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Abstract 

This paper extends the simple linear regression model with wrapped Cauchy error to the functional case 

when both variables are subjected to wrapped Cauchy errors. Assuming the ratio between the two error 
variances is known and the slope parameter equals one the maximum likelihood estimates are obtained. 

The closed-form expression for the maximum likelihood estimators are not available and the estimates are 

obtained iteratively by choosing a suitable initial values. The quality of estimates and the accuracy of the 

model are illustrated via simulations and the results revealed an acceptable performance of the estimators 

where they are unbiased, consistent and robust. The sampling variances of the model parameters are 

obtained via bootstrapping methods and consequently the confidence intervals were constructed. The 

proposed model is illustrated with an application on the analysis of wind directions data at two cities in the 

Gaza strip, Palestine.  

Keywords:   Bootstrap, EIVM, robustness, Wind direction. 

1.   Introduction 

The functional relationship model is a part of the general class of Error-In-Variables 

Models (EIVM) which also known as the measurement error or random regression 

models. The study of EIVM had been firstly explored by (Adcock 1877, 1878) and then 

(Kendall 1951, 1952) formally made a distinction between functional and structural 

relationship between the two variables. In the ordinary regression we supposed that the 

explanatory variables measured without error and all the errors are in the response 

variable, but the EIVM assumed that the errors are in both response and explanatory 

variables. Hence, there is no distinction between the response and explanatory variables. 

 

The extension of EIVM to the case when both variables are circular has not received 

much attention. The un-replicated linear functional relationship for two circular variables 

was first introduced by (Hussin 1997) assuming that errors of both variables are 

independently distributed with von Mises distribution with equal variances. 

 

Later, (Hussin 2003) improved the model by estimating the concentration parameters of 

error for any ratio   using the asymptotic properties of the Bessel function. Then, 
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(Hussin 2005) extended the model for replicated observations and considered the Fisher 

information matrix of model parameters.  

 

(Caires and Wyatt 2003) proposed the simple linear circular functional relationship 

model in which the value of the slope parameter   is fixed to be one, and the errors are 

assumed to follow von Mises distribution for any ratio  . (Hussin et al 2010) derived the 

variances of model parameters by deriving the asymptotic covariance matrix and 

developed an outlier detection procedure. (Satari, et al 2014) developed a new functional 

relationship model for circular variables by extending the (Downs and Mardia 2002) 

circular-circular regression model.  

 

The heavily tailed property of the wrapped Cauchy distribution motivated (Abuzaid and 

Allahham 2015) to propose the simple linear regression for circular variables in the 

following form: 

( ),2mod  iii xy ++=
 

where i   circular random error having a wrapped Cauchy distribution with circular 

mean 0 an concentration parameter . The estimates of the parameters were obtained   

based on maximizing the log-likelihood function via iterative procedure. The Results 

show that their model is more robust to the deviation of assumptions compare to (Hussin 

et al 2004). 

 

The rest of this paper is organized as follows, Section 2 formulates the proposed model 

and derives parameter estimators. Section 3 performs an extensive simulation studies to 

investigate the properties of estimators. Section 4 applies the proposed model on wind 

directions data from Palestine. 

2.   Circular Functional Relationship Model with Wrapped Cauchy Errors 

The robustness of circular regression model proposed by (Abuzaid and Allahham 2015) 

motivates to extend it to the functional case, where the relationship is linear. Such 

situation can be found in the calibration between two instruments for measuring circular 

variables 

 

Suppose ix  and iy  for ni ,...,2,1=  where 0 , 2i ix y    are observed values of the true 

values of circular variables X  and Y  respectively. Assuming that there is a linear 

relationship between these two variables with known slope parameter equals one. For any 

fixed values iX  and  iY , we assume that the observations ix  and iy  are measured with 

errors i  and i , respectively and thus the full model can be written as 

 
 

, and ,i i i i i ix X y Y = + = +
 

 
,,...,1),2(mod niXY ii =+=   (1) 

we also assume that i  and i  are independently distributed with wrapped Cauchy 

distributions with mean zero and concentration parameters   and  , respectively, that 

is, ),0(~  WCi  and ),0(~  WCi . We also defined 



 =   (i.e.  =  ) as a ratio 
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of error concentration parameters to be known for the proposed circular functional 

relationship model.  

