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Abstract 

In stratified sampling design when the cost of measuring the units is not significant in each stratum, the 

estimation of population mean or total constructed from a selected sample according to Neyman allocation 

is advisable. In general the practical use of Neyman allocation suffers from a number of limitations, when 

there is no information about strata standard deviations except about the equality of standard deviations 

between some of the strata, then the precision of the estimate may be increased by pooling the strata with 

equal standard deviations as a single stratum and the problem of allocation is resolved by using Neyman 

and proportional allocations simultaneously. In this paper the case of multiple pooling of the standard 

deviations of the estimates in a multivariate stratified sampling for more than three strata. The problem is 

formulated as a Multiobjective Nonlinear Programming Problem and its solution procedure is suggested by 

using Fuzzy Programming approach. 

Keywords: Multivariate Stratified Sampling, Compromise Allocation, Pooled Standard 

Deviations, Multiple Pooling, Multiobjective Nonlinear Programming, Fuzzy Programming. 

1.   Introduction 

In sampling literature the problem of determining the sample sizes of the units among 

strata that minimizes the sampling variance of the estimator of the population mean (or 

total) for a fixed cost or minimizes the total cost of the survey for a fixed precision of the 

estimator is termed as the problem of allocation. By using either of the above criteria the 

allocation, so obtained, is known as optimum allocation. When the measurement cost is 

constant and does not vary from stratum to stratum, minimizing the total cost of the 

survey is equivalent to minimize the total sample size (Cochran (1977)). The optimum 

allocation for univariate stratified populations was first suggested by Neyman (1934). 

Later on, Mahalonobis (1944) introduced the cost function. Stuart (1954) used Cauchy’s 

inequality for sample allocation. 
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Suppose that a population of size N  has stratified into L  non-overlapping and 

exhaustive strata of sizes Lh NNNN .,..,.,..,, 21  with 



L

h

hNN
1

. The problem arises in 

determining the values of sample sizes hn , Lh ,,2,1   of the units from each stratum 

of the population. 
 

The optimum allocation for fixed total sample size n  is termed as Neyman allocation and 

is given by 
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where, hW  is the stratum weight and hS  is the stratum standard deviation for thh  stratum. 

In most of situations the true values of hS , Lh ,,2,1  , are unknown but their sample 

estimates hs , Lh ,,2,1   may be used to determine hn , Lh .,..,2,1  which are given as 
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where hn̂  are called as the Modified Neyman allocation (see Sukhatme et al. (1984)).  

During stratification some strata variances are unknown but may be assumed with equal 

variances, as discussed by Park et al. (2007). They obtained an allocation by using 

estimated pooled standard deviations and proportional allocation for combined strata. 

First they obtained pooled standard deviation for a single stratum which comprises of 

strata with equal variances by pooling and worked out the modified Neyman allocation. 

The allocation, for the pooled stratum, is then reallocated among its constituent strata by 

the use of proportional allocation. They also showed that under certain conditions their 

allocation outperforms in comparison to modified Neyman allocation and proportional 

allocation. 
 

Ansari et al. (2011) justified the assumption of the equality of some of the stratum 

variances as considered by the Park et al. (2007). Practically, there may be circumstances 

that allow this assumption. For example, consider a population with L  strata and these 

strata are constructed with a view to make them internally homogeneous as far as 

possible. For administrative convenience there is a need of division of large 

homogeneous stratum into smaller strata for some reasons and also strata variances of the 

smaller strata are not significantly different. This can be ascertained by testing 
22

0 : kh SSH  ; kh  ; 1,...,2,1  Lh , Lk ,...,3,2  pair-wise. 
 

In the multivariate survey when p-characteristics are to be measured on each selected 

units of the sample. The optimum allocation for one characteristic may be far from 

optimality of other characteristics (Khan et al. (1997)) unless the characteristics are 

highly correlated. Thus to obtain an allocation which is optimum for all the 

characteristics, in some sense, we need a compromise criterion that suits well to all the 

characteristics in some respect. An allocation based on such compromise criterion is 

termed as a compromise allocation in sample surveys. 



An Optimum Multivariate-Multiobjective Stratified Sampling Design: Fuzzy Programming Approach  

Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp829-855 831 

Various authors suggested different compromise criteria or explored further the already 

existing criteria. Among them are Dalenius (1957), Ghosh (1958), Yates (1960), Aoyama 

(1963), Folks and Antle (1965), Kokan and Khan (1967), Chatterjee (1967, 1968), 

Arvanitis and Afonja (1971), Ahsan and Khan (1977, 1982), Melaku and Sadasivan 

(1987), Bankier (1988), Bethel (1989), Kreienbrock (1993), Jahan et al. (1994), Khan et 

al. (1997), Khan et al. (2003), Ahsan et al. (2005), Díaz-García and Cortez (2006, 2008), 

Ansari et al. (2009), Varshney et al. (2012), Varshney et al. (2014), Varshney et al. 

(2015), and many others. Kozak (2006a) gave three different compromise criteria and 

modified the random search method to develop an algorithm to obtain the compromise 

allocation for multivariate stratified populations. Kozak (2006b) discussed five different 

criteria to work out approximate optimum allocation in multivariate surveys and 

compared them using a simulation study.  

