
Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp909-930 

Application of Entropy Measures to a  

Failure Times of Electrical Components Models 

Mervat Mahdy 
Department of Statistics, Mathematics and Insurance 

College of Commerce, Benha University, Egypt 

drmervat.mahdy@fcom.bu.edu.eg. 

 

Dina S. Eltelbany 
Department of Statistics, Mathematics and Insurance 

College of Commerce, Benha University, Egypt 

dina.eltelbany@fcom.bu.edu.eg 

Abstract 

In this article, the differential entropy and 𝛽 − entropy for Nakagami- 𝜇 distribution is derived. In 

addition, the differential entropy and 𝛽 − entropy for some selected versions of these 

distributions are obtained. Further, numerical comparisons are assessed to indicate which 

selection distribution has advantages over the other selection in terms of relative loss in entropy. 
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1. Introduction 

It is worth mentioning that the distribution of Nakagami is a flexible life time model of 

distribution that could present a suitable fit to a number of failure data sets. The theory of 

reliability and reliability engineering as well made intensive usage of the distribution of 

Nakagami. Due to the less property of memory of such distribution, it is fit to model the 

portion "constant hazard rate" and used in the theory of reliability. Moreover, it is so 

acceptable as it is so simple to increase rates of failure in a model of reliability. As well, 

the distribution of Nakagami is considered the favorable distribution to ensure the 

electrical component reliability compared to the distribution of Weibull, Gamma and 

lognormal (many researchers studied it was in recent times, including (c.f. [Yacoub 

(1999), Cheng and Beaulieu (2001), Schwartz et al. (2013), Ahmad and Rehman (2015), 

Brychkov and Savischenko (2015), Ahmad et al. (2016), Gkpinar et al. (2016), Mudasir 

et al. (2016) and Kousar and Memon (2017).]) 

 

In addition, the idea of information-theoretic entropy was presented for the first time by 

Shannon (1948) and then by Weiner ( 1949) in Cybernetics. Through out the last 60 

years, after Shannon (1948) had his entropy measure, a big number of papers, books and 

monographs have been issued on its extensions and applications, including but not 

restricted to "Renyi (1961)", "Havrdaand Charvat (1967)", "Tsallis (1988)", "Kapur 

(1989)", "Ullah (1996)","Dragomir (2003)", "Cover and Thomas (2006)", "Asadi et al. 

(2006)" and "Harremoes (2006)". A renowned parametric extension of the entropy of 

Shannon is 𝛽-entropy, that was defined by "Havrda and Charvat (1967)" and then it was 

studied in details by "Tsallis (1988)". Though 𝛽-entropy was presented for the first time 

by "Havrda and Charvat (1967)" in the context of theory of cybernetics,Tsallis exploited 
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its non-extensive features and used it in a physical setting.Therefore, "Hence 𝛽-entropy" 

is known as entropy of Tsallis. Over the past fewyears, "Plastino and Plastino (1999)", 

"Tsallis (2002)", "Tsallis and Brigatti (2004)", "Jizba and Arimitsu (2004)", "Suyari 

(2004)", "Pharwaha and Singh (2009)" and "Herrmann (2009)" were very keen on 

studying "Tsallis entropy"properties and applications. 

 

The issue of modeling systems and components lifetime in the theory of reliability and 

survival analyses among other scientific fields is deemed essential. In a number of actual 

situations, the measurements were not revealed in accordance with the standard data 

distribution. This could be because of the real fact that the population units have unequal 

opportunities to be registered by an investigator. 

 

Novel weight distribution of Nakagami distribution by length-biased distribution with 

order 𝜃 is presented firstly in this study. Azzalini (1985) was the first one to present the 

skew-normal distribution to integrate a shape /skewness parameter to a normal 

distribution according to a weighted function denoted by 𝐹(𝛼𝑋) where 𝐹(. ) is 

cumulative distribution function of random variable 𝑋 and 𝛼 is a sensitive skewness 

parameter. As the intensive work was completed to present a skewness parameter to a 

number of symmetric distributions, for example skew-t, skew-Cauchy, skew-Laplace and 

skew-logistic. Generally, skew-symmetric distributions were detected and many of their 

properties and inference procedures were discussed; for instance, see "Gupta and Kundu 

(2007)" and the recent monograph made by "Genton (2004)". In this study, new chosen 

distribution by usage of the same idea of "Azzalini (1985)" is provided firstly. 

 

The arrangement of the current paper is provided as follows: In Section 2, a number of 

initial results which will be utilized in following sections is introduced. Section 3 covers 

the key results of this paper. In this section, we are going to study the differential entropy 

and the β-entropy for a distribution of Nakagami that has two parameters, and then we 

tabulate values for some specialized versions. Furthermore, two weighted version of 

Nakagami distribution, their differential entropy and β-entropy were derived. Then, 

section 4 is devoted to stochastic ordering, numerical comparisons and graphs assisted in 

specifying a number of measures. 

2.   Preliminaries 

The random variable 𝑋 has the distribution of Nakagami-𝜇 if its probability density 

function is defined as follows: 

𝑔(𝑥|𝜇, Ω) = 2(𝜇 Ω⁄ )𝜇 𝑥2𝜇−1𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) Γ(𝜇)⁄ ,      𝑥 > 0,              (2.1) 

as 𝜇 is a shape parameter, Ω is a second parameter which control spread (scale parameter) 

and 𝜇; Ω > 0. When apply of radio channels modeling 𝜇 ≥ 0.5, also known as the" 

fading figure" or "fading parameter" is defined as: 

 𝜇 =
Ω2

𝐸[(𝑋2−Ω)2]
 ,    𝜇 ≥ 0.5, 

and Ω represents average power of envelope signal and it can be estimated as 

Ω = 𝐸[𝑋2]. 
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The 𝑚𝑡ℎ moment of the Nakagami−𝜇 distribution is given 

𝐸[𝑋𝑚] =
Γ(𝜇 + 𝑚 2⁄ )

Γ(𝜇)
(
Ω

𝜇
)

𝑚 2⁄

, 

where Γ(. ) is the standard Gamma function. The cumulative distribution of a random 

variable from (2.1) can be obtained as 

𝐺(𝑥|𝜇, Ω) =
1

Γ(𝜇)
𝛾(𝜇, 𝜇𝑥2 Ω⁄ ),       (2.2) 

and it has a survival function shown below: 

𝐺̅(𝑥|𝜇, Ω) =
Γ(𝜇) − 𝛾(𝜇, 𝜇𝑥2 Ω⁄ )

Γ(𝜇)
 , 

where 𝛾(. , . ) is the incomplete gamma function. 

 

In Telatar (1999), 𝐺(𝑥|𝜇, Ω) is shown in terms of an incomplete gamma function  which 

is dependent on the average signal-to-noise ratio (𝜇𝑥²/Ω ) which that we have denoted 

by ASNR. This enables the system to be characterized. 