 

In the context of functional relationship models there are strong reasons for fixing 1 = , 

the first reason is related to the desired symmetry of the functional relationship model, 

where the conclusions should be independent of which quantity is chosen to be X  or Y . 

Furthermore, the function (mod2 )X X  → + does not vary continuously when 

going from 2  to 0 , for further discussion see (Caires and Wyatt 2003).  

2.1  Parameter estimation: 

The probability density function of error in (1) is given by: 

( )
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By introducing the following re-parameterization  

 
,

1
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21
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The probability density function in (2) can be written in the form 

 

( )
2

1 2 1 2

1 1 1
( , , , ; , ) ,

(1 cos sin ) (1 cos( ) sin( ))2
i i i

i i i i i i

f x y
d x x c y X y X
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where  
2

2

2

11

1

 −−
=c  and .

1

1

2

2

2

1  −−
=d

 

 

Letting 1 1 2 2 1 1 2 2,  , , and ,  c c d d       = = = = then errors in model (1) can be 

formulated as follows:    

( )
2

1 2 1 2

1 1 1
( , , , ; , ) ,

cos sin cos( ) sin( )2
i i i

i i i i i i

f x y
d x x c y X y X

  
   

 =
− − − − − −  (4) 

where 2

2

2

11  ++=d  and 2

2

2

11  ++=c .  

 

Then the log-likelihood function for model (1) is given by: 

( )

1 2 1 2 1 1 1

1

1 2 1 2

1

log log ( , , , , ,..., ; ,..., , ,..., )

2 log 2 log cos sin log( cos( ) sin( )).

n

n n n
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(5)

 

 

Assuming the equality of error concentration parameters, i.e. 1 = , there are (n + 2) 

parameters to be estimated which are ,   and  iX  for i=1,2,…,n. The maximum 

likelihood estimates of 1  and 2  are obtained by differentiating the log-likelihood 
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function in (5) with respect to 
1  and 2 , respectively and equating them with zero as 

follows: 

where 
)sin()cos(1

1

21 iiii

i
XyXy

w
−−−−

=


, similarly for 2 , we have 
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a)  Estimation of   : 

From Equations (6) and (7) we have 
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From the definition of  
1  and 

2  we get ,
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ˆ
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1
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 = then, the estimate of   is obtained 

as follows: 
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b) Estimation of  : 

The estimate of   can be obtained after easy mathematical formulation as given below, 
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c)   Estimation of  iX : 

The maximum likelihood estimates of 1  and 2  are obtained by differentiating the log-

likelihood function in (5) with respect to 1  and 2 , respectively and equating them with 

zero as follows: 
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From Equations (11) and (12) we have 
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The first derivative of the log-likelihood function in (5) with respect to iX  is given by: 
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The previous equation can be solved iteratively given some initial guesses for iX . 

Suppose 0
ˆ

iX  is an initial estimate for iX̂ . 

 
,00 iiioiiiiii xXxXXXxX +−=−+−=−  

where, 0iii XX −= . Also we have iioiiiiiii XyXXXyXy −−=−+−=− 00 . 

