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Abstract 

Cubic splines are commonly used for capturing the changes in economic analysis. This is because of the 

fact that traditional regression including polynomial regression fail to capture the underlying changes in the 

corresponding response variables. Moreover, these variables do not change monotonically, i.e. there are 

discontinuities in the trend of these variables over a period of time. The objective of this research is to 

explain the movement of under-five child mortality in Pakistan over the past few decades through a 

combination of statistical techniques. While cubic splines explain the movement of under-five child 

mortality to a large extent, we cannot deny the possibility that splines with fractional powers might better 

explain the underlying movement. Hence, we estimated the value of fractional power by nonlinear 

regression method and used it to develop the fractional splines. Although, the fractional spline model may 

have the potential to improve upon the cubic spline model, it does not demonstrate a real improvement in 

results of this case, but, perhaps, with a different data set. 

1. Introduction 

Regression is the study of dependency. Regression analysis is based upon the study and 

analysis of relationships among various variables. Obviously, it is often applied 

indiscriminately to data with no specific objective as a main priority. The classical linear 

model is represented by the following equation. 

0 1 1 .......... 1,2,...,i i p ip iy x x i n       
  (1.1)

 
 

It is useful, however, to recognize two of the fundamental purposes for which linear 

regression is valuable. The main principle motivation behind regression is to give a 

summary and reduction of the observed data keeping in mind the end goal to investigate 

and present the relationship between the configuration variable x and the reaction 

variable y. The other main purpose of regression is to utilize the model for forecast. 

While, prediction is no doubt an essential part of regression, it is most likely a much more 

precise reflection of the statistical practice to consider regression fundamentally a model 

based system for data outline. 

mailto:kamal_shahid@yahoo.com
mailto:rehan.stat@pu.edu.pk


Saira Esar, Shahid Kamal, Rehan Ahmad Khan Sherwani 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp439-448 440 

Among various statistical techniques, linear regression is preferred for analysis due to a 

number of reasons. Some of these include its simplicity, flexibility for the choice of 

deduction method and easy-to-understand techniques. It has widely been used in 

literature and has given reliable results. However, the method cannot be used if two or 

more variable are non-linearly related. The method cannot be applied to analyze varying 

time series data. To analyze such a data, a plot of data over time must be obtained and 

then be examined for non-linear trends. There are many approaches for estimating 

nonlinear trends. One of them most popular technique is piecewise polynomial regression 

splines. 

 

The term “spline” originates from the tool utilized by the shipbuilders and drafters to 

manufacture smooth shapes having desired properties. Mathematically, a spline is a 

piecewise function represented by polynomials. The function has a high degree of 

smoothness at the nodes of polynomial functions. In computer science, the term spline 

more frequently points out a piecewise polynomial curve. Spline regression models 

which are also called piecewise or segmented line regression models or broken stick 

regression models framed of continual linear stages. Despite the fact that spline 

regression models may sound like something tricky, they are much same as dummy 

variable models with a couple of constraints set on them. For example, if a person is 

gaining weight over time, but suddenly decides to lose weight, then with liposuction, 

there is an instantaneous drop in his or her weight at that moment the decision is made to 

lose weight. The person’s weight could serve as dependent variable in a regression while 

time is an explanatory variable. There will be a gap between the regression line before 

and after liposuction. Using unrestricted dummy variables, the model after liposuction 

may have a different slope and intercept rather than the model before it. 

 

Economic analysis regularly involves circumstances where one is required to investigate 

the effect of unexpected changes in the data. The 2010 earthquake in Chile and 2011 

earthquake in Japan are two of the most important examples. In both the cases, an 

intermediate, persistent effect was observed for the product availability. Spline regression 

models searches for points in the data that would identify where these changes happen. 

These points are named as “knots”. Spline regression models give a method for capturing 

these changes smoothly and joining the segments without the usual break between the 

segments. Thus, in a spline model, a turning point in the product availability could be 

represented by a spline knot, which may join the upward regression line to the downward 

regression line. This type of spline model is often called as a piecewise regression model 

(Pindyck et al. 1998).  