 

The basic measure of uncertainty for density function 𝑔x is differential entropy 

𝐻𝑋(𝑔𝑋) = 𝐸[−𝐼𝑛 𝑔𝑋(𝑋)] = ∫ 𝑔𝑋(𝑢)
∞

0
ln

1

𝑔𝑋(𝑢)
𝑑𝑢 .                         (2.3) 

 

The non-negative absolutely continuous random variable 𝑋 differential entropy is also 

recognized as the measure of Shannon information or called sometimes "dynamic 

measure of uncertainty". Intuitively speaking the entropy provides the expected 

uncertainty included in 𝑔𝑋(. ) about the predictability of a result of 𝑋, see Ebrahimi and 

Pellery (1995). As well it measures how the distribution spreads on its domain. A high 

𝐻𝑋 value corresponds to a low concentration of the mass of 𝑋 probability. 

 

Havrda and Charvat (1967) presented 𝛽 −entropy class as shown below: 

𝐻𝛽(𝑔) = {

1

𝛽 − 1
[1 − ∫ 𝑔𝛽(𝑥)𝑑𝑥

∞

0

] ;

𝐻𝑋

𝛽 ≠ 1, 𝛽 > 0,
𝛽 = 1

    .   

where 𝛽 is a non-stochastic constant. 

 

If 𝐻(𝑓) (𝐻𝛽(𝑓)) and 𝐻(𝑔) (𝐻𝛽(𝑔)) are the two corresponding differential entropies 

(𝛽 −entropies) of 𝑓 and  𝑔 density functions respectively, thus, the relative loss of 

entropies while using "𝑔 "instead of "𝑓 " is defined as follow: 

𝑆𝐻(𝑔𝑋) =
𝐻(𝑓) − 𝐻(𝑔)

𝐻(𝑓)
  

and 

𝑆𝐻𝛽
(𝑔𝑋) =

𝐻𝛽(𝑓) − 𝐻𝛽(𝑔)

𝐻𝛽(𝑓)
. 

 

In the literature many concepts of partial ordering among random variables were taken 

into consideration. These concepts are handful in terms of modeling for applications of 

reliability and economics. 
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Stochastic orders were utilized throughout the past forty years, at an accelerated rate, in 

several areas of probability and statistics. Such areas including theory of reliability, 

theory of queuing, survival analysis, biology, economics, insurance, actuarial science, 

operations research and management science. Consequently, many stochastic orders were 

completely looked into as part of the literature. In this section, we introduced a number of 

such orders taken into account in the present dissertation; see "Müller and Stoyan (2002)" 

and "Shaked and Shanthikumar (1994; 2007)" for an exhaustive monograph on this topic. 

 

As part of this section, we are mentioning stochastic orders that compare the "location" of 

random variables, which will be studied in the following results. The most common and 

important orders, considered in this result, are: the order of usual stochastic ≤𝑠𝑡, the order 

of hazard ≤ℎ𝑟 and the order of likelihood ratio ≤𝑙𝑟 . 

 

The below definition is key to our work: 

 

Definition 2.1. Let 𝑋 and 𝑌  be two nonnegative and absolutely continuous random 

variables, with density function "𝑓 " and "𝑔", distribution function "𝐹" and "𝐺", survival 

function "𝐹" and "𝐺 ", hazard rate functions "𝑟𝐹" and “𝑟𝐺", differential entropy 

"HX(f)" and "𝐻𝑌(𝑔)" and 𝛽 −entropy "𝐻𝛽(𝑓)" and "𝐻𝛽(𝑔)" respectively. We state that 𝑋 

is smaller than 𝑌 in the: 

i) Likelihood ratio ordering (denoted as 𝑋 ≤𝑙𝑟 𝑌 if 𝑓(𝑥)/𝑔(𝑥) is decreasing over the union of 

the supports of 𝑋 and 𝑌. 

ii) Differential entropy ordering (denoted as 𝑋 ≤𝐷 𝑌 if 𝐻𝑋(𝑓) ≤ 𝐻𝑌(𝑔) over the union 

of the supports of 𝑋 and 𝑌. 

iii) 𝛽-entropy ordering (denoted as 𝑋 ≤𝛽 𝑌 if 𝐻𝛽(𝑓) ≤ 𝐻𝛽(𝑔) over the union of the 

supports of 𝑋 and 𝑌. 

Definition 2.2. Let 𝑋 and 𝑌 be two nonnegative and absolutely continuous random 

variables, having density function 𝑓𝑋 and 𝑔𝑌 respectively. Then, the cross-entropy is 

𝐻(𝑓X, 𝑔𝑌) = 𝐸[− ln(𝑓𝑋(𝑥) 𝑔𝑌(𝑥)⁄ )] = ∫ 𝑓𝑋(𝑢)  ln
1

𝑓𝑋(𝑢) 𝑔𝑌(𝑢)⁄
𝑑𝑢 .

∞

0

            (2.5) 

3.   Main Results 

3.1 Nakagami-𝝁 distribution 

Let 𝑋 be a random variable with the probability density function (2.1); then by using 

(2.3) we have 

𝐻𝑋(𝑔(𝑥|𝜇, Ω)) = ∫
2(𝜇 Ω⁄ )𝜇𝑥2𝜇−1𝑒𝑥𝑝(−𝜇𝑥2|Ω)

Γ(𝜇)

∞

0

ln
Γ(𝜇)

2(𝜇 Ω⁄ )𝜇𝑥2𝜇−1𝑒𝑥𝑝(−𝜇𝑥2|Ω)
 𝑑𝑥          

 

=
2ln Γ(𝜇)(𝜇 Ω⁄ )𝜇

Γ(𝜇)
∫ 𝑥2𝜇−1

∞

0

𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) 𝑑𝑥 −
2(𝜇 Ω⁄ )𝜇

Γ(𝜇)
 

× ∫ 𝑥2𝜇−1 
∞

0

𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ )(𝑙𝑛 2 + 𝜇ln(𝜇/Ω) + (2𝜇 − 1) ln 𝑥 −
𝜇𝑥2

Ω
)  𝑑𝑥, 
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since  

∫ 𝑥2𝜇−1 
∞

0

𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ )𝑑𝑥 = Γ (𝜇) (2 (
𝜇

Ω
)
𝜇

) ,⁄  

and 

∫ 𝑥2𝜇−1 
∞

0

𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) ln 𝑥𝑑𝑥 =
1

4
Γ(𝜇) (

𝜇

Ω
)
−𝜇

[𝜓(𝜇) − ln 𝜇 + lnΩ], 

 

we have 

𝐻𝑋(𝑔(𝑥|𝜇, Ω)) = 𝜇(1 − 𝜓(𝜇)) +
1

2
𝜓(𝜇) + ln((

Ω

𝜇
)

1

2 Γ(𝜇)

2
), 

where 𝜓 is the digamma function. 

