
Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp571-594 

Impatient Customers in an M/M/c queue with  

Single and Multiple Synchronous Working Vacations 

Shakir Majid 
Department of Mathematics 

Annamalai University, India 

shakirku16754@gmail.com 

 

P. Manoharan 
Department of Mathematics 

Annamalai University India 

drmanomaths.hari@gmail.com 

Abstract 

In this paper, an M/M/c queuing model with synchronous working vacation and impatient customers is 

considered. The model is analyzed for two vacation policies i.e. multiple working vacation (MWV) policy 

and single working vacation (SWV) policy. The servers serve the customers at a slower rate than the 

normal busy period during a working vacation and this becomes the cause of customer’s impatience. The 

M/M/c queue with two such policies is described and using the PGF method, we obtain various system 

performance measures in terms of two indicators. We have derived some results relating to the limiting 

behavior of some performance measures. At the end of each model, we have presented some numerical 

examples to demonstrate the effects of system parameters on some performance measures. Finally, a 

comparison between the two models is carried out. 

Keywords: M/M/c queue; Synchronous working vacation; Impatient customers; 

Generating function. 

1. Introduction 

Impatient customers in queuing models occur in several life scenarios such as those 

involving impatient telephone switchboard customers, hospital emergency rooms 

handling critical patients and inventory systems that store perishable goods Obert (1979) 

and Al-Seedyet al. (2009). Many researchers are interested in analyzing the queuing 

models with impatient customers and considered the impatience behavior by various 

directions, due to potential applications of queuing systems in call centers, 

communication networks, production-inventory systems and several other areas 

Bonaldand Roberts (2001) and Benjaafaret al.(2010). The first to investigate the 

impatient phenomenon in queuing models appears to be Palms pioneering work Palm 

(1953 )by considering the infinite buffer M/M/c queue where each arriving customers 

remains in the queue until his waiting time does not exceed the impatient time which is 

exponentially distributed. Daley (1965) analyzed the impatient phenomenon in / /1GI G  

queuing system in which the customers may leave the system if their waiting time is too 

long before starting or completing their service. Delay obtained an integral equation for 

the limiting distribution function and analyzed solution for the deterministic and 

distributed impatience. Takacs(1974) further analyzed the M/G/1 queuing system in 

which customers sojourn time have a static threshold and obtained the actual and virtual 

limiting waiting time distributions. And these results are generalized in different direction 

by several authorsBaccelli et al. (1984), Boxma and de Waal (1994), Van Houdt et al. 
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(2003) and Yue and Yue (2009). In the above mentioned literature, the cause of 

impatience was either a long wait already experienced by a customer upon arrival at a 

queue, or a long wait anticipated by a customer upon arrival. However, Altman and 

Yechiali (2006) and (2007) studied queuing models with impatient customers where the 

cause of impatience becomes the server’s vacation and unavailability of server upon 

arrival. Hence, the cause of the impatience is the unavailability of the server. The M/M/1, 

M/G/1 and M/M/c queues were analyzed in Altman and Yechiali (2006), whereas

/ /M M queue was studied in Altman and Yechiali (2007). Yechiali(2007) investigated 

the queuing model with system disasters where the customers turned to be impatient only 

when the system is down. This work was broaden and enhanced by Economou and 

Kapodistria(2010) who studied synchronized abandonments in queuing models. Perel and 

Yechiali(2010) analyzed M/M/c queuing system with impatient customers operating in a 

2-phase (fast and slow) Markovian random environment. Customers became impatient 

because of the slow service rate when the system works in a slow phase. Yue et al. (2006) 

andKawanishi(2008) investigated the impatience behavior of a finite capacity multi-

server queuing system. 

 

M/M/c queuing system with vacation were first studied by Levy and Yechiali(1976) 

where each sever takes the vacation individually (called asynchronous vacations). Later, 

Chao and Zhao (1998) investigate the M/M/c model for both synchronous and 

asynchronous vacation policies. Zhang and Tian (2003a and 2003b) carried out the 

analysis of a multi-server queue with asynchronous and synchronous vacation policies of 

a finite number of servers. A multi-server queuing model with Markovian arrival and 

synchronous phase type vacations was formulated by Chakravarthy(2007) with the help 

of probabilistic rule and controlled thresholds.  

 

In the above mentioned study, we have assumed that the server halts service during the 

vacation. However, there is lot of examples where the server does not completely stop 

serving the customers during the vacation. Rather, it will render service at a lower rate to 

the queue. Servi and Finn (2002) were the first to introduce this kind of vacation policy, 

called working vacation policy and studied an M/M/1/WV queuing model where service 

times during a non-vacation period, the service times during a working vacation, and the 

vacation times are all assumed to be exponentially distributed with different rates.  Kim 

et al. (2003) and Wu and Takagi (2006) generalized thework of Servi and Finn (2002) to 

an M/G/1 queue with working vacation. Baba (2005) extended this study by using the 

matrix-geometric method to a GI/M/1 queue with working vacation. Tian, Zhao, and 

Wang (2008) investigated the M/M/1 queue with single working vacation. Banik et al. 

(2007) studied the GI/M/1/N queue with multiple working vacations and computed a 

series of numerical results. Jain andUpadhyaya(2011) analyzed a finite-buffer multi-

server unreliable Markovian queue with synchronous working vacation policy. 