 

An undeniable inquiry is the reason not to utilize a polynomial regression model rather 

than splines? Interestingly, spline regression models or piecewise polynomials have 

considerably additional flexibility than polynomial regression models in low 

measurements and are mostly less liable to generate perfect multicollinearity in low 

extent. Other methods such as kernel regression can be used but Carroll (2000) reported 

that spline methods are generally more efficient than kernel methods. 

 

The credentials of variations in the recent development are vital concerns in the analysis 

of a data related to mortality and incidence of a disease. Recently, Kim et al (2000) 

applied segmented line regression to illustrate the continuous changes in cancer mortality 
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and incidence rates.  We apply a join point regression model to describe such continuous 

changes of infant mortality rates   data in Pakistan. Tracking the infant mortality rate over 

time is a good variable for using splines.  The set of real numbers is much larger than the 

set of positive integers. One can allow coefficients and exponential power that is the 

fractional value (e.g 0.5 or whatever) for each spline knot. 

 

In present research we find the number and location of spline knots where the regression 

line pivots by considering a new slope. In this regard, we initially fit the cubic spline and 

estimate the knots and then used these estimated knots in fractional splines (i.e. only 

degree of the polynomial is changed by some fractional number) to determine the better 

fit of the model. In last, we compare the fractional spline results with the polynomial 

splines.  

 

Searching for the location of spline knots by creating a potential adjustment variable for 

every possible time period (54 in this case) allows one to statistically search for 

significant adjustment points by using an appropriate technique to locate one or more 

such points. The first step is to generate the spline adjustment variables. One can use the 

“+” functions or dummy variables to set up spline adjustment variables. The dummy 

variable, D, is needed to create a first derivative break at the point where X = K.  This 

creates a kink in the line at X = K.  We are not trying to change the overall slope of the 

line throughout the entire length of the line, but instead create a kink in the line at X = K.  

The dummy variable plays a critical role in accomplishing this. 

 

For example, impact of year 1960 will be felt in the subsequent years and is being 

captured by the variable L1. For Year ≤ 1960 L1=0 and for Year > 1960 L1= Year-1960. 

Similarly the impact of each Year will be captured in the subsequent years. Since we are 

not sure of the degree of impact of each of the years on the outcome for the subsequent 

years, we have also taken Quadratic variables (Q1, Q2, Q3, … Q54) and also Cubic 

variables (C1, C2, C3 … C54). 

 

Q1 =  (L1)2 

Q2 =  (L2)2 

Q3=  (L3)2 

. 

. 

. 

Q54=(L54)2 

C1 =  (L1)3 

C2 =  (L2)3 

C3=  (L3)3 

. 

. 

. 

C54=(L54)3 

 

We create linear, quadratic and cubic splines adjustment and also use year square and 

year cube for analysis. As we have so few observations it makes sense to restrict the 

model to fit more smoothly between points. Therefore, it makes sense to run a cubic 

spline model, which only allows third derivative adjustments. The problem here becomes 

even more complicated in that we do not even know the number of spline knots. Our 

general strategy for dealing with this problem is to create a large number of potential 
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spline knots and then use stepwise regression to pick out those that are most statistically 

significant. Of course, we have to specify the significance level that determines when to 

stop adding additional spline knots to the stepwise regression. 

 

To convert cubic spline results from the stepwise regression into fractional splines 

requires treating the exponent which is number “3” in cubic splines into an unknown 

parameter to be estimated by the nonlinear regression. For estimating fractional spline 

regressions, one can use any nonlinear regression estimation technique such as Gauss 

Newton or Newton-Raphson. 

 

This study is conducted on the data of under-five mortality in Pakistan from the period 

1960 to 2012. Data for this study has been obtained from secondary source, World Bank. 

Here is the link for data download: http://data.worldbank.org/country/pakistan. 