 

As well, 𝛽 −entropy could be gained by the usage of (2.1) and (2.4) as shown below: 

 𝐻𝛽(𝑔(𝑥|𝜇, Ω)) =
1

𝛽−1
[1 − (

2(𝜇 Ω⁄ )𝜇

Γ(𝜇)
)
𝛽

∫ (𝑥2𝜇−1 𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ))
𝛽∞

0
𝑑𝑥 ] 

                      =
1

𝛽−1
[1 − (

2(𝜇 Ω⁄ )𝜇

Γ(𝜇)
)
𝛽 1

2
(

Ω

𝛽𝜇
)
𝜇𝛽−

𝛽

2
+

1

2
∫ 𝑦𝜇𝛽−

𝛽

2
+

1

2
∞

0
 𝑒𝑥𝑝(−𝑦)𝑑𝑦] 

 =
1

𝛽 − 1
[1 − Γ(𝜇)−𝛽𝛽−𝜇𝛽+

𝛽−1

2 (
𝜇

Ω
)

𝛽−1

2
Γ (𝜇𝛽 +

1 − 𝛽

2
)] . 

Note that 

lim
𝛽→1

𝐻𝛽(𝑔(𝑥|𝜇, Ω))  =  𝜇(1 − 𝜓(𝜇)) +
1

2
𝜓(𝜇) + ln((

Ω

𝜇
)

1

2 Γ(𝜇)

2
) 

                                                    =  𝐻𝑋(𝑔(𝑥|𝜇, Ω)) . 

 

The Nakagami distribution covers a wide range of fading conditions. A special case of 

the Nakagami distribution in which 𝜇 = 0.5 implies the one-sided Gaussian distribution 

(OSG(Ω)). Also, when 𝜇 = 1, it implies the Rayleigh distribution (𝑅𝐴(Ω)). In addition, 

if 𝑌 belongs to gamma distribution (𝐺(𝜃₁, 𝜃₂)) with shape and scale parameters 𝜃₁ and 

𝜃₂ respectively, then √𝑌 belongs to Nakagami distribution with parameters μ =  𝜃₁ and 

Ω = 𝜃₁𝜃₂. Finally, if 2µ is integer-valued and if 𝐵 follows a chi distribution (Chi(2𝜇)) 

with parameters 2µ, hence √(Ω ⁄ 2𝜇)𝐵 ∈ 𝑔(𝑥│𝜇, Ω). 

Table 1:  Differential entropy measure for some particular values of the 

parameters for Nakagami-μ distributions 

Distribution Density function Differential entropy 

 OSE
 

     2/exp/2 22/1
xxg    

2

1
ln /2

2/1





 

 ,G
 

       1
1/ exp /g y y y


  


           1 ln             

 2Chi
      

2
1 2 1

/2 exp
2

g y
y

y
  

 


 
  
 

        1 1
1 ln

2 2
          

 RA
 

      /exp/2 2xxxg     2/2/ln1   



Mervat Mahdy, Dina S. Eltelbany 

Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp909-930 914 

Table 2:  𝜷 −Entropy measures for some particular values of the parameters for 

Nakagami-μ distributions 

Distribution Density function  -entropy 

 OSE
 

     2/exp/2 22/1
xxg   

 
1

1 2 21
1 2

1








 

 


 
  
 

 

 ,G
 

       1
1/ exp /g y y y


  


        



 1//11
1

1 



 

 2Chi       
2

1 2 1
/2 exp

2
g y

y
y

  
 


 
  
 

 

 
 

1 1

2 2
1

2

1 2 1
1

1

 







  

 



 

 
         

 

 

 RA
 

      /exp/2 2xxxg  
 

2 2 1

1 2 2
1

1 2 1/ 2
1

 
  



 


 
    

  

 
 

where γ is the Euler-Mascheroni constant( lim
𝑛→∞

(− ln(𝑛) + ∑
1

𝑘

𝑛
𝑘=1 )) . 

 

The differential entropy and 𝛽-entropy values for particular values of the parameters for 

some versions of the Nakagami-𝜇 distributions have been derived and are summarized in 

Table 1 and Table 2. 

 

 

Fig 1: Entropy for Versions of Nakagami Distribution  

 

  

2.2 Size-biased (SB) Nakagami−𝝁 distribution of order 𝜽 

Let 𝑋 be a random variable with the probability density function (2.1) and 𝑤(𝑥) = 𝑥𝜃as 

result the weighted distribution function could be expressed as shown below: 

𝑔𝑤𝜃(𝑥) =
𝑥𝜃𝑔(𝑥)

𝐸
𝑔𝑤𝜃[𝑥𝜃]

 ;            𝑥 > 0,                        (3.1) 

the parameter 𝜃 in the above weighted distribution is said to the moment parameter. 

When 𝜃 = 1, (3.1) is considered as the length-biased distribution.  

3

4

5

6

3

4

5

6
0.2

0.4
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1

1.2



Entropy for Nakagami



H
X
(g

)

3

4

5

6

3

4

5

6
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

-Entropy for Nakagami



H

(g

)
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As 

∫ 𝑡𝜐−1 ln 𝑡 𝑒𝑥𝑝(−𝑝𝑡)
∞

0

𝑑𝑡 = Γ(𝜐)𝑝−𝜐[𝜓(𝜐) − ln 𝑝] .                                       (3.2) 

 

Thus, 

𝐸𝑔𝑤𝜃[𝑥𝜃] =
1

Γ(𝜇)
(
Ω

𝜇
)

𝜃

2

Γ (𝜇 +
𝜃

2
) . 

 

By using (3.1), we gain size-biased (SB) nakagami-𝜇 density function of order 𝜃 as 

shown below: 

𝑔𝑤𝜃(𝑥|𝜇, Ω) =
2(𝜇 Ω⁄ )𝜇+

𝜃

2𝑥2𝜇+𝜃−1 𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ )

Γ (𝜇 +
𝜃

2
)

 .                                                   (3.3) 

 

In recent time, Mudasir et al. (2016) presented length biased of nakagami distribution of 

order 1 (which is special case of (3.2)). 

 

The cumulative distribution of a random variable from (3.3) could be gained as shown 

below: 

𝐺𝒲𝜃(𝑥|𝜇, Ω) =
2(𝜇 Ω⁄ )𝜇+

𝜃

2

Γ (𝜇 +
𝜃

2
)

∫ 𝑥2𝜇+𝜃−1 𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) 𝑑𝑥 .
𝑡

0

 

=
𝛾 (𝜇 +

𝜃

2
, 𝜇𝑡2 Ω⁄ )

Γ (𝜇 +
𝜃

2
)

  . 

 

Through the usage of  Eq. (3.2), integration (3.3) and after some algebra, we get  

𝐻 (𝑔𝒲𝜃(𝑥|𝜇, Ω))

= ln 2 + (𝜇 +
𝜃

2
) [ln(𝜇 Ω⁄ ) − 1] +

2𝜇 + 𝜃 − 1

2
[𝜓 (𝜇 +

𝜃

2
) − ln (

𝜇

Ω
)]

− ln Γ (𝜇 +
𝜃

2
) . 

