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Abstract

In recent years, a new class of models has been proposed to exhibit the bathtub-shaped failure rate
functions. The Weibull extension model is one of these models, which is asymptotically related to the
ordinary Weibull model and is capable of modeling the bathtub-shaped and increasing failure rate lifetime
data. This paper presents the conditional inference for constructing the confidence intervals for the Weibull
extension parameters based on the generalized order statistics. For measuring the performances of this
approach comparing to the Asymptotic maximum likelihood estimates, Simulation studies have been
carried out, that indicated the conditional intervals possess a good statistical properties and they can
perform quite well even when the sample size is extremly small. An illustrative examples based on real
data are given to illustrate the confidence intervals developed in this paper.

Keywords: Weibull extension model; Modified Weibull model; Weibull distribution;
Burr-type XII distribution; Lamox distribution; Generalized Pareto model; Progressive
type-11 censored samples with binomial random removals; Asymptotic maximum
likelihood estimates.

1. Introduction

In the last decade, a new class of distributions has been proposed based on extended
forms of the Weibull distribution to provide a better fitting than the Weibull distribution.
This class has been studied extensively in the literature for its various applications in
reliabiliy and life-data statistics and modeling the lifetimes of electro-mechnical,
electronic and mechanical products. Aarset (1987) discussed the identification of the
bathtub-hazrd rate function. Xie and Lai (1996) studied the reliability analysis for the
bathtub-shaped failure rate function. Wang et al. (2002) presented a general form for the
bathtub shaped hazard function in terms of reliability. Lai et al. (2003) discussed in
details the bathtub-shaped failure rate life distributions.

Chen (2000) introduced the Weibull extension model as a new lifetime distribution that
has bathtub-shaped hazard rate function and discussed some characteristics of this model
and explained its cabiblity for describing the life time variables of bathtub-shaped hazard
rate function. The cumulative distribution function of the Weibull extension model
(WEM ) is given by

F(x) =1-ep(-AEp(x?)-1), a, B, x>0, (1.1)
a and g are shape and scale parameters respectively.

Pak.j.stat.oper.res. Vol. X1V No.22018 ppl19-214


mailto:maswadah@hotmail.com
mailto:elfaheem@aswu.edu.eg

M. Maswadah, A. A. EL-Faheem

Xie et al. (2002) presented the WEM as a distribution with the property of bathtub-
shaped failure rate function. Tang et al. (2003) carried out in details the statistical
analysis of this distribution and they derived the confidence intervals based on the
asymptotic maximum likelihood estimates (AMLESs). Wu et al. (2004) derived the exact
confidence interval for shape parameter. Pham and Lai (2007) discussed most of the
modifications for the Weibull distribution, and Silva et al. (2009) derived the maximum
likelihood estimates (MLEs) for the parameters of this model and presented some
inferential procedures. This paper extends the analysis on the Weibull extension model
by introducing the conditional inference procedures as a tool for constructing the
confidence intervals for the parameters based on the generalized order statistics.
However, the conditional approach as proposed by Sir Fisher (1934) has been applied for
many lifetime distributions belonging to the location-scale family, see Lawless (1973,
1974, 1975, 1978, 1980, 1982) or those can be transformed to this family, see Maswadah
(2003, 2005). Thus as a new application for the conditional approach, the conditional
confidence intervals for the shape-scale family parameters have been constructed based
on the generalized order statistics. The cumulative distribution function (cdf) and
probability density function (pdf) for the shape-scale family are given, respectively, by:

F(X)=1—exp(—£9“ (X)) a, B, x>0, (1.2)
f(X) =g (x)g' (x)exp(—£9“ (X)), a, B, x>0 (1.3)

For convenience we assume g(X) to be differentiable as well as strictly increasing

functionof X, 9(07) =0 and g(X) >0 as x—ooo.

The parameters « and g are shape and scale respectively.

