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Abstract

We give the uniform almost sure convergence of the kernel estimate of the regression function
over a sequence of compact sets which increases to IRY when n approaches the infinity and
the observed process is 0 -mixing . The used estimator for the regression function is the kernel
estimator proposed by Nadaraya, Watson (1964).
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1. Introduction

Let (X,,Y

t> t)teLN

IR’ xIR and is distributed as (X,Y). Suppose that a segment of data (X,,Y,)",
has been observed.

be a strictly stationary process where (X Y ) takes value in

1>t

We are interested in the study of the kernel estimate of the well known
regression function defined by r(x)=E(Y,/X,=x) t<IN. A natural estimator of

the function r(.) is given by:

7, (x) = ZHZY,K(h,ZI(x—X,))/Zn:K(hf(x—Xf)) VxeE

t=1 t=1
where E stands for the subset {xeR,f(x)>0}, f being the density of the
process (X,). (h,) is a positive sequence of real numbers such that (4,) > 0 and

nh, —»© when n—o and K is a Parzen-Rosenblatt kernel type in the sense of
a bounded integrable function satisfying jl K()dx=1and limy. || x[| K(x) =0,
besides it will be assumed to be strictly positive and with bounded variation.

Such an approach has been subject to several investigations since many years.
A number of distinguished papers is related to this topic. There are among
others, Devroye (1981), Collomb (1984, 1985), Gyorfi et al. (1989), Hardle
(1990), Bosq (1996) , Arfi (1996, 1997, 2003) and Walk (2006).

Watson (1964), for instance, considered the estimation of the conditional
expectation as a predictor of ¥ and applied this method to some climatological
time series data; Nadaraya (1964), established the same estimator
independently.
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The aim of the present paper is to study the almost sure convergence for p -
mixing random variable sequences over a sequence of compact sets which
increases to 1R‘.

2. Preliminaries and Assumptions

Let (Q,F,P) be a probability space and let (X,, reIN) be a sequence of
random variables and we write F, =o(X,, te€ S cIN).

Given the o-algebras B and R in F, let

p(B, R)=sup[corr(X,Y),X € L,(B),Y € L,(R)]
where corr(X,Y) = (EXY — EXEY )/~/varXvarY .

Bradley (1990) introduced the following coefficients of dependence

p(k) =sup{p(F,,F,)}, k>0 where the supremum is taken over all finite
subsets S,7 < IN such that dist(S,T) > k.

Obviously,
0<pk+1)<pk)<1l, k>0 and p(0)=1.

Definition 2.1. A random variable sequence (X,,z>1) is said to be p-mixing if
there exists ke N such that p(k) <1.

Without loss of generality we may assume that (X,, t>1) is such that p(1) <1
(see Bryc and Smolenski, 1993). In the study of p-mixing sequences we refer to

Bradley(1990, 1992) for the central limit theorem, Bryc and Smolenski (1993) for
moment inequalities and almost sure convergence, Peligrad and Gut (1999) for
almost sure results for a class of dependent random variables, Shixin (2004) for
the almost sure convergence for p-mixing random variable sequences obtaining

new results which extend and improve some previous results , Sung (2010) for
complete convergence for weighted sums.

We will make use of the following assumptions:

A1 The observed process (X,),,, is stationary and p -mixing.

A2 Ir <o, VxelR?, f(x)<T

and
dy,>0; VxeC,, f(x)2y,.

Where C, is a sequence of compact sets such that C, = {x:[| x|<c, }
with ¢, — .

140 Pak.j.stat.oper.res. Vol.VIl No.2 2011 pp139-147



Kernel Regression for /N) -mixing Observations

A3 3 5p>2 I M<wo E(Y]")<M.

A4 3V <w ¥ xe IR, E[Y-r(X)f| X =x|<V.

A5 The density f is twice differentiable and its second derivatives are bounded
on IR?.

A6 The kernel X is Lipschitz of ratio L, thatis | K(x)—K(y)|< L, ||x—y]|" .

2. Main Result

Theorem 2.1. We suppose that the assumptions A1 to A6 hold. we further
assume that the function r is Lipschitz, bounded on 1-.17em R? and that the

bandwith sequence (h,) satisfies with y, :
—d _ —b/2

nhndy;1 =ow(Logn) and 7/;1hn v, =0, n—>ow

where y, is an unbounded and nondecreasing sequence chosen so that:
1<y, <n/2.