 

Through a similar process, 𝛽 −entropy of weighted Nakagami (𝑁𝑤) could be gained as 

shown below: 

𝐻𝛽 (𝑔𝒲𝜃(𝑥|𝜇, Ω)) =
1

𝛽−1
(1 −

2𝛽(𝜇 Ω⁄ )
𝛽(𝜇+

𝜃
2
)

Γ𝛽(𝜇+
𝜃

2
)

∫ 𝑥𝛽(2𝜇+𝜃−1) 𝑒𝑥𝑝(−𝛽𝜇𝑥2 Ω⁄ )
∞

0
 𝑑𝑥)  

                             =
1

𝛽−1
(1 −

2𝛽−1(Ω 𝜇⁄ )
1
2
(1−𝛽)

Γ𝛽(𝜇+
𝜃

2
)

(1 𝛽⁄ )𝛽𝜇+
1

2
(𝛽𝜃−𝛽+1)

Γ(𝛽𝜇 +
𝛽

2
(𝜃 −

1

𝛽
− 1)))  
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Table 3:  Differenatial Entropy for some particular values of the parameters for 

size-biased Nakagami−𝝁 distributions 

Distribution Density function Differential entropy 

   SB OSE 
 

   
 

1
2

22 1/ 2 exp / 2

1 / 2

x x








  

 

    
1 1 1

ln 2 ln 2 1 ln 2 ln
2 2 2 2

   

      

             
    

 

  ,SB G  
 

   

 

1/2
2/ exp /

/ 2

x x


 
 

 

 
  

 

  

 
   

2

2/ 2
ln / 2 1 ln /

2 / 2 2

 

  
    

 



   
        

    

 

  2SB Chi   

 

2
1

2 122 exp
2

/ 2

x
x




 

 

 
   

 
 

 
 

1
22 2 1 2

ln ln 2
22 2 2

2




    
 

 

 

    
           

 

 

  SB RA 
 

   
 

2
1 2

22 1/ exp /

2 / 2

x x







  

 

  
2 1 2 2

ln 2 ln 1 ln ln
2 2 2 2

   

       

          
    

 

Table 4:  𝜷 −Entropy measures for some particular values of the parameters for 

size-biased Nakagami−𝝁 distributions 

Distribution Density function  -entropy 

  SB OSE 

 

   
 

1
2

22 1/ 2 exp / 2

1 / 2

x x








  

 

 
 11

2 21 2 2
1

1 11 1

2 2

 



   


 
 

 
 

                

 

  ,SB G  
 

   

 

1/2
2/ exp /

/ 2

x x


 
 

 

 
  

 
  

11 2

1

/ 1
1 2

1
1

1
2 2


 




  

  
  

 
     



  
    

  
      

         
     

 

  2SB Chi 

 

 

2
1

2 122 exp
2

/ 2

x
x




 

 

 
   

 
 

 
 

 

 

1 2 1 1
221 2 2

1
111 2 1

2 2 2

  



    

     
 
 

             
    
 

 

  SB RA 
 

   
 

2
1 2

22 1/ exp /

2 / 2

x x







  

 
 

 
1 1

1
1 2 21 2

1
11 11 1

2 2


  

 

    


 
    

 
 

                   

 

where γ is the Euler-Mascheroni constant ( lim
𝑛→∞

(− ln(𝑛) + ∑
1

𝑘

𝑛
𝑘=1 )),  𝑆𝐵𝜃(OSG(Ω)) is 

𝑆𝐵 of one-sided Gaussian distribution with order 𝜃, 𝑆𝐵𝜃(𝐺 (𝜇, 𝜃)) is 𝑆𝐵 of Gamma 

distribution with order 𝜃, 𝑆𝐵𝜃(𝐶ℎ𝑖(2𝜇)) is 𝑆𝐵 of Chi-distribution with order 𝜃 and 

𝑆𝐵𝜃 (𝑅𝐴 (Ω)) is SB of Rayleigh distribution with order 𝜃. The differential entropy and 

𝛽-entropy values for particular values of the parameters for 𝑆𝐵 nakagami-𝜇 distributions 

of order 𝜃 have been derived and are summarized in Table 3 and Table 4. 
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The relative loss of entropies while using size-biased (𝑆𝐵) nakagami-𝜇 distribution of 

order 𝜃 (𝑔𝑤𝜃)instead of the nakagami-𝜇 distribution (𝑔) are defined as shown below: 

𝑆𝐻 (𝑔𝒲𝜃(𝑥|𝜇, Ω)) =
𝐻(𝑔) − 𝐻(𝑔𝒲𝜃)

𝐻(𝑔(𝑥|𝜇, Ω))
, 

and 

𝑆𝐻𝛽
(𝑔𝒲𝜃(𝑥|𝜇, Ω)) =

𝐻𝛽(𝑔(𝑥|𝜇, Ω)) − 𝐻𝛽 (𝑔𝒲𝜃(𝑥|𝜇, Ω))

𝐻𝛽(𝑔(𝑥|𝜇, Ω))
 . 

 

 

 

Fig 2. Entropies for size-biased (SB) Nakagami-μ distribution of order θ=1 

 

  

3.3 Azzeline weighted version of Nakagami-μ distribution 

Surprisingly, though Azzalini's method was utilized intensively for many symmetric and 

non-symmetric distributions. In this section, it will be noted that if we implement 

Azzalini's method to the distribution of Nakagami, it will result in a novel class of 

weighted distributions of Nakagami (WN) with a sensitive skewness parameter. Now we 

denote a member of this novel class of weighted distributions as WN distribution. This 

sensitive skewness parameter regulates the shape of the probability density function (pdf) 

of the WN distribution. 

 

Let 𝑋 be a non-negative random variable with an absolutely continuous distribution 

function 𝐺, survival function 𝐺 and probability density function (𝑝𝑑𝑓) 𝑔.  Let 𝑙𝑋 =
𝑖𝑛𝑓 {𝑥 ∈ ℝ1: 𝐺(𝑥) > 0}, 𝑢𝑋 = 𝑠𝑢𝑝 {𝑥 ∈ ℝ1: 𝐹(𝑥) < 1} and  𝑆𝑋 = (𝑙𝑋, 𝑢𝑋). Let 𝑤(. ) be 

a non-negative function defined on the real line. 

 

Consider that when 𝑤(𝑥) = 𝐺(𝛼𝑥), the weight function is an increasing function for all 

𝛼. It implies that if the pdf of 𝑋 is unimodal consequently 

𝑀𝑜𝑑𝑒 (𝑋𝑊) > 𝑀𝑜𝑑𝑒 (𝑋). 
 