This family includes among others the most popular parameteric models in lifetime
distributions such as the Weibull extension model, modified Weibull model, Weibull
distribution, Pareto distribution, Burr-type-XII distribution, Lamox distribution and the
Generalized Pareto distribution according to the values of g“(X). Some important
members of this family are shown in Table 1.

Table 1:

No. g“(x) F(X) Distribution
1 op(x?)-1  1-exp(-BEp(x*)-1) Weibull Extension
2 X“ exp(AX) 1—exp(—x“ Bexp(AX)) Modified Weibull
3 X* 1— exp (—/4X%) Weibull
4 In(L+x*) 1-(L+x*)7* Burr-type XII
5 In1+x/ ) 1-(U+x/a)” Lamox
6 -Inl-x/a) 1-A-x/a)” Generalized Pareto
7 In(x/ ) 1-(x/a)™” Pareto-type |
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For the importance of this family, the conditional inference has been proposed for
constructing the confidence intervals for its parameters based on the generalized order
statistics (GOS), that introduced by Kamps (1995) as a unified approach to ordinary OS,
progressive type-Il OS, record values and k-th record values, which can be outlined as:

Let F(X) be an absolutely continuous function with pdf f(X). The random variables

X (@, n,m,Kk),...., X(n,n, m,K) are called GOS, with noting that X (0,n, 7,k) =0,
k > 1, if their joint pdf can be written in the form:

n-1 mj k-1

f (%, X0 %) =CT [ FOOR-F(x)] L-F(x,)] f(x,), (1.4)
i=1

on the cone F_1(0)<x1<....<xn<F_1(1) of R", where C:ﬁyi’

; n—1
7i=k+n—i+M,, Mizgmj, 7n =k>0, and m=(m,m,,...m ,)eR"™

represents the number of units withdrawn at the corresponding failure times.

. If M=0and K =21then (1.4) is the joint pdf of the ordinary order
statistics.
n
. If m=0and m, =k-—-1and N =n+2mi then (1.4) is the

i=1
joint pdf of the type-11 censored order statistics.

n
. fm=0 m =K—1ad N =n+2mi then (1.4) is the joint
i=1
pdf of the type-Il progressively censored order statistics.

2. Conditional inference methodology

For the first time, we will give outline for the conditional approach to inference on the
shape-scale family (1.2).

Givenaset of N GOS X (1, n, fﬁ, k),----, X (n, n, fﬁ, k) with sampling density
function belonging to (1.2), thus by substituting (1.2 ) and (1.3) in (1.4) we can derive the
joint pdf as

f (Xl,..., Xn) _ Canﬂana—l(Xi)gr(Xi) exp [_ﬂ(lzzl:(l_i_ ml)g (Xi) | (21)
= +(k_mn _l)ga(xn))]

A

For the shape-scale family (1.2), if & and £ be any equivariant estimators gch as the

MLEs of @ and B ,then Z, =al/a and Z, = Vi /,8 are Pivotal quantities and
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a, = L£9°(%) , i=12,...,n form a set of ancillary statistics. Thus based on the

following theorem, we can derive the conditional densities for the pivotal quantities
conditional on the ancillary statistics and the confidence intervals can be constructed and
converting them for « and g fiducially.

Theorem:

Let ¢ and 3 be any equivariant estimators of & and 3 for the shape-scale family (1.2),
based on the generalized order statistics X@n, m, K),...., X(n,n, m, K) . Then
the conditional pdf of Z; and Z, given A= (al, Ay ey an—z) can be derived in the

form
n
n-1_nz -1 z,-147r z
9(z,,2,|A)=D-z,"2," I I g Tayexp(—z;'U) 2.2)
i=1
D is a normalizing constant depends on A only, &; is the derivative of &; and

U=>@+m)a*+(k-m,-1az-

i=1

Proof
Make the change of variables from X (1, M, K),..., X (N, m, K) with pdf (2.1)

to (4, B, a,,...,a,_,). This transformation can be written as:
g(xl):(allﬂ’\)ll&, i:112'-'1n_2|
00%1) = @1/ A ana 9(%,) =,/ B