If the kernel K is even with JZZK (z)dz <o for z=(z,..,z,) and if there exists a

constant D such that y,'y,h, < D. Then we have:
SUP| <c |7 (x)=r(x)|>0, as. n—>oo.

3. Preliminary Results

We make the following decomposition:

7, (0) —r(x) = {0 e, ) =) £ (-1, ()L, () - )]}

where g, (x)=(nh,)"' Y YK(h,'(x-X,)) and

£, =)' Y K (B (6= X,).

This leads to:

sup,.. 17,(0)=r() [ (@)} bup,.c. |€,(0)=r() [ +sup,e |5, £,(0) - £ ()}

Thenif sup . |7,(x)[<y, as. we obtain:

Sup, .. 17,(0)= ()< 7, bup, . 18,0~ r(x) | +3, 5up,. | £,()=f(x)}

Lemma 3.1. Under the assumptions of Theorem 2.1 we have:

7, sup, .. 18,(¥)—Eg,(x)|>0, as. n—>o.
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Lemma 3.2. Under the assumptions of Theorem 2.1, we have:
¥, sup | Eg,(x)=r(x)f(x)[=>0, n—>o.

xele

Lemma 3.3. Under the assumptions of Theorem 2.1, we have:
limy,7," sup | f,(x)—Ef,(x)|=0 a.s.

n— Ilxl<c,,
Lemma 3.4. Under the assumptions of Theorem 2.1, we have:

V.7 sup i | Ef,(x)= f(x) ][>0, n— o

4. Proofs

Proof of Lemma 3.1.

Because of the possible large values for the variables Y, , we use a truncation
technique which consists in decomposing g, in g, and g, where

gn (x) = (nhn )71 Z:l:lYt(\Ythn )K(h;l (x - Xt )) and

g, (x)=g,(x)—g,(x), where y, isthe unbounded sequence defined in the
Theorem 2.1.

We start by showing that:

7, SUp . |8, (¥)—Eg,(x)[>0, as. n—on

We write g, (x)—Eg,(x)=> " w, with
v, = (I’lhj)% {Y;(\Yt\gyn)K(h;;l(x_Xt )) -
ETY, K(h,' (x=X )]}

(Y, l<y,)

Then E(w,)=0; |y, |<(mh!)'2K,y,=d, where K, is an upperbound of K,
which permits to write
Ely, [<2n7 ENY By, KB (x=X))]<

2n” EN Y, | B K (b, (x = X))

E |y, [<20n” (B[ Y, | /X, = ulh, K (h,' (x—u))du.

Leading by Schwartz inequality and the assumption A4 to :

n*

E|y, |<2Tn™ j F@)+ V)2 K (x—u)du<m™ =6
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Where 7 is a positive constant. Same arguments give
Ey} <2Tn™ [(r* )+ V)b, K (b, (x—u))du <on”h' = D

n

where v is a positive constant.

Now, let us write
> PG g () - Eg, () F )= P 1Y v, 1> e)

and we write
|4

= Wiy, jon®) for a>1and 1<t<n.

and Z

= Y, 0%

Then,
DWW —EW )|+ D Z, |+ D EW, |(3.1)
t=1 t=1 t=1 t=1

We need to show the followings

S P, Y (W, —EW,) > en/3) <oo(3.2)
n=1 t=1

P D Z,, 1> en/3) <oo(3.3)

n=1 t=1

Vi | Y EW, |In* =0, n— .(3.4)
t=1

We start by showing (3.2).

The Markov inequality and Chebyshev's inequality lead to:
S PG W, —EW,) > en/3) <

n=1

® no—-1 b ab ®© -17-d —l-ab
Cl 2)12121‘217/” E | VI/'” | /n < 02 anlyﬂ h” n < 0.

with the choice y, =n™ for a>0 and h, =n" for 0<7<1/2 where ¢, and ¢, are
two positive constants and b such that b > (a + @)/ a.

The Borel Cantelli lemma permits to conclude for (3.2).

Now, we show (3.3).