 

In the present paper the idea of pooling the standard deviations is extended to obtain a 

compromise allocation in a multivariate stratified population when the true values of the 

stratum standard deviations are unknown but the additional information about equality of 

standard deviations for a specified group of strata and the estimates of the strata standard 

deviations are available. The case of multiple pooling is also considered for the situation 

when there are more than one groups of strata that have equal stratum variances. It is 

assumed that the p-characteristics are independent and the estimation of population 

means jY ; pj .,..,2,1  is of interest for a fixed budget sample survey. 

 

The problem has formulated as multiobjective nonlinear programming problem 

(MNLPP) to obtain a compromise allocation by minimizing the variances of the estimates 

of p-population means simultaneously for prefixed budget of the survey. The 

multiobjective formulation is converted into a single objective function by using Fuzzy 

Programming Technique. A simulation study, carried out by Ansari et al. (2011), is 

reconsidered to have two separate numerical examples for illustration and comparison 

with the proposed allocation. 

2.   Formulation of the Problem: The Univariate Case 

In stratified random sampling, the stratified sample mean  
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is an unbiased estimator of the overall population mean 
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with a sampling variance  
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 is sample mean from 

thh  stratum,    (2.4) 
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 is the stratum mean for the thh  stratum   (2.5) 

and hiy  is the value of the thi  unit of the thh  stratum/sample from thh  stratum. 

 

The problem of obtaining a Neyman allocation may be formulated as the following 

Nonlinear Programming Problem (NLPP) 

 
 


L

h

L

h h

hh

h

hh
st

N

SW

n

SW
yV

1 1

2222

)(Minimize  

nn
L

h

h 
1

tosubject        (2.6) 

Lhnh .,..,2,1;0and   

 

[The symbols used in this manuscript are as used in Cochran (1977) unless specified 

otherwise.] 

 

In the objective function of NLPP (2.6) the second term in the expression of )( styV  may 

be ignored because it is independent of hn . Furthermore, the usual non-negativity 

restrictions 0hn  may be taken as LhNn hh .,..,2,1;2   to estimate the strata 

variances and to avoid the problem of oversampling. After incorporating these, the NLLP 

(2.6) may be restated as 
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LhNn hh .,..,2,1;2and  , 

where )( hnf
 
denote the variance of sty

 
ignoring fpc. 

3.   The Solution: The Univariate Case 

The approach considered by Park et al. (2007) is summarized here for the sake of 

continuity in univariate case and to formulate the problem for its multivariate case. 

 

In absence of the knowledge of the true values of the strata standard deviations their 

estimates are used to work out an optimum allocation. If the additional information about 

the equality of the strata standard deviations is available then Park et al. (2007) showed 

that under certain conditions this information could be used to improve the precision of 

the estimator sty  of the population mean .Y  

 

First, the preliminary samples of sizes hn  are drawn to work out the estimates hs of the 

unknown hS . The sizes of the preliminary samples may be worked out using the criterion 
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given in Sukhatme et al. (1984). The strata with equal hS  are then combined into a single 

stratum and the samples sizes are allocated by the modified Neyman allocation using the 

pooled variance obtained by pooling the equal strata variances. The sample size allocated 

to the combined stratum is then reallocated to its constituent strata using proportional 

allocation.  

 

According to the above scheme if in a stratified population some of the strata (say k) are 

known to have equal variances then without loss of generality it can be assumed that the 

first k (<L) strata have equal variances, that is, 
22

2
2
1 ... kSSS  . These k strata when 

combined into a single stratum will have the pooled estimated standard deviation denoted 

by pools  as  
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The simulation study carried out by the authors (Section 6) showed that the above 

assumption of equality of variances is not a rigid condition and if some of the strata 

variances are approximately equal (± 10%) even then the compromise allocation works 

well.  

 

The Park’s compromise allocation is then given by 
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where n  denote the total sample size. 

 

Park et al. (2007) also showed that if the differences between unequal strata standard 

deviations are large, then the estimator based on the suggested compromise allocation is 

more efficient than proportional allocation. 
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4.   The Problem: The Multivariate Case 

Let us consider a stratified population with L  strata and p  characteristics. The 

estimation of p population means pjYj .,..,2,1;    is of interest, the NLPP (2.7) for the jth 

characteristic can be expressed as: 
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 LhNn hjh .,..,2,1;2and  . 

 

The suffix ‘j’ has been introduced to represent the thj  characteristic (Ansari et al. 

(2011)). For a particular characteristic the strata, having equal or nearly equal stratum 

standard deviations, are combined into a single stratum. The pooled standard deviation is 

worked out using (3.1). The sample sizes are then allocated according to the modified 

Neyman allocation using the pooled standard deviations. The sample size allocated to the 

combined stratum is then reallocated to their constituents strata according to the 

proportional allocation. This gives Park’s compromise allocation for a particular 

characteristic as given in (3.2) and (3.3). Let 
*

jV  be the value of the variance of stjy  (fpc 

ignored) under this compromise allocation. 

 

To consider the multivariate case assumes that:  

(a) the stratum standard deviations jhS ; pj .,..,2,1 ; Lh .,..,2,1  be unknown but (i) 

their estimates are available from preliminary samples of sizes jhn . 

(ii) it is known that some of the strata have equal or nearly equal stratum 

variances.  