3
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
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Furthermore, the weighted distribution function could be expressed as shown below: 

𝐹𝒲(𝑡) = ∫
𝐺(𝛼𝑥)𝐺(𝑢) 𝑑𝑢

𝐸[𝐺(𝛼𝑥)]
 ,

𝑡

0

 

                             =
1

𝐸[𝐺(𝛼𝑥)]
{𝐺(𝛼𝑡)𝐺(𝑡) − ∫ 𝐺∖(𝛼𝑢)𝐺(𝑢) 𝑑𝑢

𝑡

0

} , 

                             =
𝐺(𝑡)[𝐺(𝛼𝑡) − 𝑀𝐹[𝑡]]

𝐸[𝐺(𝛼𝑥)]
, 

where 𝑀𝐹(𝑡) = ∫ 𝐺∖(𝛼𝑢)𝐺(𝑢)𝑑𝑢 𝑎𝑛𝑑 
𝑡

0
𝐺∖(𝛼𝑥) = 𝜕 𝐺(𝛼𝑥) 𝜕𝑥 ⁄ . 

 

Moreover, the survival function of the weighted distribution could also be expressed as 

follows: 

𝐹̅𝒲(𝑡) = ∫
−𝐺(𝛼𝑢)𝐺

∖
(𝑢)𝑑𝑢 

𝐸[𝐺(𝛼𝑡)]

∞

𝑡
=

𝐺(𝑡)[𝐺(𝛼𝑡)+𝑈𝐹(𝑡)]

𝐸[𝐺(𝛼𝑡)]
. 

 

Here, 𝑈𝐹(𝑡) = ∫ 𝐺∖(𝛼𝑢)𝐺(𝑢)𝑑𝑢 𝐺(𝑡)⁄
∞

𝑡
.  Note that if  𝑤∖(𝑡) > 0, then M𝐹(𝑡) ≥ 0 for 

all 𝑡 ≥ 0. Now, we define 

𝐵(𝑥) = 𝐸[𝐺((𝛼𝑥)|𝑋 ≤ 𝑥)] =
∫ 𝐺(𝛼𝑡) 𝑓(𝑡)𝑑𝑡

𝑥

0

𝐺(𝑥)
. 

 

Thus, the distribution function can be rewritten as the shown below 

𝐹𝒲(𝑥) =
𝐵(𝑥)𝐺(𝑥)

𝐸[𝐺(𝛼𝑥)]
 . 

 

As well, assume 

𝐴(𝑥) = 𝐸[𝐺((𝛼𝑥)|𝑋  ≥ 𝑥)] =
∫ 𝐺(𝛼𝑢)𝑔(𝑡)𝑑𝑡

∞

𝑥

𝐺(𝑥)
  . 

 

As a result, we could write 𝐸[𝐺(𝛼𝑥)] as 

𝐸[𝐺(𝛼𝑥)] = 𝐵(𝑥)𝐺(𝑥) + 𝐴(𝑥)𝐺(𝑥). 
 

Since 

𝐺(𝛼𝑥|𝜇, Ω) =
1

Γ(𝜇)
𝛾(𝜇, 𝜇(𝛼𝑥)2 Ω⁄ ) , 

and 

𝐸[𝐺(𝛼𝑥|𝜇, Ω)] =
(𝜇 Ω⁄ )𝜇

Γ2(𝜇)
∫ 𝑦𝜇−1 𝑒𝑥𝑝(−𝜇𝑦|Ω)

∞

0

𝛾(𝜇, 𝜇𝛼2𝑦 Ω⁄ ) 𝑑𝑦 .           (3.4) 

 

Through using generalized hypergeometric series as shown below: 

𝑚𝐹𝑛(𝛼1, … , 𝛼𝑚; 𝑐1 , … , 𝑐𝑛; 𝑑) = ∑
(𝛼1)𝑘 … (𝛼𝑚)𝑘

(𝑐1)𝑘 … (𝑐𝑚)𝑘

∞

𝑘=0

𝑑𝑘

𝑘
 

as (𝑎)₀ = 1,  (𝑎)𝑘 = (𝑎)(𝑎 + 1). . . (𝑎 + 𝑘 − 1) which is Pochhammer's polynomial.  
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Inserting this expansion in Eq. (3.4) and, after some algebra, we could be writing 

𝐸[𝐺(𝛼𝑥|𝜇, Ω)] =
𝜇2𝜇−1𝛼2𝜇Γ(2𝜇)

(𝜇𝛼2 + 𝜇)2𝜇Γ2(𝜇) 2𝐹1 (1,2𝜇; 𝜇 + 1; 
𝜇𝛼2

𝜇𝛼2 + 𝜇
) . 

 

Then, the probability density function of weighted Nakagami-μ distribution is 

𝑓𝑁
𝑤(x|𝜇, Ω; α) =

2(𝜇)1−μ(𝜇α2 + 𝜇)2𝜇𝑥2𝜇−1 𝑒𝑥𝑝 (−
𝜇𝑥2

Ω
) γ(𝜇, 𝜇(α𝑥)2/Ω)

(Ωα2)𝜇Γ(2𝜇) 𝐹2 1  
(1,2𝜇; 𝜇 + 1;

𝜇α2

𝜇α2+𝜇
)

 ,     𝑥 > 0         (3.5) 

and 0 otherwise, Eq. (3.5) is referred to as 𝑊𝑁(𝜇, Ω, 𝛼). The distribution function of (3.5) 

could be written as follows 

𝐹𝑁
𝑤(x|𝜇, Ω; α) =

(𝜇)1−μ(𝜇α2 + 𝜇)2𝜇 ∑
(−1)𝑘(α2)

𝜇+𝑘

𝑘!(𝜇+𝑘)(
𝜇

Ω
)
𝜇

∞
𝑘=0 γ(2𝜇 + 𝑘, 𝑥2)

(Ωα2)𝜇Γ(2𝜇) 𝐹2 1 (1,2𝜇; 𝜇 + 1;
𝜇α2

𝜇α2+𝜇
)

, 

 

By series we could rewrite incomplete gamma function as shown below: 

γ(α, 𝑥) = ∑
(−1)𝑘𝑥α+𝑘

𝑘! (α + 𝑘)

∞

𝑘=0

.                                                                                      (3.6) 

 

As the differential entropy for distribution𝑓𝑁
𝑤(𝑥|𝜇, 𝛺; 𝛼) could derive as shown below: 

 𝐻𝑋(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) = −∫

∞

0
𝑓𝑁

𝑤(𝑥|𝜇, Ω; 𝛼) ln 𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼) 𝑑𝑥.                  (3.7)  

= − [ln
2(𝜇)1−𝜇(𝜇𝛼2 + 𝜇)2𝜇)

(Ω𝛼2)𝜇Γ(2𝜇) 𝐹2 1 (1,2𝜇; 𝜇 + 1;
𝜇𝛼2

𝜇𝛼2+𝜇
)
] 

                   −
2(𝜇)1−𝜇(𝜇𝛼2 + 𝜇)2𝜇)

(Ω𝛼2)𝜇Γ(2𝜇) 𝐹2 1 (1,2𝜇; 𝜇 + 1;
𝜇𝛼2

𝜇𝛼2+𝜇
)
 

