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Abstract

In biomedical studies bio-markers are used to distinguish between two groups of subjects usually,
diseased (high risk) and non-diseased (low risk) subjects. Many diagnostic biomarkers results are
continuous measurements. Some example include, serum antigen or enzyme concentrations
(Zweig and Campbell 1993) are continuous in nature. The Receiver Operating Characteristic
(ROC) curves have been widely used for evaluating the accuracy and discriminating power of a
biomarker or statistical model. In this regard Generalized-Exponential Distribution model is
suggested for analyzing such data. The model can be applied in the situations when the other
well-known parametric models (e.g. the bi-normal one) cannot be used.

In this paper the parametric equation of the Receiving Operating Characteristic (ROC) curve
model is established under the assumptions of bi-distributional population based on pair of
Generalized-Exponential Distributions. Also its maximum likelihood estimator MLE, sampling
distribution, equivalence test statistic and exact confidence interval are derived.

Keywords: ROC curve, Generalized-Exponential Distribution, MLE, Equivalence
test statistic, Exact confidence interval.

1. Introduction

The receiving operating characteristic (ROC) curve model is a useful graphical
and statistical modeling tool for evaluation performance in any two population
(group) classification task, e.g. in medicine two groups of subjects (Diseased,
Healthy). In biomedical applications there has been an increased use of ROC
curve models for assessing the effectiveness of continuous diagnostic marker
values (e.g. tumor volume) in distinguishing between diseased and healthy
individuals. A person is assessed as diseased (positive) or healthy (negative)
depending on whether the corresponding marker value is greater than or less
than equal to a given threshold value. Associated with any threshold value is the
probability of true positive (sensitivity) and the probability of true negative
(specificity).

Let X and Y denote the diagnostic variable conditional on healthy and diseased,
respectively, and assume that for a generic subject, the disease is diagnosed,
i.e. the test is positive, if the associated diagnostic variable is greater than a
suitable threshold c, (Y>c). If the distribution of Y is F and the distribution function
of X is G, then the ROC curve is a plot of 1-F(c), i.e. sensitivity, versus 1-G(c),
i.e. the 1-specificity, across all possible threshold c. A typical ROC curve model is
shown in Figure1.
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Figure 1. ATYPICAL ROC CURVE MODEL

Alternatively, the ROC curve model be defined as a function of (1-specificity)

R(t)=1-F(G"(1-1)) , for 0<r<1 (1)

See, e.g. Lloyd [1]. The parametric ROC curve model can be obtained for
symmetric and skewed markers values under Dbi-distributional models
assumptions [2]. The frequently used Bi-Normal model assumes independent
normal distributions with different population means and variances [3]. Other
models considered in the literature include Bi-Logistic [4]. Bi-Exponential [5] and
Bi-Gamma [6], etc. Here we propose Bi-Generalized-Exponential-Distribution
model [7] for strongly positively skewed scores.

In the following sections certain results related to use one parameter
Generalized-Exponential-Distribution ~ GED(B) under the bi-distributional
assumptions for the ROC curve model is derived. In subsequent sections results
regarding maximum likelihood estimator (MLE), its distribution, test of
equivalence statistic and exact confidence interval are derived [8].
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2. The Generalized Exponential Distribution

The one parameter generalized exponential distribution GED(#) was introduced
by Kundu and Gupta [7], as an alternative to the gamma and Weibull distributions
for analyzing failure time data. The GED(6) is a uni-modal density function. The
advantage of employing the GED(¥) is that the cumulative distribution function
(cdf) can be written in closed form. It is reported by Kundu and Gupta [9] that
GED(¥) is quite flexible and can be used very effectively in analyzing positive
time data in place of well known gamma and Weibull models. In particular, the
probability density function (pdf) and the cumulative (cdf) of GED(6) are

f(x) =6 (1-e )" x>0, 6>0 (2 1)
F(x)=(l-e™) x>0, 6>0 (2.2)

where 6 is the shape parameter. GED(6) becomes more and more symmetric if
@ increases.

For ready reference the graphs of (2.1) for certain parameter values are shown in
Figure 2.
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Figure 2. Generalized-Exponential Density Plots for 6=1.5, 2, 2.5.

Pak.j.stat.oper.res. Vol.VIl No.2 2011 pp323-330 325



Ehtesham Hussain

2.1 Estimation of Parameter (6) Maximum Likelihood Estimation
Let x,,x,,...,x,be the random sample taken from GED with parameter 6. Then,
likelihood and log-likelihood functions based on the above sample are as follows:
L@O:X)=0"e][(1-e™)""
i=1
and
n(@:X)=nln0-2x,+(@-1)2/In(l—-e™)

The associated gradient is found as follows:

om@:X) n x
e = Ty Y n(l-e ) =0

o ptEinimen)
Hence MLE of the parameter 6 is obtained as

—n

QZZena—eXf)

(2.1.1)

It is observed in Kudu and Gupta and [9], that
Y ==20%(n(1-e")~ 2,

0= 2.1.2
v ( )

The distribution of @ is same as the distribution of % where Y follows

chi-squared distribution with 2n degrees of freedom.