(b)  for the thj  characteristics there are jl  groups 
jjljj GGG .,..,, 21  having equal or 

nearly equal stratum variances. 

(c)  jkg  be the number of strata in the group ,.,..,2,1; jjk lkG  . The remaining strata 

with unequal stratum variance are treated as usual. 

(d) for thj characteristic the number of strata having unequal stratum variances is 

equal to 
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So that while working out the Modified Neyman allocation, the total number of strata, jL

(say), for thj  characteristic is given by ..,..,2,1;
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For the thj  characteristic the number of poolings will be jl . These jl  pooled standard 

deviations for equal or nearly equal stratum variances are given by 



An Optimum Multivariate-Multiobjective Stratified Sampling Design: Fuzzy Programming Approach  

Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp829-855 835 

;

)1(

)1(

21

2



































jk

jk

k

Mh

jh

Mh

jhjh

poolj

n

sn

s        jlk .,..,2,1     (4.2) 

where jkM ; pj ,...,2,1 , ,.,..,2,1 jlk   denote the set of jkg  indices of the strata 

constituting the group jkG  and jhn  and jhs  are preliminary sample size and the 

estimated standard deviations respectively. 
 

For the thj  characteristic the Modified Neyman allocation with pooled stratum variances 

will be the solution of the NLPP (4.1) re-expressed, incorporating the assumptions laid 

down earlier, as the NLPP: 
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where jkm ; pj .,..,2,1 , jlk .,..,2,1 , denote the combined sample sizes for the thk  

group of strata for thj  characteristics. 
 

The optimum values of jkm (say *
jkm ) are reallocated to their constituent strata according 

to proportional allocation. This will give the values of *
jhn ( Lhpj .,..,2,1,.,..,2,1  ). 

Let *
jf ; pj .,..,2,1  denote the optimal value of the objective function of NLPP (4.1) 

that is the values of )( *

jhj nf ; ..,..,2,1 pj  
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where Lhnh .,..,2,1;   denote a compromise allocation. The LHS of (4.4) denote the 

increase in the sampling variances of the estimate of jY ; pj .,..,2,1  for using the 

compromise allocation instead of their individual optimum allocations.  

5.   The Fuzzy Programming Approach 

Obviously the best allocation will be the solution of the following MNLPP 
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Since no algorithm is available to solve a multiobjective programming problem directly 

the problem is to be converted into a single objective problem by using some compromise 

criterion. 

 

The solution is obtained by using Fuzzy programming approach to solve the problem 

(5.1) consists of the following steps: 

Step 1: To obtain the solution of the multi-objective NLPP (MNLPP), consider the single 

objective problem using only one objective at a time and ignoring the other objective 

function and obtained the optimum solution for each characteristic as ideal solution. 

Step 2: From the result of step-1, determine the corresponding values for every objective 

at each solution obtained. Let  **
31
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j

jjhj

jhjj
jhjjhj

jhjjhj

jjhj

jhjj U

Lnfif

nfLif
nLnU

nfnU

Unfif

nf 
























)(,1

)(,
)()(

)()(

)(,0

))(((  

where ))(( jhjj nf is a strictly monotonic decreasing function with respect to )( jhj nf . 

 

Therefore the general aggregation function can be defined as: 
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The fuzzy multi-objective formulation of the problem may be defined as 
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The problem is to find the optimal value of 
*

jhn  for this convex fuzzy decision based on 

addition operator (like Tiwari et al. (1987)). Therefore the problem (5.2) is rewritten, 

according to max-addition operator, as 
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and  LhpjNn hjh ,,2,1;,,2,1;2   . 
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The above problem (5.3) reduces to 

Maximize   
 

















p

j jj

jhj

jj

j
p

j

jhjjD
LU

nf

LU

U
nfn

jh

11

*
)(

)()(   

subject to 



L

h

jh nn
1

       (5.4) 

and  LhpjNn hjh ,,2,1;,,2,1;2   . 

The problem (5.4) will attain its maxima if the function 
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and  LhpjNn hjh ,,2,1;,,2,1;2   . 
 

Model (2): A typical fuzzy programming using under and over deviational variables can 

be expressed as follows: 
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Where ,0, 
jj dd with 0

jj dd are respectively under and over derivations from target 

set. 
 

Model (3): By introducing an auxiliary variable λ, the model can be reformulated as 

follows: 
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Model (4): By introduce auxiliary variables for each objective as j , the model 3 can be 

formulated as follows: 

10

,,2,1;,,2,1;2

)8.5(

,,2,1;,,2,1,
)()(

)()(

..

1
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
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
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j

hjh

L

h

jh

jhjjhj

jhjjhj
j

j

LhpjNn

nn

Lhpj
nLnU

nfnU

ts

Max











 

 

The common value of λ may be termed a measure of the degree of satisfaction or the 

degree of compromise (0 ≤ λ ≤ 1). If λ is close to 1, there is a high degree of satisfaction 

(compromise), and if λ is close to 0, there is a low degree of satisfaction. 

 

The NLPP (5.5)-(5.8) may be solved by using a software package for solving constrained 

optimization problems. The software, developed by LINDO Systems Inc., is user’s 

friendly and does not require much knowledge of computer programming or computer 

languages. A LINGO User’s Guide (2001) is also available for reference. 