Banik(2010) studied the / /1/GI M N and / /1/GI M   queuing models for single 

working vacation. Recently, Selvaraju and Goswami(2013) analyzed the M/M/1 queue 

with single and multiple working vacation and impatient customers. They computed 

closed form solution and various performance measures with stochastic decomposition 

for both the working vacation policies. 
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In a classical vacation queuing system, the server completely stops service to the 

customers during the vacation and customer has to wait for the service till the regular 

busy period starts and the vacation period ends. However, if the server serves the 

customers at a lower rate during the vacation period rather than halts the service 

completely, we get the working vacation (WV) policy Servi and Finn (2002). Hence, 

there is a quite a difference between the working vacation queue and classical vacation 

queue. During the vacation, customers in the working vacation queue depart the system 

after getting served, but customers in the classical vacation queue   cannot leave the 

system after getting served. During the vacation, the number of customers can only 

increase in a classical vacation; however, the number of customers in a working vacation 

can increase or decrease. Hence, the working vacation queuing models have more 

complicated modalities and the analysis of such kind of models is far more complex than 

the classical vacation. 

 

The paper is organized as follows. We provide the model description of the / /M M c  

queue with MWV in section 2. In section 3, we formulate the model as a quasi-birth-

death process, the steady state differential equations are derived and their solutions are 

presented. We also derive various performance measures in terms of two indicators and 

some numerical examples are presented. In section 4, / /M M c  model with SWV model 

is analyzed. In section 5, we have given the comparison when the system follows MWV 

and SWV policies of the distribution of the number of customers. 

2. Model Description 

We consider an M/M/c queue with synchronous working vacation and impatient 

customers. The inter arrival times of the customers follows a Poisson process with arrival 

rate . The c servers serve the customers according to FCFB basis. An arriving customer 

has to wait in queue if he finds all the servers busy i.e. a queue begins to form when the 

number of servers is less than the number of customers in the system. The service times 

of each server follows an exponential distribution with rate   during a non-vacation 

period, where we consider the stability that 1
c





=  . If a server finds no customer in 

the system after completing serving a customer, all the servers immediately goes for a 

working vacation. The duration of working vacation for each server is exponentially 

distributed with parameter . If a customer arrives to a server during a working vacation 

period, it will serve the customer at an exponential rate   where    i.e. the customer 

is served at a reduced service rate. When the servers return from their vacation and find 

the system non empty, they change their service rate from  to and a regular busy 

period starts. Otherwise, if the servers find no customer waiting in the queue after 

returning from their vacation, they immediately leave for another vacation. 

 

If an arriving customer finds any of the c servers empty, it immediately gets service upon 

arrival. A customer has to wait in a queue, if all the servers are busy. A customer waiting 

in a queue becomes impatient if  it finds all the servers in their working vacation period 

i.e. if it finds all the servers serving at rate  , the customer activates an impatient time T 

which is exponentially distributed with parameter   and is independent of the customers 
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in the queue at that moment. The customer exits the queue and never returns if its service 

has not been completed before the time T expires. The inter arrival times, service times, 

vacation duration times and impatient time are all taken to be mutually independent. 

To construct this system, we define a two dimensional continuous time discrete state 

Markov chain as  ( ( ), ( )), 0L t J t t   with state space 

 
    (0,0) ( , ) , 1, 0,1S n j n j=  =U  

where L(t) denotes the total number of customers in the system at time t and J(t) denotes 

the State of the system at time t with  

1 when the servers are a non-vacation period at time t, 
( )

0 when the servers are in working vacation period at time t.
J t


= 


 

3. The Stationary distribution 

The steady state transition probabilities are defined by  

 
 ( ) , ( ) ,njP P L t n J t j= = = 0, 0,1n j =  

Then, we can have following set of balance equations as 

 00 1,0 11( ) ,P P P   = + +      (1) 

 ,0 1,0 1,0[ ( )] ( 1)( ) ,     1,n n nn P P n P if n      − ++ + + = + + + 
  

(2) 

 11 1,0 2,1( ) 2 ,P p P   + = +                                                 (3) 

 11 1,1 1,1 ,0( ) ( 1)    2 1,n n nn P P n P P if n c    − ++ = + + +   − (4) 

 ,1 1,1 1,1 ,0( )     .n n n nc P P c P P if n c    − ++ = + + 
                   

(5) 

 

Define the (partial) probability generating functions 

 
0 ,0

0

( ) ,n

n

n

P z z P


=

=  

 
1 ,1

1

( ) ,n

n

n

P z z P


=

=  

with 0 1(1) (1) 1P P+ =  and 1

0 ,0

1

( ) .n

n

n

P z nz P


−

=

 =  

Multiplying (2) with nz  and summing over n and rearrange terms, we get the differential 

equation 

 
 0 0 0,0 1,1( )(1 ) ( ) (1 ) ( ) ( ).z P z z P z P P     + − = − + − +                       (6) 

 

Similarly, multiplying (4) and (5) by nz  and summing over n,we get 

1 0 0,0 1,1 ,1

1

(1 )( ) ( ) ( ) ( ) (1 ) ( ) .
c

n

n

n

z z c P z zp z P P z z n c z P     
=

− − = − + + − −                          (7) 

3.1. Solution of differential equation 

Set  
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 0,0 1,1.A P P = +  (8) 

Then, for 1z  , 

0 0( ) ( ) .
( )(1 ) ( )(1 )