The Jacobian of this transformation is ﬂn_zh(A) . Thus the joint pdf of

(OAl,,é, ad;,...,ad,_5 ) can be derived in the form :
f(d B.aa, ) o BT [/ )" (8 2)
xexp[-A(Y @+ m)a / B +(k—m, ~1)(a, / B)"'*)].
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Make the change of variables from (&, 3,8, ,...,8, ) to (Z1,Zy:8,-48,), with

ﬂa/a ald
= (ai Z, )Zl

noting that ,Bg (X) :Bg (X)

The Jacobian of this transformation is 1/ Z,Z,, thus the joint pdf of Z, and Z, given
A=(a,a,,.,a,,) is in the form (2.2) =

3. Confidence interval procedures

3.1 Conditional confidence intervals

The marginal density of Z4 and the distribution function of Z, can be derived from
(2.2) respectively as:

g, (z,| A) = DF(n)z{“ZHai “aru™ o

G, (t|A) = Dl“(n)j 7, ZHazl U [1 exp (- tZIU)z(tZT) ]dzl. (3.2)

j=0

D is a normalizing constant does not depend on Z4 and Z, and can be derived as:
o0 n

D= F(n)j 22 | | a“‘a/U™"dz,.
0 i=1

To obtain the confidence intervals for (X (say), from (3.1) the probability statement for
Z1 can be obtained as P(L <Z, < R) =1—y, which is the 100(1— )%

confidence interval for Zland then transformed fiducially for X as

P(al < a <aR) =1—y . Such an interval is not unique, thus using symmetrical
probability tails, the lower (L) and upper (R) limits of such an interval are the
solutions of PO<Z <L)=p/2 ad PO=<Z <R)=1-y/2
respectively. Similarly the confidence interval for ,B can be constructed from (3.2).

3.2 Asymptotic confidence intervals

The maximum likelihood estimation is a popular statistical method used for deriving the
classical confidence intervals for the distribution parameters, it provides satisfactory
estimates for these parameters and can be regarded as a reference technique as in our
study. For purpose of comparison we obtain the approximate confidence intervals for the
parameters, thus the asymptotic variance covariance matrix (AVC) of the MLEs can be
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derived, which is the inversion of the Fisher information matrix whose elements are the
negatives of the expected values of the second order partial derivatives of the logarithm
of the likelihood function. In the present situation, it seems appropriate to approximate
the expected values by their maximum likelihood estimates.

The first and second derivatives of the log likelihood function of (2.1) with respect to (X
and IB with application to the Weibull extension model can be derived as follows:

> @+ m)x In(x) ep(x)

Ok _1 S @ex)ine) -4 & ’
oo a I +(k—m_ —1)x%In(x,)exp(x)
L DS e m)(ep(x) -1) — (k—m, ~D)(ep(x) —1).
o P ‘=

_o'lhL . n &, 2
l,, = Py +iz_1:Xi (In x;)

g i(umi)xf(m(xi))?exf‘ i i(1+mi)(><?ln(xi))zex‘a

e (kmm, ~D (e |+ (k=m, ~D)0¢ In(x, )76

| _o’InL _ n
BB aﬂZ ,82,

0L

= g = LMK X)ER0E) = (k=m, =D, G Jerp(x;)

Thus, the approximate 100(1 — 5)%%6 two sided confidence intervals for & and f3
can be obtained respectively by

ax”Z, ,0; and LEZ, 0,
where Z ,, is the upper y/2_th percentile of a standard normal distribution, O , 0

are the standard deviations of the MLEs of the parameters ¢xand 4 respectively,
where they are elements of the following AVC matrix:

AVC — {var(o?) cov(&, ﬁ)} . {'W ls |

cov(B,a) var(B)| |ls 'ﬂﬁL,mw)
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4. Simulation studies

In this section we mainly present some Monte Carlo simulation results, to measure the
performances of the conditional inference comparing to the AMLEs inference in terms
of the following criteria:

1- The Covering percentage (CP), which is defined as the fraction of times the
confidence interval (CI) covers the true value of the parameter in repeated
sampling. Thus if the CP is greater than (less than) the nominal level then the
procedure is conservative (anti-conservative).

