 25% and 0.0%) 

Approaches 
                           Conditional                                    AMLs 

n m MLI CP  SDE  MLI  CP  SDE 

 

 

 

 

 

 

 

 

 

 

Type-II 

Censored 

Samples 

 

 

20 

10 0.9009 0.959 0.0063 1.1367 0.965 0.0058 

15 0.6137 0.957 0.0064 0.5789 0.956 0.0065 

20 0.4899 0.951 0.0068 0.5086 0.931 0.0080 

 

 

40 

20 0.6473 0.959 0.0063 0.5708 0.965 0.0058 

30 0.4174 0.96 0.0062 0.3784 0.957 0.0064 

40 0.3272 0.958 0.0063 0.3534 0.944 0.0073 

 

 

60 

30 0.5358 0.95 0.0069 0.4397 0.962 0.0060 

45 0.3388 0.947 0.0071 0.3058 0.944 0.0073 

60 0.2641 0.933 0.0079 0.2884 0.939 0.0076 

 

 

80 

40 0.4648 0.954 0.0066 0.3638 0.962 0.0060 

60 0.2908 0.961 0.0061 0.2618 0.942 0.0074 

80 0.2305 0.952 0.0068 0.2490 0.938 0.0076 

 

 

100 

50 0.4156 0.95 0.0069 0.3203 0.96 0.0062 

75 0.2579 0.957 0.0064 0.2325 0.955 0.0066 

100 0.2165 0.952 0.0068 0.2217 0.948 0.0070 

 

 

 

 

 

Type-II 

Progressive 

Censored 

Samples 

 

20 

10 0.7657 0.944 0.0073 0.7457 0.91 0.0090 

15 0.5864 0.947 0.0071 0.5937 0.926 0.0083 

 

40 

20 0.4876 0.952 0.0068 0.5058 0.933 0.0079 

30 0.3838 0.952 0.0068 0.4092 0.943 0.0073 

 

60 

30 0.3853 0.947 0.0071 0.4099 0.946 0.0071 

45 0.3079 0.946 0.0071 0.3332 0.937 0.0077 

 

80 

40 0.3261 0.953 0.0067 0.3528 0.939 0.0076 

60 0.2635 0.943 0.0073 0.2880 0.939 0.0076 

 

100 

50 0.2898 0.952 0.0068 0.3152 0.935 0.0078 

75 0.2333 0.952 0.0068 0.2567 0.937 0.0077 
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Table 7: The conditional and the AMLEs  (MLIs),  (CPs) and (SDEs) based on  the 

nominal level 95%  for the  parameter   with 2= based on the type-

II censored and type-II progressively censoring with binomal random 

removal with probability P = 0.5 and censored levels (50%, 25% and 

0.0%) 

Approaches 
                           Conditional                                    AMLs 

n m MLI CP  SDE  MLI  CP  SDE 

 

 

 

 

 

 

 

 

 

 

Type-II 

Censored 

Samples 

 

 

20 

10 3.3151 0.959 0.0063 7.8257 0.96 0.0062 

15 2.4304 0.96 0.0062 5.3412 0.957 0.0049 

20 1.9981 0.952 0.0068 2.8499 0.973 0.0051 

 

 

40 

20 2.3602 0.961 0.0061 5.5416 0.955 0.0066 

30 1.6418 0.959 0.0063 2.6937 0.97 0.0054 

40 1.3228 0.958 0.0063 1.6728 0.959 0.0063 

 

 

60 

30 1.9429 0.945 0.0072 3.7843 0.95 0.0069 

45 1.3283 0.947 0.0071 2.0638 0.964 0.0059 

60 1.0638 0.933 0.0079 1.3067 0.958 0.0063 

 

 

80 

40 1.6812 0.958 0.0063 2.9102 0.954 0.0066 

60 1.1389 0.96 0.0062 1.7038 0.969 0.0055 

80 0.9096 0.944 0.0073 1.1062 0.959 0.0063 

 

 