6.   Numerical Illustrations 

Example 1: A simulation study has been carried out to illustrate the computational 

details of a multivariate population with multiple pooling of stratum variances. Consider 

a population with five strata ( 5L ) in which three independent characteristics are 

defined on each unit of the population ).3( p  It is also assumed that the population of 

size N = 500 is divided into five strata with stratum sizes hN  and stratum weights hW  as 

1N  = 98, 2N  = 95, 3N  = 110, 4N  = 93 and 5N  = 104 and 

1W  = 0.196, 2W  = 0.190, 3W  = 0.220, 4W  = 0.186 and 5W = 0.208. 

 

The data for three independent normal populations with the specification of strata means 

jhY  and the strata standard deviations jhS  given in Tables 6.1 and 6.2 respectively are 

generated through the website “http://www.alewand.de/stattabneu/stattab.htm”. 

Table 6.1:   Strata means ( jhY ) 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  

1j  10 12 08 06 14 

2j  25 28 17 25 30 

3j  45 40 50 38 52 

http://www.alewand.de/stattabneu/stattab.htm
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Table 6.2:  Stratum standard deviations ( jhS ) for three characteristics and five 

strata 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  

1j  25 10 10 35 10 

2j  22 05 15 07 05 

3j  15 15 25 40 25 

 

It should be noted that 12S = 13S = 15S  = 10, 22S = 25S = 5, 31S = 32S = 15 and 33S  = 35S  = 

25. 

 

In the above situation, we have, for the first characteristic ( 1j ), jl  = 1 and there is 

only one group 11G  with 

 11g  = 3, 11M  = {2, 3, 5} and 1L  = 3. 

 

For the second characteristic ( 2j ), jl = 1 and there is only one group 21G  with 

 21g  = 2, 21M  = {2, 5} and 2L  = 4. 

 

For the third characteristic ( 3j ), jl = 2 and there are two groups 31G  and 32G . 

For 31G : 31g  = 2, 31M  = {1, 2}, 

and for 32G : 32g  = 2, 32M  = {3, 5} and 3L  = 3. 

 

The preliminary samples sizes jhn  used to estimate jhS  are given in Table 6.3. 

Table 6.3:   Preliminary sample sizes ( jhn ) 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  

1j  24 13 15 33 15 

2j  40 09 30 12 09 

3j  15 14 22 28 21 
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Table 6.4:   Sample standard deviations ( jhs ) 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  

1j  21.1413 8.6060 9.6656 30.1319 8.8185 

2j  22.3244 4.6048 16.9006 5.7777 4.4331 

3j  15.0988 10.0282 23.2814 37.4376 24.8519 

 

The sample data are generated through a computer program using the model 

 jhhijhjhi YZSy  ; pj ,,2,1  ; Lh ,,2,1  ; hNi ,,2,1  , 

where jhiy  denote the value of the thi  observation in thh  stratum for the thj  characteristic 

and hiZ  are the values of the randomly selected standard normal variate Z . 

Table 6.4 gives the estimated strata standard deviations jhs . 

For the sake of comparisons the Averaged Neyman allocation for n = 100 using true 

standard deviations jhS  are worked out and are given in Table 6.5. 

Table 6.5:   Averaged Neyman allocation for n = 100 (Using jhS ) 

 

With the help of available data the sampling variances of the estimates of the population 

means of the three characteristics (fpc ignored) under Averaged Neyman allocation given 

in Table 6.5 are obtained as 

)( 1styV = 3.348921164, )( 2 styV = 1.413934847 and )( 3styV = 6.488945238 respectively. 

 

Using the sample standard deviations the Averaged Modified Neyman allocation for n = 

100 are given in Table 6.6. 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  

1j  27.8567 10.8016 12.5071 37.0097 11.8249 

2j  39.5451 8.7124 30.2641 11.9406 9.5378 

3j  12.2858 11.9097 22.9837 31.0907 21.7300 

Average 26.5626 10.4746 21.9183 26.6803 14.3642 

Average (rounded off) 27 10 22 27 14 
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Table 6.6:   Averaged Modified Neyman allocation for n =100 (Using jhs ) 

 

Also the sampling variances of the estimates of the population means of the three 

characteristics (fpc ignored) under the Averaged Modified Neyman allocation given in 

Table 6.6 are obtained as  

32.56984062)( 1 styV , 51.47532400)( 2 styV  and 45.59439048)( 3 styV  

respectively. 

 

Assuming that the true strata standard deviations jhS  are unknown but the information 

about the equality of some of the stratum standard deviations for a particular 

characteristic are available as stated after Table 6.2. 

 

The pooled standard deviations are worked out as follows. 
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Stratum 

Characteristics 

1h  2h  3h  4h  5h  

1j  27.0052 10.6565 13.8584 36.5258 11.9541 

2j  39.9037 7.9789 33.9080 9.8004 8.4091 

3j  13.3792 8.6140 23.1559 31.4812 23.3697 

Average 26.7627 9.0831 23.6407 25.9358 14.5776 

Average (rounded off) 27 9 24 26 14 
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21
22

22122

)8519.24)(121()2814.23)(122(












 =  24.0603, 

where 
kpooljs  are as defined in (4.2). 