2- The mean lengths of the intervals ( MLIs ), which is defined as the average lengths
of the intervals in repeated sampling. If a short interval has highCP, the data
allows us to estimate the parameter accurately. Though, higher CP generally
requires a longer interval and short intervals generally have lower CP . Therefore
the procedures which have the same CPs, the one that provides shorter intervals
IS better.

3- The standard error of the covering percentage (SDE ), which is defined for the

a(l-a)

M

nominal level (1-«)100% by SDE(&) = , where (1-&)100% denote

the corresponding Monte Carlo estimate and M is the number of Mote Carlo
trials. Thus for the nominal level 95% and 1000 simulation trials, say, the
standard error of the covering percentage is 0.0049 , which is approximately
+1%. Therefore, we say the procedure is adequate if the SDE is within £ 2%

error for the nominal level 95%.

The comparative results, based on 1000 Monte Carlo simulation trials are given for
sample sizes n =20, 40, 60, 80 and 100 with censoring levels 0.0%, 0.25% and
0.50%, that have been generated from the Weibull extension model for shape parameter

values @« =0.5,1 and 2 and scale parameter values B =05 and 2. The

progressive type-l11 censoring sampling has been carried out with binomial random
removals with probablity P = (0.5, that means the number of units removed at each

failure time follows a binomial distribution with probability P, where different values of
P does not affect the calculations.

From the simulation results that reported in Tables 2 to 7, we can summarize the
following main points:

1- It is worthwhile to note that for different values of & , the CPS are the same for
the pivotal Z, as expected because its distribution is independent from the
parameter & for fixed ﬁ , however the MLIS for the parameter & will be
changed for increasing & . On the contrary the CPS for the pivotal Z, and the
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MLIS will be the same for all the values of < as expected.

2- The values of MLIS generally decrease and the CPs almost getting increase
and the values of SDES almost getting decrease as the sample size increases for

both parameters < and ﬂ . Moreover, the values of MLI for & and [

generally increase with the same average of increasing the values of < and £
respectively.

3- The values of MLI for & and ﬂ based on the conditional inference are quite

shorter than those based on the AMLEs, in spite of they have almost higher CPs
based on complete and type-11 progressively censored samples. However, the

values of MLIs for ﬂ based on the AMLEs inference are almost shorter than
those based on the conditional inference when £ = 0.5 and both approaches

have greater MLIs values for N =10, based on type-11 censored samples.

4- Both approaches are almost conservative for estimating ¢¢ and /3, however the
AMLEs approach is anti-conservative when the sample size is less than or equal
to 20.

5- Generally, the results based on the type-I1 progressive censored samples are better

than those based on the type-1l censored samples, in which they have shorter
MLIs and higher CPs .

6- Finally, both approaches are adequate because their SDES are less than * 2%
for the nominal level 95%.

Thus the simulation results indicated that the conditional intervals possess good statistical
properties and they can perform quite well even when the sample size is extremly small.
However, the AMLEs approach turns out to be impercise or even unreliable for small or
highly type-11 censored samples.

4. Numerical examples

Example 1:

Consider the data in Aarset (1987) that represent the lifetime of 50 industrial devices,
which fit the Weibull extension model.

01,02,1,1,1,1,1,2,3,6, 7,11, 12, 18,

18,
55, 60, 63, 63, 67, 67, 67, 67,72, 75,79, 82, 82

18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50,
, 83

18
, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

Thus for purpose of comparison, the 90% and 95% confidence intervals for the

parameters & and /3 are derived based on the conditional and the AMLES approaches.
The results in Table 8 have been indicated that, the length of intervals for the parameters
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& and /3 based on the conditional approach are shorter than those based on the
AMLEs approach which ensure the simulation results.

