A New Extended additive Weibull distribution
and its Applications

Abstract

In this paper we defined a new liftime model called the the Exponenti-
ated additive Weibull (EAW) distribution . The proposed distribution has a
number of well-known lifetime distributions as special submodels, such as the
additive Weibull , exponentiated modified Weibull, exponentiated Weibull, and
generalized linear failure rate distributions among others.We obtain quantile
, moments , moment generating functions, incomplete moment Residual life
and Reversed Failure Rate Function , mean deviations, Bonferroni and Lorenz
curves .The method of maximum likelihood is used for estimating the model
parameters . Applications illustrate the potentiality of the proposed distribu-
tion

Keywords: Exponentiated additive Weibull, Moments, Modified Weibull
Distribution, Maximum likelihood estimation.

1 Introduction

In reliability engineering and lifetime analysis many applications require a bathtub
shaped hazard rate function. Weibull distribution is one of the most commonly used
lifetime distributions in reliability and lifetime data analysis. It is flexible in modeling
failure time data,as the corresponding hazard rate function can be increasing,constant
or decreasing. But in many applications in reliability , mechanical and electronic
components and survival analysis, the hazard rate function can be of bathtub shape.
It is well known that, because of design and manufacturing problems, the hazard
rate is high at the beginning of a product life cycle and decreases toward a constant
level. After reaching a certain age, the product enters wear-out phase and hazard
rate starts to increase. Despite the fact that this phenomenon has been presented in
many reliability engineering texts few practical models possessing this property have
appeared in the literatures two-parameter flexible Weibull extension of Bebbington et
al. (2007) has a hazard function that can be increasing, decreasing or bathtub shaped.
Zhang and Xie (2011) studied the characteristics and application of the truncated
Weibull distribution which has a bathtub shaped hazard function. A three parameter
model, called exponentiated Weibull distribution, was introduced by Mudholkar and



Srivastave (1993). Xie and Lai (1995) introduced a four-parameter distribution called
the additive Weibull distribution based on the simple idea of combining the hazard
rates of two Weibull distributions: one has a decreasing hazard rate and the other one
has an increasing hazard rate. It has the cumulative distribution function is given by

F(r,a,0,p1,8)=1— e_(o‘xu“xﬁ),x > 0, (1.1)

where o > 0,0 > 0 and 8 > 5 > 0O,or § > 6 > 0 which gives identifiability to the
model. When 6 > 0 the hazard rate is increasing and when 0 < [ < 1 hazard rate
is decreasing. The corresponding probability density function is

f(@.0,0,p.8) = (a2t + B t)e (o i), (1.2)

where @ > 0 and p > 0 are scale parameters, and § > 3 > O,or ( § > 6 > 0) are
shape parameters. The interpretation of model (1.2) is evident. Suppose a system
composed of two interconnected independent series sub-systems that affect the system
in a different way, each one having a Weibull distribution with proper parameters.
The hazard time of the system follows (1.2), since it occurs when the first of the two
sub-systems fails.

Since 1995,exponentiated distributions have been widely studied in statistics and
numerous authors have developed various classes of these distributions. A good review
of some of these models is presented by Pham and Lai (2007). The exponentiation
of distributions is a mechanism that makes the model more flexible, Nadarajah and
Kotz (2006) introduce four more exponentiated type distributions: the Exponenti-
ated Gamma, Exponentiated Weibull, exponentiated Gumbel and the Exponentiated
Fréchet distribution. We also, several authors presented exponentiated distributions,
such as Barriga, Louzada and Cancho (2011) with the Complementary Exponential
Power distribution which is the exponentiation of the Exponential Power distribution
proposed by Smith and Bain (1975) denoted as Complementary Exponential Power
distribution, Bakouch, Al-Zahrani, Al-Shomrani, Marchi and Louzada (2011) with
the extension of the Lindley (EL) distribution and the Complementary Exponential
Power distribution (CEP) introduced by Barriga, Louzada and Cancho (2011).