2. Results and Discussion 

The first objective of the study is to search for the number and location of spline knots 

(join points). For our study, we are using the pattern recognition approach. Pattern 

recognition creates explanatory variables that just fit the pattern of data as a function of 

time. The research problem here becomes more complicated in that we do not even know 

the number and also the location of spline knots. We deal with this problem by creating a 

large number of spline knots and then we use stepwise regression to pick out those which 

are most statistically significant. 

 

We create a set of dummy variables by using R statistical package. The following 

mathematical explanation to understand the dummy variables is given as under. 

 1   0        1    1  1          1  

{ 2   0        2    2  1           2}

{ 3   0        3    3  1           3}

{ 4   0        4    4  1           4}

{ 5   0       

D if X knot and D if X knot

D if X knot and D if X knot

D if X knot and D if X knot

D if X knot and D if X knot

D if X kn

   

   

   

   

  5    5  1           5}

{ 54   0        54    54  1           54}

ot and D if X knot

D if X knot and D if X knot

 

   

 

 

We define linear, quadratic and cubic spline adjustments as follows. 

        
        

       

1  1*   1       1  1*   1 **2         1  1*  –  1 **3

2  2*  –  2     2  2*  –  2 **2       2  2*  –  2 **3

54  54*  –  54      54  54*  –  54 **2 54  54*  –  54

L D X knot Q D X knot C D X knot

L D X knot Q D X knot C D X knot

L D X knot Q D X knot C D X knot

    

  

   **3

It makes sense to run a cubic spline model, which only allows third derivative 

adjustments. Therefore, we have considered year, year squared, year cubed and cubic 

spline adjustment variables. Given the large number of variables (57 variables), we have 
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done stepwise regression to select only significant variables that have impact on the 

under-five deaths. The stepwise regression process starts with an empty model (Null 

Hypothesis that under-five mortality is not dependent on any of the variables). From this 

step, it will include any independent variable that has a significance level of below 0.50 

(entry criteria). Once a variable is inside the model, the variable will stay inside as long 

as the significance level is below 0.15 (stay criteria). So at the end of the Stepwise 

Regression, we have a set of variables (including the knots) that have dependence on 

under-five child mortality. The stepwise procedure comes to an end at step 23. After this 

stepwise regression analysis with cubic spline adjustments, now we need to plot a couple 

of them to get a sense of how realistic they are. We Plot the fitted equation against the 

observed sample points using the results from different steps of stepwise output. 

 

By comparing the models of different steps of stepwise regression procedure, we have 

come to the conclusion that model of step 10 looks adequate. The output for step 10 is 

shown in table 1 and 2. The F-value is greater than as in step 4 and R squared is now over 

0.99 and all the regression coefficients are highly significant. There are now 7 spline 

adjustment variables in the model. Notice that the coefficients alternate in sign. This 

means that both upward and downward movements have a tendency to go too far. This 

tendency can complicate the problem of forecasting with spline models beyond the scope 

of the original data. Our predicted regression curve is represented among the actual 

values of under-five child deaths in the graph in Figure 3. The predicted values are 

approximately near the actual values. This graph shows considerably more sensitivity to 

the data and therefore greater flexibility. A higher step might be needed if we are fitting a 

3 dimensional spline to search for caves in a mountain terrain but for simple policy 

purposes, there is no need to go beyond step 10. Determining the proper fit for each 

problem depends very much on the purpose of the analysis. Step 10 shows a much 

flexible model and in comparison with step 23, it only uses 7 spline adjustment variables.  

Figure 1.   Graph of Actual/Predicted Under-five Deaths at Step 10 
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Table 1:   Stepwise Regression Output at Step 10 

Analysis of Variance 

Source 
df 

Sum of 

Squares 

Mean 

Square 
F Value Pr>F 

Model 9 2.05866E11 22874093099 3065.531 < 0.0001 

Error 44 328339113 7462253   

Corrected Total 53 2.061952E11    

RMSE = 2731.7129; R2=0.9984; Adj. R2=0.9981; Dep-Mean=502551; Coeff. 