 

For the first characteristic ( 1j ), the Modified Neyman allocation with pooled standard 

deviations will be the solution of the following NLPP 

 
11

22

1

22 )0629.9()618.0()1413.21()196.0(
Minimize

mn
  

   
4

22 )1319.30()186.0(

n
  

100tosubject 4111  nmn  

 and   982 1  n        (6.1) 

   3096 11  m  

   932 4  n . 

 

The values of 1n , 11m  and 4n  according to the Modified Neyman allocation by using 

(1.2) for three strata are 

1n  = 26.9963   27, 11m  = 36.4899   36 and  36.5138 4 n     37. 

 

These allocations already satisfy the limits of the sample sizes, thus they will solve the 

NLPP (6.1). 

 

The values of 2n , 3n  and 5n  are then reallocated out of 11m  to their constituent strata 

using proportional allocation. This gives 

11.0680 2 n    11, 12.81553 n     13 and 12.11655 n    12. 

 

Thus the optimum allocation with pooled strata variances for the first characteristic is 

 *

11n  = 27, *

12n  = 11, *

13n  = 13, *

14n  = 37 and *

15n  = 12  

with 
*

1
f  = 2.356132272 

 

Similarly, for second and third characteristics ( 3and2j ) the optimum allocations with 

pooled strata variances and the corresponding values of 
*

jf  are  

 2j : *

21n  = 40, *

22n  = 8, *

23n  = 34, *

24n  = 10 and *

25n  = 8 

with 
*
2

f  = 1.202697797 

 3j : *

31n  = 12, *

32n  = 11, *

33n  = 24, *

34n  = 31 and *

35n  = 22 

with *
3

f  = 4.931664512 
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Now the pay-off matrix of the above formulated problems is given as: 

 56132272.2)( *

11 hnf       944178835.1)( *

12 hnf    209619712.6)( *

13 hnf  

 458094757.4)( *

21 hnf    202697797.1)( *

22 hnf   633288575.9)( *

23 hnf  

 028499035.3)( *

31 hnf    316987515.2)( *

32 hnf   931664512.4)( *

33 hnf  

 

The upper and lower bound of each objective functions can be expressed as: 

 458094757.4
1

uf 356132272.2
1
lf 316987515.2

2
uf 202697797.1

2
lf

 633288575.9
3
uf    931664512.4

1
lf  

 

Let )()(),( 321 jhjhjh nandnn  be the fuzzy membership function of the objective 

function 3,2,1),( jnf jhj and they are defined as: 
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On applying the max-addition operator, the MOSSD problem reduces to the problem as: 

Maximize 


















70162406.4

)(

11428972.1

)(

101962485.2

)(
09371222.6 332211 hhh nfnfnf

 

subject to 10054321  nnnnn       (6.2) 

and       .5,,2,1,2  hNn hh  

 

In order to maximize the above problem, we have to minimize 











70162406.4

)(

11428972.1

)(

101962485.2

)( 332211 hhh nfnfnf
 subject to the constraints as described 

below: 
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Minimize 
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subject to 10054321  nnnnn      (6.3) 

and   .5,,2,1,2  hNn hh  

 

Thus we get 

Minimize
321

13751097.2073110869.221337752.27

nnn
Z   

               
54

046929969.829319393.26

nn
  

subject to 10054321  nnnnn  

and  .5,,2,1,2  hNn hh  

 

Using LINGO software package the solution to MOSSD problem is obtained as 

1n  = 26.99968, 2n  = 8.553362, 3n  = 23.22578, 4n  = 26.53927, 5n =14.68191  

 

Rounding off hn ; 5,,2,1 h  to nearest integer values we get the compromise 

allocation as 

 1n  = 27, 2n  = 9, 3n  = 23, 4n  = 27 and 5n  = 15 

with variances )( stjyV ; 3and2,1j  under compromise allocation ignoring fpc as 

 2.51726615
,1


comp

V , 49467451.1
,2


comp

V  and 5.14560245
,3


comp

V  

where, compjV ,  = )( stjyV , 3and2,1j  under compromise allocation ignoring fpc. 

 

Example: 2 Consider a stratified population with six strata ( 6L ) and three independent 

characteristics ( 3p ). The data are generated via website 

“http://www.alewand.de/stattabneu/stattab.htm” for three independent normal 

populations with   and  jhY  jhS  as given in Table 6.7 and Table 6.8 respectively. 

http://www.alewand.de/stattabneu/stattab.htm
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Table 6.7:   Strata Means ( jhY ) 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  6h  

1j  11 23 52 20 46 31 

2j  22 42 15 34 36 18 

3j  50 28 30 32 40 20 

Table 6.8:  Stratum standard deviations ( jhS ) for three characteristics and six strata 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  6h  

1j  35 10 9.5 15 9.8 21 

2j  19 20 30.3 30 17 24 

3j  32 25 12 40 24 18 

 

It is assumed that the population of size N = 600 is divided into six strata with stratum 

sizes Nh and stratum weights Wh as: 

1N = 93, 2N = 99, 3N = 105, 4N = 96, 5N = 132, 6N = 75 and 1W  = 0.155, 2W = 

0.165, 3W = 0.175, 4W = 0.160, 5W = 0.220 and 6W = 0.125 respectively. 