Example 2:

Consider the data given in Chen (2000 ) and Wu et al. (2004) that represents 11
observations of a computer-generated sample of size n = 15 from the Weibull extension

model with parameters F = 0.02and ¢ = 0.5:

0.29,1.44,8.38, 8.66,10.20, 11.04,13.44,14.37,17.05, 17.13, 18.35.

It was found by Chen (2000) that the 95% confidence interval for the shape parameter
o is (10.19, 0.62 ) with interval length 0.43, based on a pivotal quantity for & . Wu et

al. (2004) proposed a new pivotal quantity for the shape parameter and evaluated the 95%
confidence interval for the shape parameter as ( 0.27, 0.60 ) with interval length 0.33
which is shorter than Chen (2000) interval. Thus for purpose of comparison the 95%
conditional confidence interval for the shape parameter is ( 0.35, 0.59 ) with interval
length 0.24 . Also the 95% AMLEs for the shape parameter is ( 0.37, 0.64 ) with interval
length 0.27. Thus the conditional and the AMLEs confidence intervals are shorter than
both Chen (2000) and Wu et al. (2004) intervals.

5. Conclusion

In this paper, a new application for the conditional inference has been applied to
inference on the shape-scale family parameters with application to the Weibull extension
model based on the generalized order statistics. Moreover, for purpose of comparison the
asymptotic maximum likelihood estimates has been applied to measure the performances
of the proposed approach based on the Monte Carlo simulations that indicated the
conditional approach possess good statistical properties and can perform quite well even
when the sample size is extremly small. However, the AMLES turn out to be impercise
or even unreliable for small or highly censored samples.
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Table 2: The (MLIs), (CPs) and (SDEs) for the conditional and the AMLEs
approaches when the nominal level is 95% for the parameter <& with
L =0.5 to the complete and censored samples with censored levels
(50%, 25% and 0.0%)
App. Conditional AMLs
MLI, & MLI, &
n m CP  SDE CP  SDE
0.5 1.0 2.0 0.5 1.0 2.0
10 0.7595 1.5191 3.0382 0.948 0.0070 0.8295 1.6589 3.3179 0.966 0.0057
15 0.5254 1.0508 2.1016 0.961 0.0061 0.5472 1.0943 2.1886 0.964 0.0059
20
20 0.3466 0.6933 1.3865 0.943 0.0073 0.3527 0.7054 1.4108 0.931 0.0080
20 0.4974 0.9949 1.9897 0.947 0.0071 05177 1.0353 2.0706 0.954 0.0066
30 0.3488 0.6976 1.3952 0.952 0.0068 0.7109 1.4217 2.1326 0.956 0.0065
40
40 0.2326 0.4653 0.9305 0.936 0.0077 0.2347 0.4694 0.9388 0.933 0.0079
30 0.3986 0.7973 1.5945 0.943 0.0073 0.4089 0.8179 1.6357 0.953 0.0067
45 0.2811 0.5623 1.1246 0.946 0.0071 0.2847 0.5693 1.1386 0.949 0.0069
60
60 0.1864 0.3729 0.7458 0.946 0.0071 0.1875 0.3751 0.7502 0.945 0.0072
40 0.3401 0.6801 1.3602 0.957 0.0064 0.3465 0.6929 1.3859 0.957 0.0064
60 0.2414 0.4828 0.9655 0.959 0.0063 0.2436 0.4873 0.9745 0.963 0.0059
80
80 0.1602 0.3205 0.6409 0.954 0.0066 0.1609 0.3219 0.6438 0.951 0.0068
50 0.3043 0.6089 1.2172 0.954 0.0066 0.3089 0.6178 1.2354 0.959 0.0063
75 02158 0.4315 0.8623 0.956 0.0065 0.2174 0.4348 0.8695 0.957 0.0064
100
100 0.1427 0.2853 0.5707 0.954 0.0066 0.1432 0.2864 0.527 0.953 0.0067
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Table 3: The (MLIs), (CPs) and (SDEs) for the conditional and the AMLEs
approaches when the nominal level is 95% for the parameter <& with