 

Since, 

 0 0sin( ) sin( )cos cos( )sin ,i i i i i i i iX x X x X x− = −  + −   (15) 

 0 0sin( ) sin( )cos cos( )sin .i i i i i i i iy X y X y X− = −  − −   (16) 

and
 

0 0cos( ) cos( )cos sin( )sin ,i i i i i i i iy X y X y X− = −  + −   (17) 

For small ,  we have cos 1 and sin .i i i i     
  

So, Equations (15, 16 and 17) become 

 0 0sin( ) sin( ) cos( ) ,i i i i i i iX x X x X x− = − + −   (18) 
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 0 0sin( ) sin( ) cos( ) ,i i i i i i iy X y X y X− = − − −   (19) 

and 0 0cos( ) cos( ) sin( ) .i i i i i i iy X y X y X− = − + −   (20) 

Hence, (14) is simplified to: 
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Possible initial guesses for iteration are ii xX =


0  in (21) for 1,2,...,i n= . The iterative re-

weighting algorithm for maximum likelihood estimation obtained step by step as follows:  

Step 1:  Initialize
]0[

1 , 
]0[

2  and
 ii xX =



0  
with 1]0[

2
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1 +  and calculate ]0[w  using 
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Step 2:  Given 
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k ,
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2

k ,
][kX  and 

][kw  at iteration k, calculate 
]1[

1

+k ,
]1[

2

+k  and 
]1[ +kX  

using Equations (8) and (21), respectively. 

Step 3:  Repeat step 2 until algorithm converges. 

Step 4: Obtain the values of  ̂  and ̂  by solving the Equations (9) and (10) 

respectively. 

2.2   Asymptotic variance of circular functional relationship model parameters: 

It is difficult to derive the sampling variance based on the expectation of the second 

partial derivative of the log-likelihood function of the proposed model in (1). Therefore, 

we used bootstrapping method (Chernick 1999) as explained below: 

 

For any n pairs of circular observations 1 1( , ),..., ( , )n nx y x y  of two circular variables X

and Y with linear relationship. 

Step 1:  Select m pairs of the observations such that ( m n ). 

Step 2:  For the selected m observations, obtain the estimates of  and   and label them 

(1)̂  and (1)̂  

Step 3:  Repeat Step 1 and Step 2, B times. 

Step 4:  Obtain the variance for the parameters ̂  and ̂  as follows: 
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 where  and    are the sample mean of ( )
ˆ

j  and ( )
ˆ

j , respectively for 

1,..., .j B=  

2.3 Confidence intervals of model parameters: 

The percentile or bootstrap-p  method is used to construct the 100(1 − a)%  confidence 

intervals for parameters' estimates, since it is the most widely used method due to its 

simplicity and natural appeal, using the first three steps mentioned in Subsection 2.2 and 

then continued by the following step: 

Step 4: Arrange the bootstrap estimates in an increasing order (1) ( )
ˆ ˆ,..., B   and 

(1) ( )
ˆ ˆ,..., B  , then the (1 −  )% confidence intervals of   and   are given by 

( ) (1 )
2 2

ˆ ˆ( , )a a 
−

 and 
( ) (1 )
2 2

ˆ ˆ( , )a a 
−

, respectively. 

3.   Simulation Study 

The main objective of this section is to assess the accuracy and biasness of the parameters 

of the proposed model (1) via simulation. The simulation results are obtained based on 

1000 generated samples for each set of parameters values are shown in Table 1 and Table 

2. The values of X follows the (0.5,2)vM  and the intercept parameter is fixed at 0. =  

Ten different choices of concentration parameter  = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9 and 0.99 for random error generated from wrapped Cauchy with mean 0 and 

concentration parameters . =  Six choices of sample size n = 10, 30, 50, 70, 100 and 

150 have been considered. The simulation study is conducted as follows:  

1.  Two random samples  and i i   of size n are generated from the wrapped Cauchy 

with mean 0 and concentration   for the errors. 

2.  A random sample of size n is generated from the von Mises with mean 0.5 and 

concentration parameter 2 for the independent variable .X   

3.  Obtain ix  based on formula  (mod 2 )i i ix X  = + .  

4.  Obtain Y variable as given in (1), then obtain iy  based on the formula 

i i iy Y = + .  

5.  Estimate the models parameter using the iterative procedure as derived in Section 

2. 