In this paper , the so- called exponentiated additive Weibull (EAW) distribution with
five parameters is proposed. The new distribution due to its flexibility in accommo-
dating all the forms of the hazard rate function can be used in a variety of problems for
modeling lifetime data. Another important characteristic of the distribution is that it
contains, as special sub-models, the Weibull, exponentiated exponential (Gupta and
Kundu, 1999, 2001), exponentiated modified Weibull distribution (Elbatal ,(2009)),
exponentiated Weibull distribution (Mudholkar et al., 1995, 1996), generalized linear
failure rate distribution, (Sarhan and Kundu ( 2009)) , Modified Weibull distribu-
tion (Lai et al, 2003) , among some other distributions. The exponentiated additive
Weibull distribution is not only convenient for modeling comfortable bathtub-shaped
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failure rates data but is also suitable for testing goodness-of-fit of some special sub-
models such as the exponentiated Weibull and modified Weibull distributions.

The rest of the article can be organized as follows. In section 2 we present the
expression of the pdf and cdf of the subject distribution and some special sub-models.
In section 3 we study the statistical properties including moments, moment generating
function and incomplete moments . Residual life and reversed residual functions of the
E AW distribution, Bonferroni and Lorenz Curves and mean deviations are discussed
in Section 4. In section 5. we demonstrate the maximum likelihood estimates of the
unknown parameters. Finally, In section 6 we present a data analysis to illustrate
the usefulness of the proposed distribution

2 Exponentiated Additive Weibull Distribution

A random variable X has the EAW distribution with parameter vector ¢ = («, 0, i, 5, \)
say EAW (¢) or EAW (a, 0, i, 5, \) if its cumulative distribution function is

(a4 )]
F(z,¢) = [1 — e(oa’tue >] x> 0, (2.1)
and the probability density function is given by
A1
R T e ] I P )
The survival function, also known as the reliability function (rf) in engineering, is the
characteristic of an explanatory variable that maps a set of events, usually associated

with mortality or failure of some system onto time. The corresponding survival
function of random variable X is

— A
Flo,¢)=1— |1— e*(“m”xﬁ)} : (2.3)

and the failure (hazard) rate function which is an important quantity characterizing
life phenomenon functions takes the following form

A—1
f(z,9) Mabz?1 + uﬂxﬁ_l)e—(axewrﬁ) [1 _ e—(m«@ﬂwﬂ)]
" F - o p) . (24
F(x, ¢) 1 — [1 — e~(@a®+ua®)]
whereas its reversed failure (hazard) rate function is given by
f(I, ¢) o A(Of@lﬁ*l + Mﬂlﬂfl)ef(axhrumﬁ) (2 5)

T(z) = F(z, ) = {1 _ e_(a$o+#$ﬁ)]



Figure 1 provide some plots of the density curves for different values of the para-
meters o, 0, i, 5 and A .
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Figure 1. Plots of the EAWdensity function for some parameter values.

Figure 2 does the same for the associated hazard rate function, showing that it is
quite flexible for modelling survival data.
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Figure 2. provide some plots of the hazard rate function for some parameter values.
It is known, not many lifetime distributions exhibit bathtub hazard rates. The

E AW model shows flexibility in accommodating all forms of the hazard rate function
as seen from Figure (2) (by changing its parameter values) seems to be an important
distribution that can be used.



2.1 Special Cases of the FAW Distribution

The exponentiated additive Weibull distribution is a very flexible model that ap-
proaches to different distributions when its parameters vary. The flexibility of the
exponentiated additive Weibull distribution is explained in Table (1). Note that in
the table we have used the following abbreviations:

A = Additive; M = Modified, W =Weibull, Fx = Exponential, £ = Exponen-
tiated, GLF R = Generalized Linear Failure Rate, R = Rayleigh. If X is a random
variable with cdf (2.1), then we have the following cases.

Model | a | 0 | | B | A CDF References
AW | = =]=]=]1] 1—eltu? Xie and Lai (1995)
A
EMW | — 1| |- - [1 - e—<w+wﬂ Elbatal (2011)
MW [ —[1]=][=]1] 1—e(ootn? Sarhan and Zaindin (2009)
A
EW (0| —-|—|—|— {1 — e"“ﬂ Mudholkar and Srivastava (1993)
GE, |—|—|0]—]—- [1— e Gupta and Kundu (1999)
A
GR |0 |—|—]2]|—- {1 — e‘“xz)l Kundu and Ragab ( 2005)
A
GLFR|—|1|—|2|—- [1 - e*(a“’”z)} Sarhan and Kundu ( 2009)
LFR |- |1 21| 1—e(omtm?) Bain (1974)
wolo|-]—-|-]1 1—ew’ Weibull (1951)
E, |—|1][0]|—=11 I—eo® Bain (1974)
R |[o]|-[-]2]1 1—er Bain (1974)

Table 1 The sub-models of the FAW distribution

3 Statistical Properties

In this section we studied the statistical properties of the (EAW) distribution, specif-
ically moments, incomplete moment , and moment generating function.