A
P z P z

z z

 

     

 
 − + = − 

+ + − + − 
                       (9) 

 

This is an ordinary linear differential equation with constant coefficients. To solve it, an 

integrating factor can be found as 

 I.F=
( )(1 ) ( ) ( )(1 )

z
dz

z
e e z

   

       

 
− + − 

+ + − + + 


= −  

 

Hence the general solution to the differential equation (9) is given by 

( ) ( ) ( ) ( )

0(1 ) ( ) (1 ) .
( )(1 )

z z
d A

e z P z e z
dz z

   

       

 

− −
+ + + +

   
− = −   

+ −   

         (10) 

Integrating from 0 to z, we get 

1
( ) ( ) ( ) ( )

0 0

0

( ) (1 ) (0) (1 ) .
( )

z zz
A

P z e z P e x dx

   

       

 

− − −
+ + + +

 
= − − − 

+  
       (11) 

Then, 
1 1

( ) ( )

0 0
1

0

(1) (0) (1 ) lim(1 ) .
( )

z

z

A
P e P e x dx z

  

      

 

−
− −

+ ++ +

→

 
= − − − 

+  
       (12) 

 

Since 
0 ,0

0

0 (1) 1n

n

P P


=

 =   and 
1

lim(1 ) ,v

z
z



 
−

+

→
− =  so, we must have the term 

 
0,0 0 (0)

( )

A
P P K

 
= =

+
 (13) 

where 

 

1 1
( ) ( )

0

(1 ) .

z

K e x dx

 

   
− −

+ += −                   (14) 

 

Define 

   ( , ) ( ( , ) ( ))Z e      − −= − − − +      (15) 

where ( )z  is the   function that has representation  

 

1

0

( ) t zz e t dt



− − =                                     (16) 

and 

 

1( , ) .t a

z

a z e t dt



− − =                                 (17) 

Some computations give 

 

, .K Z
 

   

 
=  

+ + 
                          (18) 
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From (8) and (13), we have  

 

0,0 1,1

0,0 1,1.
P P K

P K P
K

  

    

+ 
= = 

+ + − 
          (19) 

Substituting the value of A from (13) into (11), we obtain 

 

1

0 0,0

0

1
( ) 1 (1 ) .

(1 )

z
xz

e
P z e x dx P

K
z


  

   



 

−+ −
+ +

+

 
= − − 

  −

  (20) 

 

Using L'Hospital's rule, we get 

 
0 0,0

( )
(1) .P P

K

 



+
=                                            (21) 

By substituting the value of 
0,0P  from (19), we have the relation 

 0 0,0 1,1(1) .P P P  = +                                         (22) 

Equation (7) can be written as follows: 

 

0
1

[ ( ) ]
( ) ( ),

( )(1 )

P z A z
P z G z

z c z z c

 

   

−
= −

− − −
           (23) 

where 

 
,1

1

( ) ( ) .
C

n

n

n

G z c n P z
=

= − (24) 

 

Equation (20)  illustrates that 0 ( )P z  is a function of 0,0P , the proportion of time the 

servers are on working vacation and  the system is empty. Also, 1( )P z  is a function of

0 ( )P z , A and G(z) as shown by (23). Thus, once 0,0P  and ,1( 1,2,..., )jP j c=  are obtained, 

0 ( )P z  and 1( )P z  are completely determined. 

3.2. Performance Measures 

Applying L’Hospital’s rule in (23), we have 

 

0 0
1

[ (1) ] (1)]
(1) (1),

P A P
P G

c c

  

   

− +
= +

− −
      (25) 

where 

 
,1

1

(1) ( ) .
c

n

n

G c n P
=

= −                                           (26) 

 

Applying (22) and (8) in (25), we have 

 
1 0(1) ( ) (1).P E L G

c c

 

   
= +

− −
                  (27) 

Applying L’Hopital’s rule to (6), we have 

 

0 0 0 0
0 0

1

(1) (1) (1) ( )
( ) lim ( )

( ) ( )z

P P P E L
E L P z

   

   →

− + −
= = =

− + +
     (28) 

implies that 
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0 0

( )
(1) ( ).P E L

  



+ +
=                       (29) 

Using (27) and (29) and noting that 0 (1)P + 1(1)P =1, we obtain the expected number of 

customers during working vacation period as  

0

(1 )
( ) (1).

(1 ) (1 ) (1 ) (1 )

cE L G


 

         

−
= −

+ − + − + − + −
              (30) 

   

Substituting (30) into (29), we get the probability that the system is in working vacation 

period as 

0

(1 )( )
( 0) (1) (1)

(1 ) (1 ) (1 ) (1 )

cP J P G

  
   

         

+ +

− + +
= = = −

+ − + − + − + −
  (31) 

and the probability that the system is in non-vacation period as

1 0( 1) (1) 1 (1) (1).
(1 ) (1 ) (1 ) (1 )

cP J P P G

  


         

+ +

= = = − = +
+ − + − + − + −

     (32) 

 

Now, we derive 1( )E L . Differentiating (23) and Using L’Hopital’s rule, we get 

1 1
1

( ) lim ( )
z

E L P z
→

=  

0 0 0

21

( ( )) ( )) ( )
lim

(1 )( ) (1 )( )
{

z

z A P z A P z z P z

z z c z z c

   

   →

− − + − + +
= +

− − − −
                             (33) 