Var=0.54357 

Table 2:   Parameter estimates of cubic spline regression model Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Intercept 1 1544195401 47754294 32.34 <.0001 
Year 1 -1176166 36361 -32.35 <.0001 

Year3 1 0.10115 0.00312 32.39 <.0001 

C13 1 -12.54399 1.55019 -8.09 <.0001 

C25 1 -158.90631 8.37328 -18.98 <.0001 

C31 1 456.13705 19.07716 23.91 <.0001 

C38 1 -1809.90784 81.38916 -22.24 <.0001 

C40 1 2236.84067 95.45595 23.43 <.0001 

C46 1 -1583.32887 71.74118 -22.07 <.0001 

C51 1 1468.42910 353.15434 4.16 0.0001 

 

The second main objective of our research is to fit a fractional spline regression model. 

To convert cubic splines into fractional splines, we consider that the number of knots and 

their location is already known. We have estimated the knots by considering it a 

nonlinear regression problem from stepwise regression procedure in the first objective of 

our research. 

 

The problem here is to deal with the estimation of degree of the polynomial which is “3” 

in cubic spline regression model. We estimate this by using Newton Raphson method 

which have implemented using SAS Programming language. We use year 1972, 1984, 

1990, 1997, 1999, 2005 and 2010 as the knot years already known which we have 

estimated from cubic spline stepwise regression procedure. Thus, we created a SAS code 

for this. 

 

In the code, the first nonlinear least squares regression starts out with the initial value a=3 

representing cubic splines, but allows the nonlinear estimation to search for a fractional 

power that replaces the "3" with some fractional number that provides a better nonlinear 

fit to the data. Thus, fractional splines are estimated by turning the exponents into 

parameters to be estimated as part of the regression equation.   
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In nonlinear regression, Taylor Series Expansion has an important role to play. A typical 

nonlinear regression estimation method is to expand the nonlinear regression equation in 

a Taylor series around initial guesses for the value of the parameters. Then, right after the 

linear term chop off the rest of the Taylor series, and then run ordinary least squares 

estimation on the linear part to estimate new estimates of the parameter. Next expand the 

Taylor series around the new parameter estimates and chop off the higher order terms and 

run ordinary least squares again on the linear part. Repeat this until convergence. That’s 

how Newton Raphson method works by Taylor series expansion. 

Table 3:   SAS output of NLIN Procedure using Newton  Raphson Method 

Analysis of Variance 

Source DF Sum of Squares Mean Square F Value Approx Pr > F 

Model 9 2.053E11 2.281E10 1100.33 <.0001 
Error 44 9.121E8 20729500   
Corrected Total 53 2.062E11    

 

 

Parameter Estimate 
Approx 

Std Error 

 

Approximate 95% Confidence Limits 

Lowe Upper 

b0 1.5666E9 75840423 1.4138E9 1.7195E9 
byear -1191739 56490.7 -1305588 -1077890 

byear3 0.0964 .- . . 

b13 -14.0343 2.3283 -18.7267 -9.3419 

b25 -134.7 15.4475 -165.8 -103.5 

b31 366.1 32.4040 300.8 431.4 

b38 -966.0 105.9 -1179.4 -752.5 

b40 839.0 109.6 618.1 1059.9 

b46 13828.8 1778.9 10243.6 17414.0 

b51 -10069.0 2763.2 -15637.9 -4500.1 

a 3.0077 0.00598 2.9957 3.0198 

 

In above Table 3, first table displays the analysis of variance table for the model. The 

table displays the degrees of freedom, sum of squares and mean squares along with the 

model F-test. Second section of Table 3 displays the estimates for each parameter, the 

associated asymptotic standard error and the upper and lower values for the asymptotic 

95% confidence interval.  Thus, the estimated fractional degree “a” is 3.007. Note that 

these values are linear approximations (based on normality assumption). PROC NLIN 

also gives the asymptotic correlations between the estimated parameters. Since nonlinear 

regression may result in dependency among the parameters. Very high correlations (>> 