100 

50 1.4976 0.949 0.0069 2.5298 0.962 0.0060 

75 1.0086 0.959 0.0063 1.4999 0.966 0.0057 

100 0.6785 0.952 0.0068 0.9735 0.959 0.0063 

 

 

 

 

 

Type-II 

Progressive 

Censored 

Samples 

 

20 

10 3.1934 0.953 0.0067 6.3976 0.982 0.0042 

15 2.4108 0.954 0.0066 3.6365 0.976 0.0048 

 

40 

20 1.9898 0.957 0.0063 2.7506 0.97 0.0054 

30 1.5563 0.958 0.0063 2.0085 0.959 0.0063 

 

60 

30 1.5614 0.95 0.0069 2.0007 0.964 0.0059 

45 1.2436 0.945 0.0072 1.5379 0.952 0.0068 

 

80 

40 1.3178 0.952 0.0068 1.6732 0.96 0.0062 

60 1.0611 0.945 0.0072 1.3035 0.96 0.0062 

 

100 

50 1.1678 0.952 0.0068 1.4421 0.964 0.0059 

75 0.9377 0.951 0.0068 1.1396 0.961 0.0061 
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Table 8: The Lower (LL) and the Upper limits (UL) and the lengths of the 90% 

and 95% confidence intervals (CI) for the parameters  α,  β  based  on the 

Conditional  and the AMLEs approaches for complete, Type-II censored 

and Type-II progressive censored samples with binomial random removal 

with probability P = 0.5  for  the industrial devices data 

 

M
eth

. 

 

 

 

CI 

               Conditional   CIs 

 

          90%                           95% 

            AMLEs  CIs 

 

         90%                            95% 

 

C
o
m

p
lete 

Par.     LL          UL    LL              UL    LL                     UL    LL                 UL 

  
0.3049            0.3753 

         (0.0704) 

0.2977         0.3816 

       (0.0839) 

0.3094             0.3793 

         (0.0698) 

0.3028        0.3858 

(0.0829) 

  0.0146            0.0289 

       (0.0143) 

0.0137        0.0308 

(0.0172) 

0.0065             0.0345 

         (0.0281) 

0.0038        0.0372 

(0.0333) 

C
en

so
red

 

5
0
%

 

  
0.1956            0.3047 

       (0.1092) 

0.1854        0.3151 

(0.1297) 

0.2041            0.3134 

(0.1093) 

0.1938          0.3237 

(0.1298) 

  0.0309            0.0655 

        (0.346) 

0.0279         0.0695 

(0.0416) 

0.01759          0.0814 

(0.0638) 

0.0116         0.0874 

(0.0758) 

C
en

so
red

 

2
5
%

 

  
0.2395            0.3224 

         (0.0829) 

0.2313         0.3299 

(0.0986) 

0.2457           0.3280 

(0.0823) 

0.2379        0.3357 

(0.0978) 

  0.0289            0.0525 

        (0.0353) 

0.0273         0.0555 

(0.0282) 

0.0146            0.0647 

(0.0501) 

0.0099        0.0694 

(0.0595) 

P
ro

g
,C

en
. 

5
0
%

 

  
0.2638            0.3743 

         (0.1104) 

0.2527         0.3841 

(0.1314) 

0.2745            0.3835 

(0.1089) 

0.2642          0.3937 

(0.1295) 

  0.0579            0.1233 

          (0.0654) 

0.0538         0.1327 

(0.0789) 

0.0292           0.1419 

(0.1127) 

0.0186         0.1526 

(0.1339) 
P

ro
g
.C

e. 

2
5

%
 

  
0.2781            0.3613 

         (0.0832) 

0.2697         0.3687 

(0.0991) 

0.2845            0.3669 

(0.0824) 

0.2768          0.3746 

(0.0978) 

  0.0303            0.0599 

           (0.0297) 

0.0283         0.0641 

(0.0357) 

0.0144           0.0709 

(0.0565) 

0.0091         0.0762 

         (0.0671) 

(The values in parentheses are the length of intervals) 