0

2 2

( ( )) [( ) ( ) ( )]

(1 ) ( ) ( )
}z A P z c z G z G z

z z c c z

   


   

− + − +
+ +

− − −
 

0 0 0

2 2

( ) ( ( 1)) 2 ( ) (1) (1)
,

2( ) (1 ) (1 )

c E L L c E L G G

c z c c

    

   

− − +
= + +

− − −
            (34) 

where 

 

( )
(1)             1

dG z
G at z

dz
 = =  

 
,1

1

( ) .
c

j

j

j c j P
=

= −      (35) 

 

In order to get the value of 0 (1)P , we differentiate (6) twice on both sides such that 

0 0 0( )(1 ) ( ) 2 ( ) [ (1 ) 2( )] ( )z P z P z z P z        + − + = − + + +                (36) 

where 

 

3

0
0 3

( )
( ) .

d P z
P z

dz
 =  

 

Letting 1z =  in (36), we obtain 

 
0 0

2
(1) ( ).

2( )
P P z



  
 =

+ +
    (37) 
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or, equivalently, 

 
0 0 0

2
[ ( 1)] [ ].

2( )
E L L E L



  
− =

+ +
                   (38) 

 

Substituting (38) into (34), we obtain the mean number of customers when the system is 

in regular busy period as 

1 0 2

1 1 1
[ ] [ ] (1) (1).

1 2( ) (1 ) (1 ) (1 )
E L E L G G

c c

 

       

 
= + + + 

− + + − − − 
   (39) 

 

Hence, the mean number of customers in the system is 

0 1[ ] [ ] [ ]E L E L E L= +  

(1 ) (1)
1 1

1
1 2( ) (1 ) (1 ) (1 )

R
c


 



          

 
− −   

= + +   
− + + − + − + −   

 

 

2

1
(1) (1).

(1 ) (1 )
G G

c c



 
+ +

− −
       (40) 

 

Using (31) in (21), we finally get 

 
0,0 0 (1)

k
P P



 
=

+
 

(1 )( )
(1) .

(1 ) (1 ) (1 ) (1 )

k c G

  
    

           

+ + 
 − + +

= − 
+ + − + − + − + − 

    

(41) 

 

If the state of the system is ( ,1)n , then the service rates of the servers are n  for n c  

and c  for n c  respectively. Thus, the expected number of customers served per unit 

of time is given by  

 
,1 ,1 1

1 1

[ (1) (1)]
c

s n n

n n c

N n P c P cP G  


= = +

= + = −    (42) 

which implies the proportion of customers served per unit of time is given by 

 
1

1
[ (1) (1)]s

s

N
P cP G

c 
= = −      (43) 

where 1(1)P  is given by (32). 

 

When the state of the system is ( ,1)n , 1n  , the rate of  customer abandonment of a 

customer due to impatience is n . Hencethe mean rate of customer abandonment due to 

impatience is given by 

 
,0 0

1

[ ].a n

n

R n P E L 


=

= =      (44) 
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In this subsection we have expressed all the system performance measures in terms of 

(1)G  or/and (1)G . In the next subsection, we compute these two indicators (1)G and 

(1)G . 

3.3 Limiting Behavior 

We consider the limiting behavior for some performance measures when 1 → . Since

0 (1) 0P  , therefore from (31), we get 0 (1) (1 )G c   − , which implies that 

 

 1
lim (1) 0.G
→

=                                            (45) 

Since ,1

1

(1) ( )
c

j

j

G c j P
=

= − , hence  

 
,1

1
lim 0         1,2,..., 1.jP for j c
→

= = −           (46) 

This gives 

 
,1

1 1
1

lim (1) lim ( ) 0.
c

j

j

G j c j P
 → →

=

 = − =      (47) 

 

Fig.1 illustrates that (1)G  and (1)G  approaches to zero when  →1, where the values 

of the parameters are  =0.3,  =0.7,  =3,  =1.5 and c=5. Equations (45) and (47) 

coincide with this observation.Using (45), we have from (31) and (32) that 

  
0

1
lim (1) 0,P
→

=
        

(48) 

 
1

1
lim (1) 1.P
→

=
        

(49) 

Further, we get from (43) that 

 1
lim 1.sP
→

=
        

(50) 

 

 
                              Figure 1: Effects of   on G (1) and (1)G  
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3.4. Calculations of ( )G 1  and ( )G 1  

In order to compute (1)G and (1)G , we need to calculate the unknown probabilities 
,1jP

for 1,2,..., 1j c= − . From (1), (2), (3) and (4), 
,1jP  for 1,2,..., 1j c= − and 

,0jP for

0,1,2,..., 1j c= − satisfy the following $2c-3$ linear equations: 

 00 1,0 11( ) ,P P P   = + +                                       (51) 

,0 1,0 1,0[ ( )] ( 1)( ) ,   1  2,n n nn P P n P if n c      − ++ + + = + + +   −                     (52) 

 11 1,0 2,1( ) 2 ,P p P   + = +         (53) 

11 1,1 1,1 ,0( ) ( 1) ,    2 2.n n nn P P n P P if n c    − ++ = + + +   −         (54) 

 

Therefore, we need another two independent equations to calculate all 2c-1 unknowns. 