3. Bi-Generalized-Exponential-Distribution Model

A Bi-Generalized-Exponential-Distribution model assumes that, decision values
follow two independent Generalized -Exponential-Distributions: one for diseased
(negative) examples, one for healthy (positive). Let X and Y are from healthy and
diseased populations with underlying GED functions g(x), f(y) respectively.

Hence for healthy population GED(6,)

glx/H)= Hoe’x(l—e’x )9071 x>0, 6,>0 (3.1)

and for diseased population GED(9,)

0,-1

fy/D)=6e"(1-¢) y>0, 6,>0 (3.2)
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Also
Specificity:

Gl0)= [ g/ 1 )ix (3.3)
and Sensitivity:

Fl)=[ v/ Dyix (3.4)

t

These define the theoretical ROC curve model for GED. The explicit equation of
ROC curve for sensitivity as a function of (1-specificity) as defined in equation 1
is obtained as

R(r):l—{ﬁ—t)z;} 0<r<1

—1-{1-0"} (3.5)

where p= G p>0

00
Note in particular the ROC model equation (3.5) is function of two parameters
6, and 6, . The functional form depends on é'’s through their ratio. The ratio g

can be utilized as a measure of the size difference between the two distributions.
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Figure 3. THE ROC CURVE MODEL FOR g=1, 8>1, B<1.
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If the ratio =1, i.e. & = &, the curve is the random ROC curve model i.e. X and
Y are identically distributed.

If the (> 1, i.e. & < 6y,) the curve is concave, lying above the main diagonal,
and the corresponding marker is better than the random one i.e. the distribution
of X lies entirely below the distribution of Y. The last option <1, & > 6, leads to
a convex ROC curve indicating that the labels of groups Healthy and Diseased
are possible swapped. All the above mentioned situations are shown in Figure. 3.

3.1 Estimation of the Parameter g

Now our parameter of interest is . Since it the ratio of two unknown parameters
& and 6. ﬁ the MLE of g is obtained using the plug in property of MLE

Let {x,,x,,...x, jand {y,,7,.....y,, } be the two independent random samples taken

from the Generalized-Exponential-Distribution with parameters &, and 6,
respectively. The MLE, é(, and é, are obtained as using equation (2.1.1). The

MLE of gis of the form

_n2

ZInil—e_Y" ) (3.1.1)

In({l —e™"

B=

:

and note that ¢, :—249021n(1—e’)"') and ¢, :—ZGIZIn(l—e’Yf) have chi-squared
distributions with (2n4) and (2n,) degrees of freedoms (d.f.) respectively.

3.2 The Sampling Distribution of ﬁ’

The sampling distribution of ﬁ can be obtained as follows:
Since

-260,Y (1-¢%) ~z*@n)
and —29121n(1—e4" )~ 7’ (2ny)

where )(Z(m) is the pdf of the chi-squared distribution with m degrees of
freedoms.
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Hence the ratio of

2
X@n
L8 F(2n,,2n,)
X 2ny)
where F(a, b) denotes the Snedelor's F-distribution with a and b degrees of
freedoms. Analogously n_zﬁ ~F(2n,,2n))

n

The knowledge of the distribution of # can be used for sample inference.

3.3 Testing Hypothesis of Equivalent

In this section we shall use the results of the pervious section, and testing
approach of Lawless(1982,sec.3.3) for testing of hypotheses in (3.3.1).

Suppose  {x,,x,,..,x, } is random sample of size n, from a GED(8,) and
V1> ¥4,y ,,} is independent random sample of size n, from a GED(81). Where

¢, and @, are positive parameters their ratio, S :% can be used to discriminate
0

between the two distributions. To test distribution of diseased and healthy are
identically distributed the hypotheses of interest and, a sized o test of is to reject
Ho if

H,:8,=1 vs. H,: g>1 (3.3.1)
or
Ho:ﬁgl Vs. lei>1
90 HO

Using results of section (2.1), it is not difficult to show that the p value for testing

(3.3.1) is given by
n, |t
P(ﬂan,an) < (ijfj

where ¢, and (, defined as in section 3.1.

The null hypothesis in (3.3.1) will be rejected whenever this p-value is less than
.

3.4 Confidence Interval of g

The confidence limits for the ratio, ,6’:% can easily be obtained using the
0

>

distributional result §=- ~F(2n,,2n,). Let F, and F_, be the (1-y,)and y,

_}/2

>
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quantiles of the F(2n,,2n,) distribution respectively. The (1-y,) — confidence
interval for gis of the form

P{ﬁ%ﬁﬁéﬁ%:l:(l—a)
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