3.1 Moments

In this section, the different moments of the exponentiated additive Weibull distribu-
tion can be obtained using the ry, moment p. = E(X") and the moment generating
function, M (t) = e'X.

Theorem 3.1.



The 7, moment of (EAW) distribution, » = 1,2, .... is given by

S N G Yt ) BRI et VNN G
T . . - ] )
e & QG+ G

(3.1)
Proof.
We start with the well known definition of the r;, moment of the random variable
X with probability density function f(z) given by

,u;:/ " f(x,a, B, N\, 0)da.
0

Substituting from (2.2) into the above relation, we get
o0 A-1
= /\/ 2" (afz? + pﬁxﬂ_l)e_(wu“xﬁ) [1 — ¢~ (0@ Fuaf) dz, (3.2)
0

since 0 < e~ (" +12”) <1 for z > 0, then by using the binomial series expansion of
A1
[1 — e_("‘”"gJFWB)] is given by

—(az?+pzP Al 0 A—1 i —j (az?4paf
[1— etest )] =37 O (e e, (3.3)
we get

= AT O 1 [t g e e e, (3.

0

but the series expansion of e~UtDre" ig given by

—(+1)pa? _ Z“’ [—nli+ mﬂk (3.5)

€
k=0 k! ’

substituting from (3.5) into (3.4), we get
M; _ Cj7k/OO(O[HZL‘T+Bk+9_1 + Mﬁxr+ﬁ(k+l)—1)e—(j+1)amgdx’ (36)
0

where

: k
_ -1 gk (G +1)]
Cor =230, () (CD =
setting t = (j + 1)aa?, after some algebra , the integral in (3.6) can be computed as
follows

ar(rzﬁk + 1) MBP(rJrB(akJrl))

G+ D7 plaG 1)

pr = Ci (3.7)
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which completes the proof.

The central moments p, and cumulants k, of the EAW distribution can be
determined from expression (3.1) as p, = Z (;)(—1)""”#{7” gl and K, = pl —
m=0
r—1

> (57 K ey, tespectively, where ry = 1y, 3 = pty— py°, K3 = iy — 3y iy +241]”

m=1
,and Ky = ,ufl — 4,u{ ,ug = 3%2 + 12,u£po{2 = 6u{4, etc. Additionally, the skewness and
kurtosis can be calculated from the third and fourth standardized cumulants in the
__ _K3 _ k4 :
forms SK = Ja and KU = o respectively.
Theorem 3.2.
The moment generating function of EFAW distribution is given by

> Uy o G+ D) ol (25 4 1) BT (2B
M) = 2 A5 P g | Tt G
(3.8)

Proof.

We start with the well known definition of the m(goment generating function given
by M, (t) = E(e!*) = /Ooet"”fEAW(x,gb)dx, since Z L2 f(z) converges and each
term is integrable for C;aollot close to 0, then we canrigwrite the moment generating
function as M (t) = Z LE(X") by replacing E(X"). Hence using (3.1) the MGF

r=0
of FAW distribution is given by

r . k r+06k r+6(k+1
(t) = Z“’ t_)\()\_1> (1)t G+ D | al(Z2E +1) pT (2D
j.k,r=0 7! J k! . r+Bk 4 ] 1 B(k+1)

o ‘ (G + 1) OlaGi+1)] 7
which completes the proof .

Similarly, the characteristic function of the EAW distribution becomes ¢ (t) =
M (it) where i = 1/—1 is the unit imaginary number.

3.2 Conditional Moments

The main application of the first incomplete moment refers to the Bonferroni and
Lorenz curves. These curves are very useful in economics, reliability, demography,



insurance and medicine. The answers to many important questions in economics
require more than just knowing the mean of the distribution, but its shape as well.
This is obvious not only in the study of econometrics but in other areas as well. For
lifetime models, it is also of interest to find the conditional moments and the mean
residual lifetime function. The conditional moments for FAW distribution is given

by
vs = EX°|X>1) :/ 2° fpaw (z, ¢)dx
t

= Cj,k/ (Oé@q;s—l-ﬁk—l-e—l —|—M5$S+6(k+1)_1)6_(j+1)am0dx
t

ol (% +1,(j + Dat’) | ppL (5, (j + 1at?)
(G +1)] 7 Ola(j+1)] 7
Where I'(s,t) = toomsfle*xdx is the upper incomplete gamma function. The mean

residual lifetime function is given by
ol (%32 +1,( + Dat’) pBT(PEEDEL (5 4 1)at?)