£ =2to the complete and censored samples with censored levels
(50%, 25% and 0.0%0)

Appro. Conditional AMLs

MLI, X MLI, &X

n m CP SDE CP SDE
0.5 1.0 2.0 0.5 1.0 2.0

10 0.7262 1.4523 29046 0.948 0.0070 0.7813 1.5625 3.1251 0.956 0.0063

15 05584 1.1167 2.2335 0.962 0.0060 0.5844 1.1688 2.3375 0.958 0.0064

20
20 04291 0.8582 1.7164 0.94 0.0075 0.4396 0.8712 1.7584 0.943 0.0073
20 0.4824 0.9648 19295 0.944 0.0073 0.4994 0.9987 1.9974 0.947 0.0071
" 30 03748 0.7495 14991 0.949 0.0069 0.3832 0.7663 1.5327 0.946 0.0071
40 0.2872 0.5743 1.1487 0.94 0.0075 0.2906 0.5811 1.1622 0.946 0.0071
30 0.3882 0.7764 15527 0.944 0.0073 0.3970 0.7941 15881 0.942 0.0074
5 45 0.3027 0.6053 1.2106 0.946 0.0071 0.3071 0.6143 1.2286 0.948 0.0071
60 0.2299 0.4599 0.9198 0.947 0.0071 0.2318 0.4635 0.9271 0.947 0.0071
40 03327 0.6654 1.3309 0.953 0.0067 0.3384 0.6768 1.3536 0.953 0.0067
. 60 0.2605 0.5209 1.0419 0.956 0.0065 0.2634 0.5268 1.0536 0.957 0.0064
80 0.1979 0.3957 0.7914 0.955 0.0066 0.1989 0.3978 0.7959 0.953 0.0076
50 0.2981 0.5962 1.1924 0.952 0.0068 0.3021 0.6043 1.2086 0.951 0.0068
100 75 0.2333 0.4665 0.9331 0.956 0.0065 0.2354 0.4707 0.9414 0.955 0.0065

100 0.1766 0.3532 0.7067 0.959 0.0063 0.1735 0.3548 0.7096 0.962 0.0060
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Table 4: The (MLIs), (CPs) and (SDEs) for the conditional and the AMLEs approaches
when the nominal level is 95% for the parameter & with ﬂ =0.5 to the
progressive type-11 censoring with binomal random removal with probability
P = 0.5 and censored levels (50% and 75%)

Appro. Conditional AMLs
MLI, &X MLI, &X
"™ T%s 10 20 0 PR o5 1o 2.0 cP SDE
10 0.5310 1.0620 2.1241 0.956 0.0065 0.5512 1.1023 2.2046  0.945 0.0072
20 15 0.4092 0.8183 1.6366 0.952 0.0068 0.4189 0.8377 1.6754  0.943 0.0073
20 0.3434 0.6867 1.3735 0.947 0.0071 0.3493 0.6986 1.3973  0.934 0.0079
40 30 0.2717 05433 1.0867 0.941 0.0075 0.2748 0.5497 1.0993  0.937 0.0077
30 0.2697 0.5394 1.0789 0.953 0.0067 0.2729 0.5457 1.0914  0.952 0.0068
60 45 02167 04333 0.8666 0.955 0.0066 0.2183 0.4367 0.8734  0.956 0.0065
40 0.2328 0.4655 0.9311 0.953 0.0067 0.2348 0.4697 0.9394 0.945 0.0072
80 60 0.1864 0.3728 0.7457 0.948 0.0070 0.1875 0.3751 0.7501  0.947 0.0071
50 0.2048 0.4096 0.8192 0.951 0.0068 0.2062 0.4125 0.8249 0.951 0.0068
100 75 0.1653 0.3306 0.6613 0.946 0.0071 0.1661 0.3322 0.6644  0.95 0.0069

Table 5:  The (MLIs), (CPs) and (SDEs) for the conditional and the AMLESs approaches
when the nominal level is 95% for the parameter & with ﬂ =2, to the
progressive type-11 censoring with binomal random removal with probability
P =0.5 and censored levels (50% and 75%)