6.  For each combination of sample size n and concentration parameter  , the 

process is repeated s=1000 times.  

3.1  Biasness of estimators 

Results of simulation study are tabulated in Table 1, and it shows that ̂  is a good 

estimator of  , where  its bias generally decreases with the increasing of the sample size 

n or the concentration parameter  . Similar conclusions may also be drawn from Table 2 
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as the mean of ̂  close to the true value of   with the increase of sample size n or the 

concentration parameters of circular random errors.  

Also, we note from Table 1 and Table 2 that there is an inverse relationship between the 

sample size n and the values of the 
1

1
ˆ(1 cos( ))

s

i

i

MCE
s

 
=

= − −  and 

2

1

1
ˆ( )

s

j

j

MSE
s

 
=

= −  of the estimators ̂  and ̂ , respectively, these findings indicate 

the consistency of the estimators. 

Table 1:   Simulation Results for ̂   (True value of α = 0.0). 

n 
κ 

150 100 70 50 30 10 Measure 

0.009 

0.009 

0.001 

0.001 

-0.015 

0.015 

-0.017 

0.017 

0.008 

0.008 

-0.025 

0.025 

Mean 

Bias 0.2  

0.02 0.067 0.108 0.152 0.253 0.489 MCE 

0.007 

0.007 

0.005 

0.005 

0.006 

0.006 

0.006 

0.006 

-0.029 

0.029 

-0.019 

0.019 

Mean 

Bias 0.3 

0.016 0.022 0.034 0.05 0.102 0.308 MCE 

-0.003 

0.003 

0.000 

0.000 

0.003 

0.003 

-0.014 

0.014 

-0.008 

0.008 

-0.001 

0.001 

Mean 

Bias 0.4 

0.007 0.012 0.016 0.025 0.045 0.178 MCE 

0.000 

0.000 

-0.003 

0.003 

-0.001 

0.001 

-0.001 

0.001 

0.002 

0.002 

-0.013 

0.013 

Mean 

Bias 0.5 

0.004 0.006 0.009 0.012 0.021 0.100 MCE 

-0.001 

0.001 

0.006 

0.006 

-0.000 

0.000 

0.000 

0.000 

-0.003 

0.003 

-0.006 

0.006 

Mean 

Bias 0.6 

0.002 0.003 0.005 0.006 0.010 0.041 MCE 

-0.001 

0.001 

-0.001 

0.001 

-0.001 

0.001 

0.003 

0.003 

-0.003 

0.003 

0.007 

0.007 

Mean 

Bias 0.7 

0.001 0.001 0.002 0.003 0.005 0.019 MCE 

-0.000 

0.000 

-0.001 

0.001 

-0.002 

0.002 

0.001 

0.001 

0.001 

0.001 

-0.008 

0.008 

Mean 

Bias 0.8 

0.0003 0.001 0.001 0.001 0.002 0.007 MCE 

-0.000 

0.000 

-0.000 

0.000 

0.000 

0.000 

0.001 

0.001 

0.002 

0.002 

-0.005 

0.005 

Mean 

Bias 0.9 

0.000 0.0001 0.0001 0.0002 0.0004 0.001 MCE 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Mean 

Bias 0.99 

0.000 0.000 0.000 0.000 0.000 0.000 MCE 
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3.2 Coverage probability of confidence intervals 

The coverage probability of a confidence interval is the proportion of the time that the 

interval contains the true value of interest, see (Dodge; 2003). In this simulation study we 

construct intervals at 0.95 confidence level. Hence, the good indicator must give the 

coverage probability close to 0.95. The estimation of the parameters were repeated for 

different sample sizes (n = 30, 50, 100, and 150) and concentration parameter  = 0.2, 

0.4, 0.6, 0.8 and 0.99. The results of the simulations are given in Table 3 based on 1000 

repetition times. 

 

Results in Table 3 show that the observed coverage appears to be approximately 

equivalent to the confidence level, which reveals an excellent coverage of the confidence 

intervals. 