                                               × ∫ (
𝑥2𝜇−1 𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) 𝛾(𝜇, 𝜇(𝛼𝑥)2 Ω⁄ )

× ln((𝑥2𝜇−1 𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) 𝛾(𝜇, 𝜇(𝛼𝑥)2/Ω))
)

∞

0

𝑑𝑥, 

Now, suppose 

𝑯1(𝜇, Ω) = ∫ 𝑥2𝜇−1 𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) 𝛾(𝜇, 𝜇(𝛼𝑥)2 Ω⁄ ) ln 𝑥 𝑑𝑥

∞

0

; 

𝑯2(𝜇, Ω) = ∫ 𝑥2𝜇+1 𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) 𝛾(𝜇, 𝜇(𝛼𝑥)2 Ω⁄ )𝑑𝑥

∞

0

; 

𝑯3(𝜇, Ω) = ∫ 𝑥2𝜇−1 𝑒𝑥𝑝(−𝜇𝑥2 Ω⁄ ) 𝛾(𝜇, 𝜇(𝛼𝑥)2 Ω⁄ ) ln 𝛾(𝜇, 𝜇(𝛼𝑥)2/Ω) 𝑑𝑥.

∞

0
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Therefore, we can rewrite (3.7) as follows: 

         𝐻𝑋(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) = − ln

2(𝜇)1−𝜇(𝜇𝛼2 + 𝜇)2𝜇)

(Ω𝛼2)𝜇Γ(2𝜇) 𝐹2 1 (1,2𝜇; 𝜇 + 1;
𝜇𝛼2

𝜇𝛼2+𝜇
)
             (3.8) 

−
2(𝜇)1−𝜇(𝜇𝛼2 + 𝜇)2𝜇

(Ω𝛼2)𝜇Γ(2𝜇) 𝐹2 1 (1,2𝜇; 𝜇 + 1;
𝜇𝛼2

𝜇𝛼2+𝜇
)
 

× [(2𝜇 − 1)𝑯1(𝜇, Ω) − (𝜇 Ω⁄ )𝑯2(𝜇, Ω) + 𝑯3(𝜇, Ω)]. 
 

By using Eq. (15), section 6.455 in Gradshteyn and Ryzhik (2014), we can derive: 

 𝑯2(𝜇, Ω) =
1

2
[

(𝜇𝛼2/Ω)
𝜇

𝜇(
𝜇𝛼2

Ω
+

𝜇

Ω
)
2𝜇+1 2𝐹1 (1,2𝜇 + 1; 𝜇 + 1;

𝜇𝛼2

𝜇𝛼2+𝜇
)],   (3.9) 

where 𝑅𝑒 𝜇(𝛼2 + 1) > 0, 𝑅𝑒 𝜇 > 0 , 𝑅𝑒 (2𝜇 + 1) > 0. By using Eq. (3.6), we can 

rewrite 𝑯1(𝜇, Ω) as following 

𝑯1(𝜇, Ω) =
1

4
∫ 𝑦𝜇−1𝑒𝑥𝑝(−𝜇𝑦/Ω)𝛾(𝜇, 𝜇𝛼2𝑦/Ω) ln 𝑦 𝑑𝑦.

∞

0

 

 

The last equation could be expressed as follows 

𝑯1(𝜇, Ω) =
1

4

Ω

𝜇𝛼2
(

Ω

𝜇𝛼2
)
𝜇−1

∫(𝓏)𝜇−1𝑒𝑥𝑝 (−
𝓏

𝛼2
)

∞

0

𝛾(𝜇, 𝓏) (ln
𝓏Ω

𝜇𝛼2
)𝑑𝓏. 

In addition, 

∫ 𝑥𝛼+𝑘−1𝑒
−𝑥

𝜃 ln 𝑥 𝑑𝑥 = 𝜃𝛼+𝑘(𝛼 + 𝑘 − 1)! [1 +
1

2
+

1

3
+ ⋯+

1

𝛼 + 𝑘 − 1
− ln (

𝛾

𝜃
)]

∞

0

; 𝜃 > 0, 𝑥

> 0, 
where 

𝛾 = 𝑒𝑥𝑝(𝑐), 𝑐 = lim
𝑘→∞

(∑
1

𝑛
− ln𝑘

𝑘

𝑛=1

) = 0.5772156649, 

and c is Euler-Mascheroni constant. We have 

𝑯1(𝜇, Ω) =
1

4
(

Ω

𝜇𝛼2)
𝜇
∑

[
 
 
 
 

(−1)𝑛

𝑛!(𝜇+𝑛)

[
 
 
 
 [

𝛼2𝛼+2𝑘(2𝜇 + 𝑛 − 1)!

× [1 +
1

2
+

1

3
+ ⋯+

1

2𝜇+𝑛−1
− ln (

𝛾

𝜃2)]
]

+(𝛼2)2𝜇+𝑛Γ(2𝜇 + 𝑛) ln (
Ω

𝜇𝛼2) ]
 
 
 
 

]
 
 
 
 

∞
𝑛=0 . 

 

By using harmonic number, we have 

𝑩(𝑛, 𝜇) = ∑
1

𝑘

2𝜇+𝑛−1

𝑘=1

= 1 +
1

2
+

1

3
+ ⋯ +

1

2𝜇 + 𝑛 − 1
. 
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Thus, we get: 

𝑯1(𝜇, Ω) =
1

4
(

Ω

𝜇𝛼2
)
𝜇

∑ [
(−1)𝑛

𝑛! (𝜇 + 𝑛)
[[

𝛼2𝛼+2𝑘(2𝜇 + 𝑛 − 1)!

× (𝑩(𝑛, 𝜇) − ln (
𝛾

𝛼2
))

]

∞

𝑛=0

+ (𝛼2)2𝜇+𝑛Γ(2𝜇 + 𝑛) ln (
Ω

𝜇𝛼2
)]] .                                                         (3.10) 

 

We could rewrite γ(μ,x) by utilizing the lower normalized incomplete gamma function 

P(μ,x) as shown below: 

𝛾(𝜇, 𝑥) = Γ(𝜇)𝑃(𝜇, 𝑥). 
 