p [a(] N 1)] s+,359k+1)
(3.10)

s+Bk 41

[a(j +1)] 7

pt) =EX | X >t)—t=Cjy [

1
|
o

4 Residual life and Reversed Failure Rate Func-
tion

Given that a component survives up to time ¢t > 0, the residual life is the period
beyond t until the time of failure and defined by the conditional random variable
X —t|X > t. In reliability, it is well known that the mean residual life function and
ratio of two consecutive moments of residual life determine the distribution uniquely
(Gupta and Gupta, 1983). Therefore, we obtain the r**-order moment of the residual
lifetime can be obtained via the general formula

p(t) =E(X —t)" | X >1) = ftoo(x — )" f(x,p)dz,r > 1.

F(t)
Applying the binomial expansion of (z — ¢)" into the above formula , we get
1 < oo
(1) = =S (=) [Za f(a)da
F(t) = @
C]k - d 00 _J_ _d_ (4 0
- —H)4(r a9$T+Bk+0 d 1+ xr+ﬂ(k+1) d—1 e (G+1)ax dr
Cir — sy | OD(EE=E 41 (G + D)at®)  ppT (=L (4 1)at?)
= F(t) (_t) (d) ] rBk=d | | + » 1Bkt —d V=t )
=0 [a(j+1)]° Ola(j+1)] 7
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The mean residual life (MRL) of the FAW distribution is given by

Cip [al (PG +1,(j + Dat’)  pLEEFE (j + Dat’)
/’“(t) = 7 ] BRH1 + Bk+1)+1 -
DL leG+y blaGG+D] 7
The variance of the residual life of the F AW distribution can be obtained easily by
using (i, (t) and pu(t).

On the other hand, we analogously discuss the reversed residual life and some of
its properties. The reversed residual life can be defined as the conditional random
variable ¢t — X |X <t which denotes the time elapsed from the failure of a component
given that its life is less than or equal to ¢. This random variable may also be called
the inactivity time (or time since failure); for more details you may ( see , Kundu and
Nanda,( 2010). Also, in reliability, the mean reversed residual life and ratio of two
consecutive moments of reversed residual life characterize the distribution uniquely.
the reversed failure (or reversed hazard) rate function is given by Equation (2.5). The
r "-order moment of the reversed residual life can be obtained by the well known
formula

my(t) =E((t—X)"| X <t)= fo f(z,p)dz,r > 1.

Applying the binomial expansion of (f — x)" into the above formula gives

mr(t) _ Wi,j.k Z(_t)d(:l)fot (@01’r+’8k+9_d_1 + Hﬁxr+5(k+1)—d—l)e—(j—i—l)oaxgdm

Con §~(_pyagr [aqﬂ# + 1+ Dat’) | ppC(REEEEE (+ Dagy

[a(j +1)] Ola(j+1)] 7

where ((s,t) = fot x*~te~®dx is the lower incomplete gamma function. Thus, the mean
of the reversed residual life of the EFAW distribution is given by

T (BEtL ) at? Blk1)+ at?
) =1 - g [€CE LG RO 0]
NI T

Using m(t) and my(t) one can obtain the variance and the coefficient of variation of
the reversed residual life of the EAW distribution.

4.1 Bonferroni and Lorenz Curves

In this subsection we proposed the Bonferroni and Lorenz Curves. The Bonferroni and
Lorenz curves (Bonferroni 1930) and the Bonferroni and Gini indices have applications
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not only in economics to study income and poverty, but also in other fields like
reliability, demography, insurance and medicine. The Bonferroni and Lorenz curves
are defined by

B(p) = pi/i quf(m)da:
Cip |aC(BEE 11, (G 4+ 1)gt?)  upC(BEEDEL (5 + 1)qt?)
- . Bk+1 +1 + ] B(k+1)+1 (44)
pr la(j+1)] 7 Ola(j+1)] @

and

Lp) = % / () da

Cip | aC(ZERL 11, + 1)qt®)  pBC(BEEDEL (5 4 1)qt?)
= BRH1 || + ] Blkt1)+1 . (4'5)
H [a(j +1)] Ola(j+1) @

4.2 Mean deviation

In statistics, mean deviation about the mean and mean deviation about the median
measure the a mmount of scatter in a population. For random variable X with pdf
f(z) , distribution function F(z) , mean u = F(X) and M = Median (X), the mean
deviation about the mean and mean deviation about the median, are defined by

hix) = /Ooolx—ulf(x)dx

= 2,uF(,u)—2,u—|—2/ zf(z)dx.