From (19), we have  

 
0,0 1,1

K
P P

K



  
=

+ −
         (55) 

implies that 

 1,1 0,0 ,P P=           (56) 

where 

 

.
b

K

K

  




+ −
=          (57) 

Substituting (22) into (31), we get 

0,0 1,1

( )( ) ( )
(1).

( ) ( ) ( ) ( )

c
P P G

c c c c c c

         

              

− + + + +
+ = −

+ − + − + − + −
      (58) 

 

Hence, we get two more independent equations (56) and (58). Therefore, we obtain 2c-1 

independent equations to solve for the 2 1c−  unknowns. We solve these equations 

analytically as follows.Substitute (56) into (51) and (53). 

 

 0,0 1,0( ) ( ) ,P P   − = +
        

(59) 

 0,0 1,0 2,1( ) 2 .P p P    + = +         (60) 

 

Thus, ,0jP , 1,2,..., 1j c= − , and ,1jP , 2,3,..., 1j c= − , satisfy(52), (54), (59), and (60). To 

write these equations in matrix form, we define two column vectors as follows: 

 0 1,0 2,0 ( 1),0( , ,.. ) ., ,T

cT P P P −=  

 1 2,1 3,1 ( 1),1( , ,..., ) .T

cT P P P −=         (61) 

Then, we have 

 0 0,0 ,PT SP=  

 0 1 0,0 ,QT RT TP+ =          (62) 

where P, Q and R are matrices given as follows: 



Impatient Customers in an M/M/c queue with Single and Multiple Synchronous Working Vacations 

Pak.j.stat.oper.res.  Vol.XIV  No.3 2018  pp571-594 581 

1

2

2

( ) 0 0 ... 0 0 0

2( ) 0 ... 0 0 0

3( ) ... 0 0 0 ,

...

0 0 0 ... ( 1)( )c

a

P a

a c

 

 

  

  −

+ 
 

− + 
 = − +
 
 
 − − + 

M M M M M M

 

 

0 ... 0 0

0 ... 0 0
,

...

0 0 ... 0

Q







 
 
 =
 
 
 

M M M M

2

3

2

2 0 0 ... 0 0 0

3 0... 0 0 0

4 ... 0 0 0 ,

... 0 0 0

0 0 0 ... ( 1)c

b

R b

b c





 

 −

 
 
− 
 = −
 
 
 − − 

M M M

   (63) 

where 

 
,na n  = + +  

 
,nb n = +            (64) 

for 1,2,..., 2n c= −  and S and T are two column vectors given as follows: 

 ( , ,0,...,0) ,TS   = − −  

 (( ) , ,0,...,0) .TT    = + −          (65) 

 

Clearly, matrices P and R are inverse matrices. Thus, from (62), we have 

 
1

0 0,0 ,T P SP−=  

 
1 1

1 0,0( ) .T R T QP S P− −= −          (66) 

Let 0e  be a vector with 1c−  elements all to be one and let 1e  be a column vector with 

2c−  elements all to be zero. Using (56) and (66), (1)G  can be written by  

 
1 1

0,0 0,0(1) ( 1) ( ) ,G c P FR T QP S P − −= − + −
   

(67) 

where 

( 2, 3,...,1)F c c= − −               (68) 

is a vector. Submitting (56) and (67) into (58), we can obtain 0,0P . The matrices 1P− and 

1R−  can be computed iteratively. Let ,i ja  denote the elements of matrix 1P−  and let ,i jb  

denote the elements of matrix 1R− . Then, we have 

, 0,    ,    2,3,..., 1,i ja i j j c=  = −  

,

1
,    1,2,3,..., 1,

( )
j ja j c

j  
= = −

+
 

, 1 ( 1), ( 2),

1
( ),    ,    1,2,3,..., 1.

( )
i j i i j i ja a a a i j j c

i


 
− − −= −  = −

+
        (69) 

 

Since the matrix R has the same structure as the matrix P, using (69), it is easy to get the 

elements of 1R−  as follows: 

, 0,    ,    2,3,..., 1,i jb i j j c=  = −  
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,

1
,    1,2,3,..., 1,

( 1)
j jb j c

j 
= = −

+
 

, ( 1), ( 2),

1
( ),    ,    1,2,3,..., 1.

( 1)
i j i i j i jb b b b i j j c

i



− −= −  = −

+
       (70) 

 

Using (69) and (70), it is easy to get from (66) that 

1,0 1,1 0,0( ) ,P a P = −             (71) 

,0 ,1 ,2 0,0[( ) ] ,    2,3,..., 1,j j jP a a P j c  = − − = −         (72) 

1,1 1 ,1 ,2 0,0 , ,0

1

( ) ,    1,2,..., 2.
j

j j j j k k

k

P b b b P b P j c  +

=

= − − = −        (73) 

Define 
2

0 1 ,1 ,2

1

1 ( 1)( ),
c

j j

j

c c j bb b 
−

=

= − + − − −  

2

,( 1) ,   1,2,..., 2.
c

k j k

j k

c j b k c
−

=

= − − = −          (74) 

Then, using (73), we obtain 
1

,1 0,0

1

(1) ( ) ( ) ,
c

j

j

G c j P V P
−

=

= − =           (75) 

where 
2

0 ,1 ,2

1

( ) [( ) ].
c

k k k

k

V a a      
−

=

= − − −          (76) 

Define 
2

0 1 ,1 ,2

1

1 ( 1)( 1)( ),
c

j j

j

c j c j bb b
−

=

 = − + + − − −  

2

,( 1)( 1) ,   1,2,..., 2.
c

k j k

j k

j c j b k c
−

=

 = + − − = −         (77) 

Using (73), we get 
1

,1 0,0

1

(1) ( ) ( ) ,
c

j

j

G j c j P V P
−

=

 = − =            (78) 

where 
2

0 ,1 ,2

1

( ) [( ) ].
c

k k k

k

V a a    
−

=

 =  −  − −          (79) 

 

Substituting (56) and (75) into (58), we obtain 

0,0

( )( )
.