Thus, we could re-write 𝑯3(𝜇, Ω) as 

𝑯3(𝜇, Ω) = ∫ 𝑦𝜇−1𝑒𝑥𝑝(−𝜇𝑦 Ω⁄ )𝛾(𝜇, 𝜇𝛼2𝑦 Ω⁄ ) ln 𝛾(𝜇, 𝜇𝛼2𝑦 Ω⁄ )𝑑𝑦 

∞

0

 

= ∫ 𝑦𝜇−1𝑒𝑥𝑝(−𝜇𝑦 Ω⁄ )𝛾(𝜇, 𝜇𝛼2𝑦 Ω⁄ ) [𝑙𝑛𝑃(𝜇, 𝜇𝛼2𝑦 Ω⁄ ) + ln Γ(𝜇)] 𝑑𝑦 

∞

0

, 

as ∂𝑃(𝑎, 𝑥) ∂𝑥⁄ = 𝑒𝑥𝑝(−𝑥)𝑥𝑎−1 Γ(𝑎)⁄  , then through the transformation technique and 

after some algebra, we could write the following 

𝑯3(𝜇, Ω)

=
Γ2(𝜇)

(𝜇𝛼2 Ω⁄ )𝜇
(𝜇𝛼2 Ω⁄ )−𝜇+1 ∫ 𝑢 𝑒𝑥𝑝 ((𝜗 + ∑𝜀𝑖𝜗

𝑖+1

4

𝑖=1

) 𝛼2 + 2𝑢 + 𝜗 + ∑𝜀𝑖𝜗
𝑖+1

4

𝑖=1

⁄ )

∞

0

𝑑𝑢

+ ln Γ(𝜇)∫ y𝜇−1𝑒𝑥𝑝(−𝜇𝑦 Ω⁄ )𝛾(𝜇, 𝜇𝛼2𝑦 Ω⁄ )𝑑𝑦 ,

∞

0

 

Here  is a number of some notions: 

• 𝜗 = (𝑒𝑥𝑝(𝜇)Γ(1 + 𝜇))
1/𝜇

; 

• 𝜀1 =
1

𝜇+1
; 

• 𝜀2 =
3𝜇+5

2(𝜇+1)2(𝜇+1)
; 

• 𝜀3 =
8𝜇2+33𝜇+5

2(𝜇+1)3(𝜇+2)(𝜇+3)
; 

• 𝜀4 =
125𝜇4+1179𝜇3+3971𝜇2+5661𝜇+2888

24(𝜇+1)4(𝜇+2)2(𝜇+3)(𝜇+4)
. 
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Then 

𝑯3(𝜇, Ω) =
Γ2(𝜇)

(𝜇𝛼2 Ω⁄ )𝜇
∫ 𝑢 𝑒𝑥𝑝((1 −

1

𝛼2
)∑ 𝜀𝑖

4

𝑖=1

Γ
𝑖+1

𝜇 (1 + 𝜇)𝑒𝑥𝑝 (
𝑖 + 1

𝜇
𝑢) + 2𝑢

∞

0

+ (1 −
1

𝛼2
) Γ1 𝜇⁄ (1 + 𝜇)𝑒𝑥𝑝 (

𝑢

𝜇
)) 𝑑𝑢 + 4 ln(𝜇) + 𝑯1(𝜇, Ω) 

Let 𝛼1 = (1 −
1

𝛼2
) and 𝛼2 = Γ1 𝜇⁄ (1 + 𝜇), then 

𝑯3(𝜇, Ω) =
Γ2(𝜇)

(𝜇𝛼2 Ω⁄ )𝜇
∫ 𝑢 𝑒𝑥𝑝(𝛼1 ∑ 𝜀𝑖

4

𝑖=1

Γ
𝑖+1

𝜇 (1 + 𝜇)𝑒𝑥𝑝(
𝑖 + 1

𝜇
𝑢) + 2𝑢 + 𝛼2𝑒𝑥𝑝 (

𝑢

𝜇
))𝑑𝑢

∞

0

+ 4 ln(𝜇) + 𝑯1(𝜇, Ω), 
 

After some algebra, we get the following 

𝑯3(𝜇, Ω) =
Γ2(𝜇)

(𝜇𝛼2 Ω⁄ )𝜇
𝑴(𝛼, 𝜇) + 4 ln(𝜇)𝑯1(𝜇, Ω)     (3.11) 

where 

𝑴(𝛼, 𝜇) = ∫ 𝑢 𝑒𝑥𝑝(𝛼1 ∑ 𝜀𝑖

4

𝑖=1

Γ
𝑖+1

𝜇 (1 + 𝜇)𝑒𝑥𝑝(
𝑖 + 1

𝜇
𝑢) + 2𝑢 + 𝛼2𝑒𝑥𝑝 (

𝑢

𝜇
))𝑑𝑢,      (3.12)

∞

0

 

it could be solved by the method of Newton-Raphson, where Re 𝜇(𝛼2 + 1) > 0, Re 𝜇 > 0   
𝑎𝑛𝑑 Re (2𝜇 + 1) > 0. 
 

Through substituting (3.9-3.12) in (3.8) we gain the following: 

𝐻𝑋(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) = − ln

2(𝜇)1−𝜇(𝜇𝛼2 + 𝜇)2𝜇

(Ω𝛼2)𝜇 Γ(2𝜇) 2𝐹1 (1,2𝜇; 𝜇 + 1;
𝜇𝛼2

𝜇𝛼2+𝜇
)

 

      −
2(𝜇)1−𝜇(𝜇α2 + 𝜇)2𝜇

(Ωα2)𝜇 Γ(2𝜇) 𝐹2 1 (1,2𝜇; 𝜇 + 1;
𝜇α2

𝜇α2+𝜇
)
 

× [(2𝜇 − 1)𝑯1(𝜇, Ω) − (𝜇 Ω⁄ )𝑯2(𝜇, Ω) + 𝑯3(𝜇, Ω)]. 
 

Further 𝛽 −entropy can be obtained as follows for 𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼): 

𝐻𝛽(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) =

1

𝛽 − 1
  

× [1 −
2(𝜇)𝛽−𝛽𝜇(𝜇𝛼2 + 𝜇)2𝜇𝛽

(𝛺𝛼2)𝜇𝛽𝛤𝛽(2𝜇) 𝐹2 1
𝛽

(1,2𝜇; 𝜇 + 1;
𝜇𝛼2

𝜇𝛼2+𝜇
)
       

×  ∫ (𝑥2𝛽𝜇−𝛽 𝑒𝑥𝑝(−𝛽𝜇𝑥2 Ω⁄ ) 𝛾𝛽(𝜇, 𝜇(𝛼𝑥)2 Ω⁄ ))
∞

0

𝑑𝑥].                          (3.13) 
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Through the alternation of variables to a finite interval and through the usage of Bool's 

rule (Mathews and Fink (2004)), we could reveal that: 

A(α, 𝛽, 𝜇, Ω) = ∫ (𝑥2𝛽𝜇−𝛽 𝑒𝑥𝑝(−𝛽𝜇𝑥2 Ω⁄ ) 𝛾𝛽(𝜇, 𝜇(𝛼𝑥)2 Ω⁄ ))
∞

0
𝑑𝑥,    (3.14) 

≈     
256

405
(3)2𝛽𝜇+𝛽𝑒𝑥𝑝 (−

𝛽𝜇

16Ω
) 𝛾𝛽 (𝜇,

𝜇𝛼2

9Ω
) 

+
24

45
𝑒𝑥𝑝(−𝛽𝜇 Ω⁄ )𝛾𝛽(𝜇, 𝜇𝛼2 Ω⁄ ) 

                      +
256(3)2𝛽𝜇−𝛽

45
𝑒𝑥𝑝(−9𝛽𝜇 Ω⁄ )𝛾𝛽(𝜇, 9 𝜇𝛼2 Ω⁄ ). 