I

and
do(z) = /000 |z — M| f(z)dz
= 2MF(M)—M—,M+2/OO$f(x)dx

respectively, if X is FAW random variable then

D(BREL 1 (5o 1) ut? D(BEED+L 5y 1y, 49
/ o (@) — Gy | EEH ,(Zki+1)ut)+uﬁ (P ,(g(;rlH)lut)]_ (46)
z [a(j + 1) OlaGi+1)] 7

and
D(ZEEL 41, (j + 1) Mt D(BEEDEL (5 1) pre?
[ attoye =5, | Ho RO W U >] (17)
la(j+1)] 7 Ola(j +1)]
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so that

01(x) = 2pF () —2p42C

BE+1 |y B(k+1)+1

[l +1)] 7 Ola(j+1)] 7

ol(%5 4+ 1, + ') | pBD(HEF, (G + 1>“t9)]

and

52(113) = —N + 2Cj7k

al(ZEEL 11 (G +1)Mt?)  ppT (2 (1) M)
0 4
Bkt + @(k+91)+1 .

(G + 1] 7 0[a(j +1)]

5 Maximum Likelihood Estimation

Statistical inference can be carried out in three different ways: point estimation,
interval estimation and hypothesis testing. Several approaches for parameter point
estimation were proposed in the literature but the maximum likelihood method is
the most commonly employed. The MLESs enjoy desirable properties and can be used
when constructing confidence intervals and regions and also in test statistics. Here,
we determine the maximum likelihood estimates (MLESs) of the parameters of the
E AW distribution from complete samples only. Let x1, ..., x,, be a random sample of
size n from the EAW distribution given by (2.2). Let ¢ = (o, 0, 1,8, )T be p x 1
vector of parameters . The total log-likelihood function for ¢ is given by

Ly = Lu(¢)=nlogh+ > log <a9$f_l + uﬁxf_l> SO D) D

B

RN et
+(A—1) Zi:l log [1 e . (5.1)
The log-likelihood can be maximized either directly by using the SAS program or R-

language (2012) or by solving the nonlinear likelihood equations obtained by differen-

T
tiating (5.1). The associated components of the score function U, (®) = [%, O %, 88%, o
are

0 ,—az?—pah
x;e

aLn n 6 9*1 n n
o _ Z Z,; — Zi:1 ij + ()\ - 1) Zi:l ]_—@_TM (52)

i=1 afz?~t 4 pBal!

oL, n m?—l(ﬁ In(z;) + 1) no, n Oz(x?) ln(xi)efozz?f,umf
89 - Zi:l a@xe_l —+ /,LB,I"B_l @ Zi:l i ln(xZ)—i_()\_l) Zi:l 1 — efozx?fp,mf
(5.3)
aLn n Bl’fil n 8 n (xiﬁ)e—aac?—,u:vf
o - Zi:l b0t + Mﬁx@—l - Zizl o +(A—1) Zi:l —1 - (5.4)
0Ly noal Y (BIn(x) +1) "B nou(al) ln(xi)e*axf*#xf
oJ6) - Zi:l afz?1 + B! —H Zi:l z; In(z;)+(A-1) Zi:l 1 — p—azl—a?
(5.5)
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and

oL n n 0 B
n — e T ey TH
B 3 + Z@'=1 log [1 e (5.6)