.99) may indicate that the model form is inappropriate for the data. In our model, there 

are correlations between “a” & b0, byear, b13 and b25 that are high. 
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Table 4 displays another analysis of variance table. After nonlinear regression analysis by 

Newton Raphson method, we fit the model with the degree of polynomial “3.007”. There 

is not much difference between results of cubic spline model and the model with this 

fractional degree estimated by NLIN. Moreover, the values of R square and adjusted R 

square are same as 0.998 in both models. The values of parameter estimates of fractional 

spline model are just slightly different from the cubic spline model as shown in the 

figures below. An overlay graph is also shown above these Tables in Figure 2 which 

depicts the trend of actual values and values fitted by fractional spline model. This graph 

is very much similar to as one made by cubic spline model (step10) in Figure 2. 

 

Figure 2:     Graph of Actual/ Predicted values of Fractional Spline Model 

Table 4(A):   Fractional Spline Regression Model Output 

Analysis of Variance 

 
Source df Sum of Squares Mean Square 

 

F Value Pr > F 

Model 9 2.05871E11 22874556999 3104.85 <.0001 

Error 44 324164016 7367364   

Corrected Total 53 2.061952E11    

RMSE = 2714.3; R2=0.9984; Adj. R2=0.9981; Dep-Mean=502551; Coeff. Var=0.54010 
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Table 4(B):   Parameter estimates of fraction spline regression model 

Variable DF Parameter Estimate Standard Error t Value Pr > |t| 

Intercept 1 1541250570 47183975 32.66 <.0001 
Year 1 -1172422 35881 -32.68 <.0001 

year3 1 0.09486 0.00290 32.72 <.0001 

C13 1 -12.36844 1.50001 -8.25 <.0001 

C25 1 -154.76042 8.15907 -18.97 <.0001 

C31 1 447.40371 18.64046 24.00 <.0001 

C38 1 -1784.43884 79.71715 -22.38 <.0001 

C40 1 2206.84975 93.55335 23.59 <.0001 

C46 1 -1571.42689 70.47752 -22.30 <.0001 

C51 1 1505.66049 348.74501 4.32 <.0001 

 

We have also tried to fit some other fractional spline models with different degrees as 

from 3.1 to 3.9. In result, as we increase the degree of model by 0.1, F value decreases 

and it becomes 492.19 for the fractional degree 3.9. But, there is not much difference 

appeared in R Square and adjusted R square. It is approximately the same for all these 

different degrees. 

3. Conclusion 

Selection a good proper model, this is one of the most difficult and contentious issues in 

statistics. By comparing the fractional and cubic spline regression models, we conclude 

that there is not much difference in the results of both models. Consequently, the 

fractional spline approach offers a much greater range of flexibility than the traditional 

polynomial splines. Fractional splines work in the same context that polynomial splines 

do, but with much greater flexibility and better fit. Consequently, fractional splines can 

produce a smaller error sum of squares and a higher R-squared than polynomial splines. 

 

In general, spline models work well for interpolation within the range of the observed 

data. Neither polynomial nor fractional splines are useful for forecasting outside of that 

range without first transforming the underlying data series. The example provided in this 

research hopefully has given the reader an understanding of how spline models are more 

appropriate than traditional linear and polynomial regression models and how these 

models are set up and estimated and how to choose a proper model among various 

alternative spline models. We have tried to fit a fractional spline model also. In this case, 

fractional splines are not depicting a very good result as compared to cubic splines. But, 

they may work better with a larger data set such as stock market data. As we have worked 

with only 54 observations and there is an oscillation in our mortality data, therefore it is 

possible that fractional spline may work more accurately with big data and with data 

having cycles. Further investigation to reveal the circumstances where fractional splines 

significantly outperform than traditional splines will require a different model, and, 

perhaps, a different data set.   
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