Appr. Conditional AMLs
MLI, &X MLI, &X
" ™ o5 10 20 ° SPE Tos 10 20 P SPE
10 0.6528 1.3056 2.6111 0.959 0.0063 0.6887 1.3774 2.7547 0.96 0.0062
20 15 0.5052 1.0104 2.0209 0.957 0.0064 0.5223 1.0447 2.0209 0.954 0.0066
20 0.4245 0.8489 1.6979 0.946 0.0071 0.4349 0.8697 1.7395 0.946 0.0071
40 30 0.3354 0.6708 1.3416 0.944 0.0073 0.3407 0.6813 1.3628 0.947 0.0071
30 0.3329 0.6658 1.3315 0.948 0.0070 0.3381 0.6763 1.3525 0.953 0.0067
60 45 0.2672 0.5344 1.0688 0.955 0.0066 0.2700 0.5400 1.0800 0.955 0.0066
40 0.2874 0.5748 1.1495 0.952 0.0068 0.2908 0.5816 1.1631 0.953 0.0067
80 60 0.2301 0.4602 0.9204 0.95 0.0069 0.2319 0.4638 0.9276 0.955 0.0066
50 0.2532 0.5065 1.0129 0.951 0.0068 0.2556 0.5112 1.0225 0.953 0.0067
100 75 0.2444 0.4089 0.8178 0.952 0.0068 0.2057 0.4114 0.8228 0.955 0.0066
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Table 6: The conditional and the AMLEs (MLIs), (CPs) and (SDEs) based on the
nominal level 95% for the parameter ﬂ with ,3 = 0.5 pased on the type-I11
censored and type-l11 progressively censoring with binomal random removal
with probability P =0.5 and censored levels (50%, 25% and 0.0%)

Conditional AMLs
Approaches
n m  MLI CP SDE MLI CP SDE
10  0.9009 0.959 0.0063 1.1367 0.965 0.0058
15 0.6137 0957 0.0064 05789 0.956 0.0065
20 50 04899 0951 00068 05086 0931 0.0080
20 0.6473 0.959 0.0063 05708 0.965 0.0058
30 04174 096  0.0062 0.3784 0.957 0.0064
40 40 03272 0958 00063 03534 0944 0.0073
30 05358 095 0.0069 0.4397 0.962 0.0060
45 03388 0.947 0.0071 0.3058 0.944 0.0073
Type-II 80 60 02641 0933 00079 02884 0939 0.0076
Censored 40 0.4648 0.954 0.0066 0.3638 0.962  0.0060
Samples 60 0.2908 0961 0.0061 0.2618 0.942 0.0074
80 g0 02305 0952 00068 02490 0938 0.0076
50 0.4156 0.95  0.0069 0.3203 0.96  0.0062
75 02579 0957 0.0064 0.2325 0.955 0.0066
100

100 0.2165 0.952 0.0068 0.2217 0.948 0.0070

10 0.7657 0.944 0.0073 0.7457 0.91 0.0090
20 15 05864 0947 0.0071 05937 0.926 0.0083

20 04876 0952 0.0068 0.5058 0.933 0.0079
40 30 03838 0952 0.0068 04092 0.943 0.0073

Type-l1I 30 0.3853 0.947 0.0071 0.4099 0.946 0.0071
Progressive 60 45 03079 0946 0.0071 03332 0.937 0.0077

Censored
40 0.3261 0.953 0.0067 0.3528 0.939 0.0076

Samples
80 60 0.2635 0.943 0.0073 0.2880 0.939 0.0076

50 0.2898 0.952 0.0068 0.3152 0.935 0.0078
100 75 0.2333 0952 0.0068 0.2567 0.937 0.0077
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Table 7:  The conditional and the AMLEs (MLIs), (CPs) and (SDEs) based on the
nominal level 95% for the parameter ﬂ with ﬂ = 2 based on the type-
Il censored and type-ll progressively censoring with binomal random
removal with probability P = 0.5 and censored levels (50%, 25% and