Note that (1D 7, > en“3) ] (Iw, > n“) hence,
DU PG Z, e 3)< Y nP(y, w, [P n®)

n=1

@© -1 b b 0 —l-ab  —17.—-d
<Y Ely i <oy n Ty <o
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with the choice y, =n for a>0 and h,=n"" for 0<r<1/2 ; b such that
b>(a+) a and where c, is a positive constant.

Lastly we show that (3.4) holds.

We can write:

i 2 EW, Sy, Y N EZ, =y, Y E W e
t=1 t=1

>n
pur (I, !

=n"""FE|y, |(‘ . ,,,)—>0, n— oo witha>a>0.
v, >n

d
n

Next, we cover C, by u: spheres in the shape of {x:||x—xjn ||£cny;1} with

1< j < u? and we make the folowing decomposition:
g, () - Eg, (D)< g, ()-8, (x;,) [ +]g, (x;)— Eg, (x;,)]
+| Eg, (x;,)—Eg, (%)

then we have
g, (x)—g,(x;,)[<

()3, S K (B (= X))~ K (7 (x, — X))

t=1

The kernel K being Lipschitz we obtain
g, (V) ~g,(x;,) IS Ly, lx—x, |I'<
Ley,h, " e u," =1/Logn

if we choose g, = LA (Loam)E s o,

Thus we obtain

sup..c |8, (%)= £g, (X)[<sup,;,a | g, (x;,) - Eg, (x;,)[+(2/Logn)

so thatfor all n>n,(¢,), Ve, >0 and we have
P(sup,.c |2 v, 1>26)<3 " P(g,(x,)~Eg, (x,) > &,).

Now using similar decomposition as in (3.1) u, times; the use of (x’ n%)
instead of n“ permit to conclude that :
7! sup . 18, ()—Eg, (N[>0, as, n-ow

It remains to show that:
7, SUP) <, g, (x)—Eg (x)]>0, as., n— o,
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To this aim, we write:
7n_1 SupHstCn | g; (x) - Eg; (x) |S En + Fn

where,
E, = (y,nh})" SUD<c, | ZLX(\Ymn)K(h; (x=X))I.

We have (E, #0)c {31, €[1,2,...,n] such that |on > y,} and we can write

(E, 20 | J 1% >}
P(E,#0)< > P(Y,[>y,)=nP(Y >y,
D P(E,#0)<> nP(Y > y)<> my,"E|Y [

znP(En #0)<c, Znny;b <
where c, is a positive constant.

Then E, >0, as., n—o and sup__sup|Y <y, a.s.
The kernel K being strictly positive, we conclude that |7 (x)[<y, a.s.

Moreover,

F = G sup [ 2L, KO8 = X))

lli<e, =

Fo=y, b KE(Y |, )]
S 7/;lhn—dK1 (E(YZ))I/Z (P[| Y |> y”])l/Z
<cy'h'y " 50, n—oo

with ¢, being a positive constant.

Proof of Lemma 3.2.

Eg,(x)—r(x)f(x)=
() ERY " YK (B (x=X,) | () £ ()
Eg,(x)=r(x)f(x)=h" [ ra)K (b, (x=u)) f@)du—r(x)f(x)
we write z = (x—u)/h, and we obtain:
Eg,(x)=r(x)f(x)= [ [r(x—zh,)=r(x)]K(2)f (x—zh,)dz +
r(0) [K(Lf (x=zh,) = f(x) 1dz.

If we assume that the function r(.) is Lipschitz of ratio 1 and order 1 we get
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| jmd[r(x —zh))—r(x)IK(z) f(x—zh )dz |< h T j |z| K(z)dz.

Now a Taylor expansion , the Bochner lemma and the fact that the function r is
bounded permit to conclude that:

V. sup | Eg,(x)=r(x)f(x)|>0, n—>oc0.

xeLRd

Proof of Lemma 3.3.

This is a particular case of Lemma 3.1 when ¥, =1 and ¢=¢,y,y, for a certain
g > 0.

Proof of Lemma 3.4.

We write:

Ef, ()= /() =k, [ L/ @)= f oK (b, (= x))u

A Taylor expansion, the hypotheses of Theorem 2.1 and the Bochner lemma
permit to conclude.
Proof Theorem 2.1.

Lemmas 3.1, 3.2, 3.3 and 3.4 permit to conclude that:
sup,.. |7,(x)=r(x)|=>0, as. n—>o.
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