Table 6.8 shows that for 1j , 12S , 13S  and 15S  are approximately equal, for 2j  

2221 SS   and 2423 SS   and for 3j  .3532 SS   Thus: 

For 1j , lj = 1, there is only one group 11G with 11g  = 3, 11M  = { 2, 3, 5} and  

1L  = 4. 

For 2j , 2jl , there are two groups 21G  and 22G  with 21g  = 2, 21M  = { 1, 2}  and 22g  

= 2, 22M  = { 3, 4} respectively and L2 = 4. 

For 3j , 3l  = 1, there is only one group 31G  with 31g  = 2, 31M  = {2, 5} and 

3L  = 5. 

The preliminary samples sizes jhn  used to estimate jhS are given in Table 6.9. 

Table 6.9:   Preliminary Sample Sizes ( jhn ) 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  6h  

1j  13 15 13 37 16 26 

2j  18 23 21 16 27 15 

3j  24 19 16 25 14 22 



Rahul Varshney, Srikant Gupta, Irfan Ali 

Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp829-855 846 

The sample data are generated through a computer program using the same model as 

Example 1 that is, 

jhhijhjhi YZSy  ; pj .,..,2,1 , Lh .,..,2,1  and hNi .,..,2,1  

where jhiy
 
denote the value of the 

thi observation in 
thh  stratum for the thj characteristic 

and hiZ  are the values of the randomly selected standard normal variate .Z  

The sample values of stratum standard deviations are summarized in Table 6.10.  

Table 6.10:   Sample standard deviations ( jhs ) 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  6h  

1j  15.9673 9.6105 10.2146 13.0483 11.3167 19.6771 

2j  20.9850 20.3869 31.8779 31.8431 13.9237 16.6347 

3j  38.1405 27.5064 10.7248 31.4545 24.7588 22.6623 

 

Using the sample standard deviations the Averaged Modified Neyman allocation for n  = 

120 are given in Table 6.11. 

Table 6.11:   Averaged Modified Neyman allocation for n = 120 (Using jhs ) 

 

From the available data the sampling variances of the estimates of the population means 

of the three characteristics (fpc ignored) under the Averaged Modified Neyman allocation 

are obtained as 

)(1 styV  = 1.432900652, )(2 styV  = 4.642929222 and )(3 styV  = 5.810951230 

respectively. 

 

For the sake of comparisons the Averaged Neyman allocation for n = 120 using true 

standard deviations jhS  are given in Table 6.12. 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  6h  

1j  23.0490 14.7679 16.6474 19.4429 23.1863 22.9065 

2j  17.3997 17.9944 29.8421 27.2544 16.3862 11.1231 

3j  27.6686 21.2416 8.7841 23.5544 25.4931 13.2582 

Average 22.7058 18.0013 18.4245 23.4173 21.6885 15.7626 

Average 

(rounded off) 

23 18 18 23 22 16 
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Table 6.12:   Averaged Neyman allocation for n = 120 (Using jhS )  

 

With the help of available data the sampling variances of the estimates of the population 

means of the three characteristics (fpc ignored) under Averaged Neyman allocation are 

obtained as 

)(1 styV  = 2.344953919, )(2 styV  = 4.876740281 and )(3 styV  = 5.603878698 

respectively. 

 

Assuming that the true strata standard deviations jhS  are unknown but the information 

about the equality of some of the standard deviations for a particular characteristic are 

available as stated after Table 6.8, pooled standard deviations are worked out using (4.2) 

as 

11 pools = 10.4370, 
12 pools = 20.6497, 

22 pools = 31.8630, 
13 pools = 26.3890. 

 

For the characteristic 1j , the Modified Neyman allocation with pooled standard 

deviations will be the solution of the following NLPP: 


11

22

1

22 )4370.10()560.0()9673.15()155.0(
Minimize

mn
 

                                    
6

22

4

22 )6771.19()125.0()0483.13()160.0(

nn
  

 120tosubject 64111  nnmn      (6.4) 

 and  

752

962

3366

932

6

4

11

1









n

n

m

n

 

 

By using the formula (1.2) the modified Neyman allocation for four strata, are of 1n , 11m , 

4n  and 6n  given as: 

1n  = 23.0817   23 11m  = 54.5089   55 4n  = 19.4705   19 6n  = 22.9390   23 

 

Stratum 

Characteristics 

1h  2h  3h  4h  5h  6h  

1j  40.8958 12.4384 12.5326 18.0922 16.2528 19.7883 

2j  15.3070 17.1521 27.5604 24.9486 19.4391 15.5929 

3j  23.6990 19.7093 10.0338 30.5793 25.2280 10.7505 

Average 26.6339 16.4333 16.7089 24.5400 20.3066 15.3772 

Average 

(rounded off) 

27 16 17 25 20 15 
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These allocations already satisfy the limits of sample sizes, thus they will solve the NLPP 

(6.4).  