0.0%)
Conditional AMLs
Approaches
n m ML CP SDE MLl CP  SDE
10 33151 0959 00063 7.8257 096  0.0062
15 24304 096 00062 53412 0957 0.0049
20 59 19981 0952 00068 2.8499 0973 0.0051
20 23602 0961 00061 55416 0.955 0.0066
30 16418 0959 00063 2.6937 097  0.0054
40 40 13228 0958 00063 1.6728 0.959 0.0063
30 19429 0945 00072 37843 095  0.0069
45 13283 0947 00071 20638 0964 0.0059
Type-I 60 60 10638 0933 00079 13067 0958 0.0063
Censored 40 16812 0958 00063 29102 0954 0.0066
Ssamples 60 11389 096 00062 17038 0.969 0.0055
80 g0 09096 0944 00073 11062 0.959 0.0063
50 14976 0949 0.0069 2.5298 0.962 0.0060
75 10086 0959 0.0063 14999 0.966 0.0057
100 100 06785 0952 00068 09735 0959 0.0063
10 31934 0953 00067 6.3976 0.982 0.0042
20 15 24108 0954 00066 3.6365 0.976 0.0048
20 19898 00957 00063 27506 0.97  0.0054
40 30 15563 0958 00063 2.0085 0.959 0.0063
Type-Il 30 15614 095 00069 2.0007 0964 0.0059
Progressive 60 45 12436 0945 00072 15379 0952 0.0068
Censored 40 13178 0952 00068 1.6732 0.96  0.0062
Samples 80 60 10611 0945 00072 13035 096  0.0062

50 1.1678 0.952 0.0068 1.4421 0.964 0.0059
100 75 0.9377 0951 0.0068 1.1396 0.961 0.0061
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Table 8: The Lower (LL) and the Upper limits (UL) and the lengths of the 90%
and 95% confidence intervals (CI) for the parameters a, p based on the
Conditional and the AMLEs approaches for complete, Type-Il censored
and Type-I1 progressive censored samples with binomial random removal
with probability P =0.5 for the industrial devices data

Conditional Cls AMLEs Cls
=
=
cl 90% 95% 90% 95%
Par.  LL uL LL uL LL UL LL uL
o q 03049 03753 0.2977 03816 0.3094 03793 0.3028  0.3858
2 (0.0704) (0.0839) (0.0698) (0.0829)
@
° 3 00146 00289 0.0137  0.0308 0.0065 0.0345 0.0038  0.0372
(0.0143) (0.0172) (0.0281) (0.0333)
q 01956 03047 0.1854 03151 0.2041 03134 0.1938 0.3237
o (0.1092) (0.1297) (0.1093) (0.1298)
o o
Sl
3 3 00309 00655 0.0279  0.0695 001759 00814 00116  0.0874
(0.346) (0.0416) (0.0638) (0.0758)
q 029 03224 02313 03299 0.2457 03280 02379  0.3357
o 8 (0.0829) (0.0986) (0.0823) (0.0978)
g o
R g
g [ 00289 00525 0.0273  0.0555 0.0146 00647 0.0099  0.0694
(0.0353) (0.0282) (0.0501) (0.0595)
q 02638 03743 02527  0.3841 0.2745 03835 0.2642 0.3937
o
- (0.1104) (0.1314) (0.1089) (0.1295)
K]
o [ 00579 01233 00538  0.1327 0.0292 01419 00186  0.1526
(0.0654) (0.0789) (0.1127) (0.1339)
q 0278t 03613 0.2697  0.3687 0.2845 0.3669 0.2768 0.3746
o 3 (0.0832) (0.0991) (0.0824) (0.0978)
a «Q
Q<
& 3 00303 00599 0.0283  0.0641 0.0144 00709 00091  0.0762
(0.0297) (0.0357) (0.0565) (0.0671)

(The values in parentheses are the length of intervals)
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