( )[ ( ) ( )] ( ) ( )

bk c
P

c c c k V

     

             

+ + −
=

+ + − + − + + +
      (80) 

3.5. Numerical Results 

In this section, we put forward some numerical illustrations for the results obtained in 

section 3.2. Figs 2 and 3 demonstrate the effects of vacation service rate   and impatient 
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parameter   on ( )E L  and  0( )E L  respectively. Evidently the server works faster with 

the increasing value of , the expected system size ( )E L  and the mean system size 

during the working vacation period 0( )E L  decreases when   is fixed. Also, we observe 

that ( )E L  and  0( )E L  are bigger, when   is smaller. Fig. 4 demonstrates the state 

probability of the server and the server stays in non-vacation period i.e.P (J=1) obviously 

decreases with the increasing values of . The probability that the server remains in 

vacation period P (J=0) increases, hence the utilization level of the system idle time also 

become larger. The state probability of the server also depends on the vacation rate  . For 

example when  =1.5, P (J=1) are evidently larger than those when  = 0.5. It also shows 

that it is reasonable to establish the lower speed operation period or vacation period. 

 

 
(a)                                                                           (b) 

 
(c) 

 

Figure 2: Mean queue length E[L] versus service rate  in working vacation period when  

 = 0.6, 0.2 = and 5 = .     
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                  (a)                                                                                                     (b) 

 
(c) 

Figure 3: Mean queue length E[L] versus service rate   in working vacation period when 0.6 = , 

0.2 = and 5 = . 

 
(a)                                                                                                                    (b) 

 
(c) 

Figure 4: Mean queue length E[L] versus service rate   in working vacation period when 0.6 = , 0.2 = and 5 = . 
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4.   Single working vacation (SWV) model 

The Single working vacation policy requires the server to take vacation at the instant 

when the there are no customers waiting in the queue. When the working vacation ends 

and the server finds the system non empty, it will change its service from   to   and the 

regular busy starts. Otherwise, the server stays idle rather than taking another vacation 

and the new busy period starts when the first arrival occurs. Then the Markov chain  

 ( ( ), ( )), 0L t J t t   can be defined for SWV model as in MWV case, with state space 

  ( , ) , 0, 0,1 ,S n j n j=  =  

1 when the servers are in regular busy period or idle at time t ,
( )

0 when the servers are in working  vacation period at time t.
J t


= 


 

 

We have the balance equations for the state transition probabilities given by 

00 1,0 11( ) ( ) ,P P P    + = + +      (81) 

,0 1,0 1,0( ( )) ( 1)( ) ,       1,n n nn P P n P if n      − ++ + + = + + +   (82) 

0,1 0,0 ,P p =        (83) 

11 1,1 1,1 ,0( ) ( 1) ,     1  1,n n nn P P n P P if n c    − ++ = + + +   −   (84) 

,1 1,1 1,1 ,0( ) ,       .n n n nc P P c P P if n c    − ++ = + +     (85) 

 

Define the (partial) probability generating functions 

 
0 ,0

0

( ) ,n

n

n

G z z P


=

=  

 
1 ,1

1

( ) ,n

n

n

G z z P


=

=  

with 0 1(1) (1) 1G G+ =  and 1

0 ,0

1

( ) .n

n

n

G z nz P


−

=

 =  

Multiplying (82) with nz  and summing over n and rearrange terms, we get the 

differential equation 

 0 0 1,1( )(1 ) ( ) (1 ) ( ) .z G z z G z P    + − = − + −    (86) 

 

Similarly, multiplying (84) and (85) by nz  and summing over n, we get  

2

1 0 0,0 1,1 0,0 ,1

1

(1 )( ) ( ) ( ) ( ) (1 ) ( ) .
c

n

n

n

z z c G z zG z P P z z P z n c z P      
=

− − = − + + + − −  (87) 

Then,for 1z  , 

1,1

0 0( ) ( ) .
( ) ( )(1 ) ( )(1 )

P
G z G z

z z

 

     

 
 − + = 

+ + − + − 
  (88) 

Solving this differential equation, as in the MWV case, we get 

1

0 0,0

0

1
( ) 1 (1 ) .

(1 )

z
xz

e
G z e x dx P

K
z


  

   



 

−+ −
+ +

+

 
= − − 

  −

     (89) 
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Therefore, we get a similar expression for 0 ( )G z  as in MWV case. Here, we have  

 

1,1

0 0,0(0) ,
P

G P K


 
= =

+
   (90) 

 
0 0,0

( )
(1) .G P

K

 



+
=     (91) 

From (90) and(91), we obtain 

 0 1,1(1) .G P =      (92) 

Equation (87) can be written as follows: 
2

0 0,0

1

[ ( ) ]
( ) ( ).