Table 2:   Simulation Results for ̂  

n 
Measure κ 

150 100 70 50 30 10 

0.230 

0.030 

0.251 

0.051 

0.299 

0.099 

0.339 

0.139 

0.466 

0.266 

1.574 

1.374 

Mean 

Bias 0.2 

0.005 0.016 0.037 0.343 1.206 94.031 MSE 

0.322 

0.022 

0.331 

0.031 

0.342 

0.042 

0.36 

0.06 

0.418 

0.118 

0.890 

0.590 

Mean 

Bias 0.3 

0.003 0.006 0.010 0.015 0.052 5.138 MSE 

0.411 

0.011 

0.418 

0.018 

0.431 

0.031 

0.440 

0.0340 

0.471 

0.071 

0.800 

0.200 

Mean 

Bias 0.4 

0.002 0.004 0.007 0.01 0.023 2.283 MSE 

0.508 

0.008 

0.513 

0.013 

0.522 

0.022 

0.529 

0.029 

0.541 

0.041 

0.704 

0.204 

Mean 

Bias 0.5 

0.002 0.003 0.005 0.007 0.013 0.318 MSE 

0.605 

0.005 

0.609 

0.009 

0.6103 

0.0103 

0.613 

0.013 

0.629 

0.029 

0.717 

0.117 

Mean 

Bias 0.6 

0.001 0.002 0.003 0.005 0.009 0.109 MSE 

0.702 

0.002 

0.705 

0.005 

0.704 

0.004 

0.710 

0.010 

0.715 

0.015 

0.755 

0.055 

Mean 

Bias 0.7 

0.001 0.001 0.002 0.003 0.005 0.019 MSE 

0.801 

0.001 

0.802 

0.002 

0.803 

0.003 

0.804 

0.004 

0.806 

0.006 

0.825 

0.025 

Mean 

Bias 0.8 

0.000 0.001 0.001 0.001 0.002 0.007 MSE 

0.900 

0.000 

0.900 

0.000 

0.901 

0.001 

0.901 

0.001 

0.900 

0.000 

0.905 

0.005 

Mean 

Bias 0.9 

0.000 0.000 0.000 0.000 0.000 0.002 MSE 

0.990 

0.000 

0.991 

0.000 

0.990 

0.001 

0.990 

0.000 

0.990 

0.001 

0.991 

0.001 

Mean 

Bias 0.99 

0.000 0.000 0.000 0.000 0.000 0.000 MSE 
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Table 3:   Results for coverage percentage of confidence interval for  and   

n 

κ 150 100 70 50 30 

κ α κ α κ α κ α κ α 

93.1 94.8 93.6 95.1 99.6 94.2 99.7 93.3 98.9 95.5 0.2 

94.5 95.1 94.0 93.6 92.1 96.4 92.5 95.6 99.6 93.0 0.4 

94.7 94.8 94.8 94.1 93.5 95.0 92.3 95.2 95.2 93.9 0.6 

94.5 95.3 94.5 95.0 90.7 95.8 95.4 95.5 95.5 94.7 0.8 

96.5 95.0 96.5 95.1 97.8 94.7 95.9 95.2 96.6 95.9 0.99 

3.3  Robustness of the estimates 

Robustness of an estimator is a useful property which gives a fair assurance that the 

existence of any possible outlier or violation of model assumptions will not have much 

effect on the parameters estimates. To assess the robustness, based on simulation study, 

where 5% of the generated data are contaminated start from observation d as follows: 
*[ ] [ ] (mod2 ),y d y d  = +  

where 
*[ ]y d  and [ ]y d  are the contaminated and original values of the dependent variable 

Y respectively, and   is the contamination level, where 0 1.    

 

The results of simulation study show that, for data with highly concentrated error 0.6,   

the bias of ̂  is less than 0.3 for small samples ( 10n = ) and less than 0.15  for moderate 

and large samples ( 30n  ). Regardless the concentration of error and the sample size, the 

optimum values of bias of   are obtained for moderate levels of contamination 0.6   . 