 

The sample size 11m  to the combined stratum is reallocated to its constituent strata (2nd, 

3rd and 5th) proportionally as: 

 2n  = 16.2054   16 3n  = 17.1875   17 and 5n  = 21.6071   22   

 

Thus the optimum values of the sample sizes to different strata for the first characteristic 

are: 

 *

11n  = 23, *

12n  = 16, 
*

13n  = 17, *

14n  = 19, 
*

15n  = 22 and 
*

16n  = 23  

with *
1
f  = 1.385622811 

 

Similarly for the second and third characteristics ( 3and2j ), the individual optimum 

values of jhn ; 3,2j , 6.,..,2,1h  are worked out as: 

 :2j
*

21n = 17, *

22n = 18, 
*

23n  = 30, *

24n  = 27, 
*

25n  = 17 and 
*

26n  = 11 

with *
2

f  = 4.194774309  

 :3j  
*

31n = 27, 
*

32n = 20, 
*

33n  = 9, 
*

34n  = 24, 
*

35n  = 27 and 
*

36n  = 13 

with 
*
3

f  = 5.487212235 
 

 

Now the pay-off matrix of the above problems is given below: 

 385622811.1)( *

11 hnf       978569804.4)( *

12 hnf    044702086.6)( *

13 hnf  

 389501246.2)( *

21 hnf    194774309.4)( *

22 hnf   730451175.6)( *

23 hnf  

 584181422.1)( *

31 hnf    172221739.6)( *

32 hnf   487212235.5)( *

33 hnf  

 

The upper and lower bound of each objective functions can be expressed as: 

 
389501246.2

1
uf 385622811.1

1
lf 172221739.6

2
uf 194774309.4

2
lf

 
730451175.6

3
uf    487212235.5

1
lf  

 

Let )(and)(),( 321 jhjhjh nnn  be the fuzzy membership function of the objective 

function 3,2,1),( jnf jhj and they are defined as: 






















389501246.2)(,0

389501246.2)(385622811.1,
00387844.1

)(389501246.2

385622811.1)(,1

)(

11

11
11

11

11

h

h
h

h

h

nfif

nfif
nf

nfif

n  
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




















172221739.6)(,0

172221739.6)(194774309.4,
97744743.1

)(172221739.6

194774309.4)(,1

)(

22

22
22

22

22

h

h
h

h

h

nfif

nfif
nf

nfif

n

 






















730451175.6)(,0

730451175.6)(487212235.5,
24323894.1

)(730451175.6

487212235.5)(,1

)(

33

33
33

33

33

h

h
h

h

h

nfif

nfif
nf

nfif

n

 

On applying the max-addition operator, the MOSSD problem reduces to the problem as: 

Maximize  


















24323894.1

)(

97744743.1

)(

00387844.1

)(
91521965.10 332211 hhh nfnfnf

 

subject to 120654321  nnnnnn

    

)5.6(  

and  .6,,2,1,2  hNn hh  

 

In order to maximize the above problem, we have to minimize 











24323894.1

)(

97744743.1

)(

00387844.1

)( 332211 hhh nfnfnf
 subject to the constraints as described below: 

Minimize 





























































6

22

6

22

6

22

5

22

5

22

5

22

4

22

4

22

4

22

3

22

3

22

3

22

2

22

2

22

2

22

1

22

1

22

1

22

24323894.1

)6623.22()125.0(

97744743.1

)6347.16()125.0(

00387844.1

)6771.19()125.0(

24323894.1

)7588.24()220.0(

97744743.1

)9237.13()220.0(

00387844.1

)3167.11()220.0(

24323894.1

)4545.31()160.0(

97744743.1

)8431.31()160.0(

00387844.1

)0483.13()160.0(

24323894.1

)7248.10()175.0(

97744743.1

)8779.31()175.0(

00387844.1

)2146.10()175.0(

24323894.1

)5064.27()165.0(

97744743.1

)3869.20()165.0(

00387844.1

)6105.9()165.0(

24323894.1

)1405.38()155.0(

97744743.1

)9850.20()155.0(

00387844.1

)9673.15()155.0(

nnn

nnn

nnn

nnn

nnn

nnn

 

subject to ,120654321  nnnnnn       (6.6) 

and   .6,,2,1,2  hNn hh  
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On simplifying we get 

Minimize 
321

75439250.2179547140.2456324029.39

nnn
Z   

654

66758129.1478404490.3484158531.37

nnn
  

subject to  ,120654321  nnnnnn  

and   6,,2,1,2  hNn hh . 

 

Using LINGO software package the solution to MOSSD problem is obtained as 

1n  = 23.72606, 
2n  = 18.78304, 3n  = 17.59354, 

4n  = 23.20408, 5n =22.24691, 
6n

=14.44638 

 

Rounding off hn ; 5,,2,1 h  to nearest integer values we get the compromise 

allocation as 

 
1n  = 24, 

2n  = 19, 3n  = 18, 
4n  = 23, 5n  = 22 and 

6n =14 

with variances )( stjyV ; 3and2,1j  under compromise allocation ignoring fpc as 

 1.46846786,1 compV , 52928072.4,2 compV  and 5.75905709,3 compV  

where, compjV ,  = )( stjyV , 3and2,1j  under compromise allocation ignoring fpc. 

7.   Conclusion 

To validate the proposed compromise allocation, it is compared with some other existing 

compromise allocations and proportional allocation as well. Tables 7.1 and 7.2, for 

Examples 1 and 2 respectively, explore the performance of the proposed allocation and 

other comparative allocations. 

 

The proportional allocation is worked out by 

LhnWn hh ,...,2,1:  ,        (7.1) 

and its variance (ignoring fpc) is computed directly using the formula 

.3,2,1;)(
1

22

,,  


j
n

sW
yVV

L

h h

jhh

propstjpropj  

The following averaged compromise allocations are selected for comparison. 