( )(1 )

G z A z z P
G z G z

z c z z c

  

   

− +
= −

− − −
    (93) 

 

Equation (89) expresses 0 ( )G z  in terms of
0,0P , the proportion of time there are no 

costumers in the system and the servers are on working vacation. Also, equation (93) 

illustrates that 1( )G z  is a function of 0 ( )G z , A and G(z). Therefore, once 
0,0P  and 

,1( 1,2,..., )jP j c=  are calculated, 0 ( )G z  and 1( )G z  are completely determined. 

4.1. Performance Measures 

Applying L’Hospital’s rule to (93 )and using (92), we have 

 

0 0,0

1

( ) (2 )
(1) (1).

E L c P
G G

c c

  

   

+ −
= +

− −
 (94) 

Applying L’Hospital’s rule to (88), we have 

 

0 0
0 0

1

(1) ( )
( ) lim ( )

z

G E L
E L G z

 

 →

−
= =

+
 

implies that 

 
0 0

( )
(1) ( ).G E L

  



+ +
=    (95) 

Therefore, we get a similar expression for 0 (1)G  as in MWV case. 

Using (94) and (95) and noting that 0 (1)G + 1(1)G =1, we get the mean number of 

customers when the system is in working vacation as 

 

0,0

0

(2 )(1 )
( )

(1 ) (1 ) (1 ) (1 )

c P
E L

 

         

−−
= −

+ − + − + − + −
 

 

(1).
(1 ) (1 )

c G



    
−

+ − + −
   (96)  

 

Substituting (96) into (95), we have the probability that the server is in working vacation 

period as 

0,0

0

( )(2 )(1 )( )
( 0) (1)

(1 ) (1 ) [ (1 ) (1 )]

c P
P J G

      

          

+ + −− + +
= = = −

+ − + − + − + −
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( )

(1)
(1 ) (1 )

c G

  

    

+ +

−
+ − + −

                                                                (97) 

and the probability that the server is in non-vacation period as 

0,0

1 0

( )(2 )
( 1) (1) 1 (1)

(1 ) (1 ) [ (1 ) (1 )]

c P
P J G G

   

          

+ + −
= = = − = +

+ − + − + − + −
 

 

( )

(1).
(1 ) (1 )

c G

  

    

+ +

+
+ − + −

               (98) 

 

Now, we derive 1( )E L . Differentiating (93) and using L’Hospital’s rule, we get 

1 1
1

( ) lim ( )
z

E L G z
→

=  

2

0 0,0 0 0,0 0

21

[ ( ( )) ] ( )) 2 ( )
lim

(1 )( ) (1 )( )
{

z

z A G z z P A G z z P z G z

z z c z z c

     

   →

− − + + − + + +
= +

− − − −
 

2

0 0,0

2 2

( ( )) [( ) ( ) ( )]

(1 ) ( ) ( )
}

z A G z z P c z G z G z

z z c c z

    


   

− + + − +
+ +

− − −
 

0 0 0 0,0

2

( ) ( ( 1)) 2 ( ) 2 [( ) ]

2(( ))

c E L L c E L c c P

c

       

 

− − + + − −
=

−
 

2

(1) (1)
.

(1 ) (1 )

G G

c c



 


+ +

− −
         (99) 

 

In order to get the value of 0 (1)G , we differentiate (86)twice on both sides such that 

0 0 0

2
[ ( 1)] [ ].

2( )
E L L E L



  
− =

+ +
       (100)  

Substituting (100) into (99),we obtain 

1 0 0,0

1 1 1 1
[ ] [ ]

1 2( ) (1 ) (1 )
{ }E L E L P



        

   
= + + −   

− + + − −   
 

2

1
(1) (1).

(1 ) (1 )
G G

c c



 
+ +

− −
      (101) 

Therefore, the mean number of customers in the system is  

0 1[ ] [ ] [ ]E L E L E L= +  

0,0(1 ) (2 ) (1)
1 1

1
1 2( ) (1 ) (1 ) (1 )

c P G
c


  



          

 
− − − −   

= + +   
− + + − + − + −   

 

 

0,0 2

1 1 1
(1) (1).

1 (1 ) (1 ) (1 )
P G G

c c

 

     

 
+ − + + 

− − − − 
   (102) 

Using (97) in (91), we finally get 

0,0 0 (1)
k

P G


 
=

+
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2

( )
(1 )( )

.
(2 )( )

(1 ) (1 )

k c

k c

   
    



     
    

 

 + +
− + + − 

 =
− + ++  

+ − + − + + 

 

4.2. Calculations of ( )G 1  and ( )G 1  

In order to obtain (1)G and (1)G , we need to compute the unknown probabilities 
,1jP for

1,2,..., 1j c= − . Using (1),(2),(3) and(4), the probabilities 
,1jP  for 1,2,..., 1j c= −  and  

,0jP for 0,1,2,..., 1j c= −  satisfy the following $2c-3$ linear equations: 

 00 1,0 11( ) ( ) ,P P P    + = + +   (103) 

,0 1,0 1,0[ ( )] ( 1)( ) ,    1  1,n n nn P P n P if n c      − ++ + + = + + +   −   (104) 

 0,1 0,0 ,P p =      (105) 

,1 1,1 1,1 ,0( ) ( 1) ,    1  2.n n n nn P P n P P if n c    − ++ = + + +   −    (106) 

 

Thus, we need two more independent equations to calculate all $2c-1$ unknowns. 