It may be referred to the nature of the circular data, where the shift of 5% of the 

generated data by more than / 2  of its original values may lead to get closer to the 

majority of the data. Almost similar conclusion can be drawn for the concentration 

parameter.  

4.   Real Data Analysis 

As an illustration of the proposed model, this section considers the measurements of wind 

directions that have been collected from two meteorological stations in two main cities in 

the Gaza Strip, namely Gaza and Khan Younis in Palestine. The data were provided by 

the Palestinian Metrological Authority, in 2007. It represent the monthly average wind 

directions every three hours a day viz, 0:00 mid night, 3:00 am, 6:00 am, 9:00 am, 12:00 

noon, 15:00 pm, 18:00 pm and 21:00 pm. (Badawi 2013) analyzed the Palestinian wind 

data in order to establish a wind farm to reach the optimum electricity energy. Recently, 

(Abuzaid and Allahham 2015) modelled the data by using the simple circular regression 

model assuming the wrapped Cauchy error. The linear circular regression model between 

dependent and independent variables is given by 

0.747 0.842 (mod2 ),Y X = +  

where dependent variable  Y is the wind direction data for Gaza while the wind direction 

data for Khan Younis is the independent variable X . 



Circular Functional Relationship Model with Wrapped Cauchy Errors 

Pak.j.stat.oper.res.  Vol.XIV  No.2 2018  pp275-287 285 

4.1  Fitting the functional circular regression model with wrapped Cauchy error 

Since the relationship between the wind directions of Gaza and Khan Younis is 

reasonably linear as shown in Figure 1; the simple functional circular regression model 

(1) is suggested to fit the data. The parameters estimates are obtained by applying the 

iterative procedure and after converting the data into radians. The initial values of 1  and 

2  are taking to be 0.3.  

 

Table 4 presents the estimates of parameters, their standard error and the 95% confidence 

intervals, where the convergence is occurred after 16 iterations. Hence, the estimate 

relationship for wind directions of Gaza and Khan Younis data set is given by 

0.237 (mod2 ),Y X = +  

where variable  Y is the wind directions data for Gaza and the wind directions data for 

Khan Younis is the variable X .  

 

Figure 1: Scatter plot of wind directions in Gaza versus KhanYounis 

Table 4:  Parameter estimation of circular functional model with wrapped Cauchy 

Errors 

Parameter Estimate Standard Error Confidence Interval 
 

̂  0.237 0.0024 (0.140, 0.333) 

̂  0.843 0.0018 (0.759, 0.927) 

 

(Abuzaid 2010) suggested a statistic to test the goodness-of-fit of circular models, * ( )A   

to be analogues the coefficient of determination in the linear regression models as given 

below:  

* 21
ˆ( ) cos ( ),i iA y y

n
 = −  
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where *0 ( ) 1.A    Therefore, the closer * ( )A  to 1 indicates a better fitting the model. 

Thus, the goodness-of-fit for the model is * ( ) 0.799.A  =  

 

The obtained residuals were tested to follow the wrapped Cauchy distribution via 

Kolomogrov-Simrnov test, where the values of test for the errors of and are 0.0401 and 

0.0321 with P-values 0.835 and 0.895, respectively.  

5.   Conclusions 

A new linear functional relationship model for circular variables with a wrapped Cauchy 

errors has been proposed due to the attractive properties of wrapped Cauchy distribution. 

The maximum likelihood estimates of parameter has been obtained assuming equality of 

concentration parameters of errors. Estimation has been obtained iteratively since the 

closed-form expression for estimates are not available, by choosing a suitable initial 

values, the standard error of estimates as well as their confidence intervals are obtained 

by bootstrapping methods. Moreover, the proposed angular regression model has been 

applied on a real data set of wind directions at two cities in the Gaza strip. 
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