and The maximum likelihood estimation (MLE) of ¢, say ¢ , is obtained by solving
the nonlinear system U,,(¢) = 0. These equations cannot be solved analytically, and
statistical software can be used to solve them numerically via iterative methods. We
can use iterative techniques such as a Newton—Raphson type algorithm to obtain the
estimate @. For interval estimation and hypothesis tests on the model parameters,
we require the information matrix. The 5 x 5 observed information matrix is given
by
Ino 1o 1oy lop  Ion
Ioo Iog Iop log 1o
L) == lua Tw Lup Ius pa
Tooo 1Igo Ipu Ipp  Ipx
Do Dw Dy Dp Do
whose elements are given in Appendix. Applying the usual large sample approxima-
tion, MLE of ¢, i.e $ can be treated as being approximately Ns(ip, J,,(¢)™!), where
Jo(¢) = EI,(p)]. Under conditions that are fulfilled for parameters in the inte-
rior of the parameter space but not on the boundary, the asymptotic distribution of
V(@ — @) is N5(0, J(¢)™!) , where J(p) = lim,_oon '1,(¢) is the unit information
matrix. This asymptotic behavior remains valid if J(y) is replaced by the average
sample information matrix evaluated at @, say n= I, (@) . The estimated asymptotic
multivariate normal N5 (¢, I,(p) ') distribution of ¢ can be used to construct approx-
imate confidence intervals for the parameters and for the hazard rate and survival
functions. An 100(1 — ~) asymptotic confidence interval for each parameter ¢, is

given by
ACI, = ((,0,, — 27 I, 0, + “3V L"T)

where z_ is the upper 100v,;,. percentile of the standard normal distribution.

6 Application

In this section we illustrate the superiority of the new distribution as compared to
some of its submodels and also to the alternative distributions. For each data set, the
estimates of the parameters of the distributions and information criterion statistics
are calculated . Here, we provide application to real data in order to illustrate the
potentiality of the EAW model. The measures of goodness-of-fit including the log-
likelihood function evaluated at the MLEs , Akaike Information Criterion (AIC), Con-
sistent Akaike Information Criterion (AICC), Bayesian Information Criterion (BIC),
Kolmogorov- Smirnov (K-S) statistic , Anderson-Darling (A*),Cram “er—von Mises
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(W*) and its p-value are calculated to compare the fitted models. In general, the
smaller the values of these statistics, the better the fit to the data. The required
computations are carried out using the R software. The data set represents failure
time of 50 items reported in Aarset (1987).

0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0,
18.0, 21.0, 32.0, 36.0,40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0,67.0, 67.0, 67.0,
67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0,

86.0, 86.0.

Table 4.The statistics — 25, AIC,CAIC, HQIC,BIC, W*and A* for

the failure time data.

Model —2L AIC  AICC BIC HQIC W* A* K-S p-value
EAW 230.91 471.82 473.18 481.38 47546 0.29 191 0.15 0.16
Kw— MW 23754 485.09 486.45 494.65 488.73 0.41 1.55 0.18 0.05
AW 234.62  477.25 478.14 48490 480.16 0.35 2.23 0.18 0.07
MW 239.46  484.92 485.44 490.66 487.11 045 2.79 0.19 0.04
w 240.97 48595 486.21 489.78 487.41 0.49 3 0.19 0.04
EE 239.97 483.94 484.20 487.77 485.40 048 29 0.20 0.03
L 251.40 504.81 504.90 506.72 505.54 0.45 2.82 0.19 0.03
E 241.06 484.13 484.21 486.04 484.86 0.48 295 0.19 0.05

Table 5. MLEs and their corresponding standard errors (inparentheses) for

the failure time data.

Model Estimates
EAW & =12.806 6 =0.00271 [ =1.4880 [ =1.674 ) =0.0851
(0.014) (0.00) (0.007) (1.033) (0.004)
Kw— MW a=313  b=0994  0=0.0204 [ =0.1803 X =0.4453
(2.472) (0.214) (0.006) (0.306) (0.293)
AW 6 =0.0024 j=1454 [ =0.0760 X =0.3608
(0.00066)  (0.0716)  (0.0349)  (0.1169)
MW 0 =0.0186 3 =0.0404 X =0.3731
(0.0037)  (0.0310)  ( 0.18857)
w 6 =0.9491 3 =0.0222
(0.1195)  (0.0034)
EE 6 =0.018  j1 =0.780
(0.00361)  (0.135)
L 6 =0.0428
(0.004)
E 6 =0.0219
(0.003)
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Figure 4. (a) Estimated densities of the EAW, Kw— MW, AW, MW, EE, W, Land
E distributions for the data. (b) Estimated cdf function from the fitted the EAW, Kw—
MW, AW, MW, EE, W, L and E distributions and the empirical cdf of the data set .
These results indicate that the EAW model has the lowest values for these statistics
among the fitted models, and therefore it could be chosen as the best model.
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