(i) Averaged Neyman allocation, 

(ii) Averaged Modified Neyman allocation, 

(iii) Averaged Allocation with Pooled Standard Deviations. 

 

These allocations are averaged over characteristics and rounded off to the nearest 

integers. 
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Kozak (2006b) considered five methods for working out the compromise allocation in 

multivariate stratified surveys. In the fifth method, Kozak minimized the sum of relative 

increases in the variances due to not using the individual optimum allocations. Thus the 

problem of allocation may be stated as the following NLPP 

 Minimize ),...,,( 21 Lnnnf  = 


p

j j

j

V

V

1
*

       

 subject to  nn
L

h

h 
1

       (7.2) 

 and  0hn ; Lh ,...,2,1 . 

 

Since the true jhS  are assumed to be unknown the objective function may be expressed 

as 


p

j j

j

V

V

1
*ˆ

ˆ
, where jV̂  and *ˆ

jV  are sample estimates of jV  and 
*

jV .     

The solution to the NLPP (7.2), with objective as “Minimize 


p

j j

j

V

V

1
*ˆ

ˆ
” is obtained by using 

Lagrange multiplier technique after ignoring non-negativity restrictions, is given as 

 





L

h

hh

hh
h

bW

bW
nn

1

; Lh ,...,2,1 ,       (7.3) 

where 



p

j

jjhh Vsb
1

*2 ˆ  and 

2

1

* 1ˆ 







 



L

h

jhhj sW
n

V .      (7.4) 

 

The allocations given by (7.3) are termed as “Kozak’s allocation” are placed for 

comparison in Tables 7.1 and 7.2. 

 

The basis of comparison is the ‘TRACE’ (the sum of principal diagonal elements = 




p

j

stj yV
1

)( ) of the variance-covariance matrix of the estimator of the thj  population 

means 3,2,1; jY j . Since all the characteristics are assumed to be independent, the co-

variances are zero. The relative efficiency (R. E.) of a compromise allocation with respect 

to the proportional allocation is defined as 

compprop TTER /..   (Sukhatme et al. (1984)), 

where propT  represents the trace under proportional allocation and compT  represents the 

trace under a compromise allocation. 

 

The last columns of Tables 7.1 and 7.2 explain relative efficiency of all allocations, as 

discussed, with respect to proportional allocation. 

 

Thus it can be concluded about the proposed approach, using fuzzy programming for a 

specific model as discussed, may be considered as usable compromise criterion to solve 

the problems of allocation in multivariate surveys. 
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Table 7.1:  Relative efficiencies of different compromise allocations as compared to 

the proportional allocation. 

(Example 1)  

Allocations 
1n  2n

 
3n  4n

 
5n  Trace Relative Efficiency 

( compprop TT ) with 

respect to proportional 

allocation 

Proportional 20 19 22 18 21     10.628278360 1.000000000 

Compromise Allocations: 

(i)  Averaged Neyman  

 

27 

 

10 

 

22 

 

27 

 

14 

  

   11.251801250 

 

0.944584616 

(ii) Averaged Modified      

Neyman 

27 9 24 26 14    9.639555112 1.102569386 

(iii) Averaged Allocation 

with Pooled Standard 

Deviations 

26 10 24 26 14    9.625212282 1.104212359 

(iv) Kozak’s Allocation 27 9 23 26 15 9.573005390 1.110234240 

(v) Ansari et al. (2011) 22 9 22 29 18    9.374293805 1.133768429 

(vi) Proposed Allocation 

a) Method 1 
 

27 

 

9 

 

23 

 

26 

 

15 

 

9.57305 

 

1.110229066 

b) Method 2 27 9 23 26 15 9.57305 1.110229066 

c)    Method 3 28 8 27 23 14 9.878360 1.075915269 

d)    Method 4 27 9 23 26 15 9.57305 1.110229066 

Table 7.2:  Relative efficiencies of different compromise allocations as compared to 

the proportional allocation. 

(Example 2) 

Allocations 
1n  2n

 
3n  4n

 
5n  6n

 

Trace Relative Efficiency 

( compprop TT ) with 

respect to proportional 

allocation 

Proportional 19 20 21 19 26 15 12.137564700 1.000000000 

Compromise Allocations: 

(i)  Averaged Neyman  

 

27 

 

16 

 

17 

 

25 

 

20 

 

15 

 

12.825572900 

 

0.946356533 

(ii) Averaged Modified 

Neyman 

23 18 18 23 22 16 11.886781100 1.021097688 

(iii) Averaged Allocation 

with Pooled Standard 

Deviations 

22 18 19 23 22 16    

11.878224270 

1.021833266 

(iv) Kozak’s Allocation 22 18 20 23 21 16 11.856593500 1.021973573 

(v)  Ansari et al. (2011) 23 19 19 24 21 14   

11.836881600 

1.025402222 

(vi) Proposed Allocation 

a) Method 1 
 

24 

 

19 

 

18 

 

23 

 

22 

 

14 

 

11.85681 

 

1.023678772 

b) Method 2 24 19 18 23 22 14 11.85681 1.023678772 

c) Method 3 24 19 18 24 23 12 11.88560 1.021199157 

d) Method 4 24 19 18 23 22 14 11.85681 1.023678772 
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