From (90), we have  

 
0,0 1,1

K
P P



 
=

+
     (107) 

implies that 

 1,1 0,0P P=      (108) 

where 

 

.
K

 




+
=      (109) 

Substituting the value of 0 (1)G  from (92) into (97),we get 

1,1

( )( )

( ) ( )

c
P

c c c

     

       

− + +
=

+ − + −

0,0( )(2 )

( ) ( )

c P

c c c

   

      

+ + −
−

+ − + −
 

( )
(1).

( ) ( )
G

c c c

   

      

+ +
−

+ − + −
     (110) 

 

Thus we have two more independent equations (108) and (110).Hence, we have 2 1c−  

independent equations to solve for the 2 1c−  unknowns. We solve these equations 

analytically as follows: 

 0,0 1,0( ) ( ) ,P P    + − = +    (111) 

 0,0 1,0 2,1[ ( ) ] 2 .P p P     − + + = +   (112) 

 

Thus, ,0jP , 1,2,.. 1 .,j c= − , and ,1jP , 2,3,..  ., 1,j c= −  satisfy(104), (106), (111), and 

(112). These equations can be written as equations in matrix form as follows 

0 0,0 ,PT SP=  

 0 1 0,0.QT RT TP+ =     (113) 
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Note that S and T are defined as follows: 

 ( , ,0,...,0) ,TS    = + − −  

 ( ( ) , ,0,...,0) .TT     = − + + −   (114) 

 

Then as in MWV case, we get 

 1,0 1,1 0,0( ) ,P a P  = + −    (115) 

 ,0 ,1 ,2 0,0[( ) ] ,    2,3,..., 1,j j jP a a P j c   = + − − = −
  
(116) 

1,1 1 ,1 ,2 0,0 ,1 0,0 , ,0

1

( )   , 1,2,..., 2.
j

j j j j j k k

k

P b b b P b P b P j c   +

=

= − − − = −
              

(117) 

Using (117), we obtain 

 

1

,1 0,0

1

(1) ( ) ( ) ,
c

j

j

G c j P V P
−

=

= − =                      (118) 

 

1

,1 0,0

1

(1) ( ) ( ) ,
c

j

j

G j c j P V P
−

=

 = − =     (119) 

where 
2 2

0 ,1 ,1 ,2

1 1

( ) ( 1) [( ) ],
c c

j k k k

j k

V c j b a a        
− −

= =

 = − − − − + − −                   (120) 

2 2

0 ,1 ,1 ,2

1 1

( ) ( 1)( 1) [( ) ].
c c

j k k k

j k

V j c j b a a      
− −

= =

  =  − + − − −  + − −     (121) 

Substituting (108) and (118) into (110), we obtain 

0,0 2

( )( )
.

( )[ ( ) ( )] ( )(2 ) ( ) ( )

k c
P

c c c k c k V

     

                 

+ + −
=

+ + − + − + + + − + + +
      (122) 

4.3. Numerical Results 

This section presents some numerical examples to show the effect of system performance 

measures obtained in section 4.1. Figs 5 and 6 shows that ( )E L  and  0( )E L  decreases 

with increasing value of   when   is fixed and their values are bigger when   is small. 

Fig.7 shows that P (J=1) and P (J=0) decreases and increases respectively with the 

increasing values of  . 

 

 
(a)                                                                                 (b) 
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(c) 

 

Figure 5: Mean queue length E[L] versus service rate   in working vacation period when  

0.6 = , 0.2 = and 5 = . 

 

 
(a)                                                                                  (b) 

 
                                                                        (c) 

 

Figure 6: Mean queue length E[L] versus service rate   in working vacation period when 

0.6 = , 0.2 = and 5 = . 
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(a)                                                                                     (b) 

 
(c) 

Figure 7: Mean queue length E[L] versus service rate   in working vacation period when 

0.6 = , 0.2 =  and 5 = . 

5. Comparison 

This section gives the comparison between the MWV model and SWV model when   is 

fixed in terms of their mean system size E[L] and mean system size during working 

vacation 0[ ]E L . From figs.8 and 9, it is clear that SWV model is more efficient 

compared to the MWV model in the sense that mean system size E[L] and mean system 

size during working vacation period 0[ ]E L  in SWV is always less than that in the MWV 

model. 

 

 
(a)                                                                                (b) 
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(c) 

Figure 8: Mean queue length E[L] versus service rate   in working vacation period when 

0.6 = , 0.2 = and 5 = . 

 

 
(a)                                                                                 (b) 

 
(c) 

 

Figure 9: Mean queue length E[L] versus service rate   in working vacation period when 

0.6 = , 0.2 =  and 5 = . 

6.   Conclusion 

We have analyzed the synchronous working vacation policy in an M/M/c queuing model 

with impatient customers. We have discussed two types of WV policies i.e. the multiple 

working vacations (MWV) policy and single working vacation (SWV) policy. Explicit 
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expressions for some system performance measures have been derived in terms of two 

indicators (1)G and (1)G . We have given some numerical illustrations which 

demonstrate that the above derived theoretical results are reasonable and can be directly 

used to solve the practical problems. This work emphasizes the fact that when   is fixed, 

mean queue length E (L) and mean queue length during working vacation period 0( )E L  

in SWV model is less than that of MWV model. Hence, the efficiency of SWV model is 

more as compared to the MWV model. 
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