 

By substituting (3.14) in (3.13), we obtain  

𝐻𝛽(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) 

=
1

𝛽 − 1
[1 −

2(𝜇)𝛽−𝛽𝜇(𝜇𝛼2 + 𝜇)2𝜇𝛽)

(Ω𝛼2)𝜇𝛽Γ𝛽(2𝜇) 𝐹2 1
𝛽

(1,2𝜇; 𝜇 + 1;
𝜇𝛼2

𝜇𝛼2+𝜇
)
× A(α, 𝛽, 𝜇, Ω)]. 

 

The relative loss of entropies in using the Azzeline weighted version of Nakagami-μ 

distribution (𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) instead of the Nakagami-μ distribution (𝑔) are defined as 

follows: 

𝑆𝐻(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) =

𝐻𝑋(𝑔) − 𝐻𝑋𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)

𝐻𝑋(𝑔)
, 

and 

𝑆𝐻𝛽
(𝑓𝑁

𝑤(𝑥|𝜇, Ω; 𝛼)) =
𝐻𝛽(𝑔) − 𝐻𝛽(𝑓𝑁

𝑤(𝑥|𝜇, Ω; 𝛼))

𝐻𝛽(𝑔)
. 

4.   Numerical Results and Comparison for Uncertainty Measures 

In the current section, we look into the stochastic ordering of cross-entropy and 

uncertainty measures for Nakagami−𝜇 distribution and weighted versions of Nakagami-

𝜇. The outcomes revealed in tables 5-10 are showing the different measures of entropies, 

while tables 11-16 provide the relative loss of entropies, corresponding to the above six 

measures due to the usage of size-biased distribution and azzeline weighted version, 

instead of the distribution of Nakagami. 
 

If 𝑋, 𝑋𝑤𝜃
and 𝑋𝓏

𝑤 are nakagami- 𝜇 random variable, size-biased nakagami- 𝜇 of order θ 

random variable and azzeline weighted version of nakagami-μ random variable, with 

density function 𝑔(𝑥|𝜇, Ω)and 𝑔𝑤𝜃(𝑥|𝜇, Ω; 𝛼) and 𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼) respectively. 
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As 𝑤(𝑥) = 𝑥𝜃is non-decreasing for all 𝑥 ≥ 0, by using Theorem 3.1 in Oluyede (2007, 

pp.951), we gain the following 

𝐻 (𝑔(𝑥|𝜇, Ω), 𝑔𝑤𝜃(𝑥|𝜇, Ω; 𝛼)) = 𝐸[− ln(𝑔(𝑥|𝜇, Ω) 𝑔𝑤𝜃(𝑥|𝜇, Ω)⁄ )]

= ∫ 𝑔(𝑥|𝜇, Ω) ln
1

𝑔(𝑥|𝜇, Ω) 𝑔𝑤𝜃(𝑥|𝜇, Ω)⁄
𝑑𝑥 ≤ 0,

∞

0

 

it leads to 

𝐻 (𝑔𝑤𝜃(𝑥|𝜇, Ω)) ≤ 𝐻(𝑔(𝑥|𝜇, Ω)); for 𝜇 and Ω. 

 

This means that the uncertainty present measure of in relation to the value of a random 

variable X is greater than or equal to the uncertainty present measure in relation to the 

value of the corresponding weighted random variable 𝑋𝑤𝜃
. This note was affirmed by the 

tables 5 and 7. Thus, we say X is smaller than Y in the differential entropy 

ordering (𝑋𝑤𝜃
≤𝐷 𝑋). Furthermore, Γ (𝜇 +

𝜃

2
) Γ(𝜇)(𝜇 Ω⁄ )

𝜃
2 𝜃𝑥𝜃−1 ≥ 0, then we have 

𝑔(𝑥|𝜇, Ω) 𝑔𝑤𝜃(𝑥|𝜇, Ω) ⁄ is decreasing in 𝑥, as a result, 𝑋 ≤𝑙𝑟 𝑋𝑤𝜃
. From table 6 and 8 we 

have 𝐻𝛽 (𝑔𝑤𝜃(𝑥|𝜇, Ω)) > 𝐻𝛽(𝑔(𝑥|𝜇, Ω)), thus 𝑋 ≤𝛽 𝑋𝑤𝜃
. Moreover, from table 8 and 

10 we have 𝐻𝛽(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) < 𝐻𝛽 (𝑔𝑤𝜃(𝑥|𝜇, Ω)), it leads to 𝑋𝓏

𝑤 ≤𝛽 𝑋𝑤𝜃
. Moreover, 

from table 6 and 10 we get  𝐻𝛽(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)) < 𝐻𝛽(𝑔(𝑥|𝜇, Ω)), then we 

get 𝑋𝓏
𝑤 ≤𝛽 𝑋. 

 

As well, through utilizing tables (5-17) we could note that: 

• With regard to the fixed 𝜇, and 𝛽 = 2 the relative loss of 𝛽 −entropy is an 

increasing function in Ω 

• With regard to the fixed Ω, the relative loss of entropy is a decreasing function in 

𝜇. 

• With regard to the fixed Ω and 𝛽 = 3 we have the relative loss of entropy as a 

decreasing function in 𝜇. 

• With regard to the 𝛽 = 2 and 𝛽 = 3, we get have 𝑆𝐻𝛽
(𝑔𝑤𝜃(𝑥|𝜇, Ω)) <

𝑆𝐻𝛽
(𝑓𝑁

𝑤(𝑥|𝜇, Ω; 𝛼)). Moreover, the relative loss of 𝛽 entropy 𝑆𝐻𝛽
(𝑓𝑁

𝑤(𝑥|𝜇, Ω; 𝛼)) 

could be higher than one while 𝑆𝐻𝛽
(𝑔𝑤𝜃(𝑥|𝜇, Ω)) is less than one. Therefore the 

𝑆𝐻𝛽
(𝑔𝑤𝜃(𝑥|𝜇, Ω))is preferable  𝑆𝐻𝛽

(𝑓𝑁
𝑤(𝑥|𝜇, Ω; 𝛼)). 

• With regard to the fixed Ω, we have the relative loss of entropy as an increasing 

function in 𝜇. 

• 𝑆𝐻𝛽
(𝑔𝑤𝜃(𝑥|𝜇, Ω)) < 𝑆𝐻 (𝑔𝑤𝜃(𝑥|𝜇, Ω)). Moreover, 𝑆𝐻 (𝑔𝑤𝜃(𝑥|𝜇, Ω)) could be 

higher than one while 𝑆𝐻𝛽
(𝑔𝑤𝜃(𝑥|𝜇, Ω)) is lower than one. Thus, 

𝑆𝐻𝛽
(𝑔𝑤𝜃(𝑥|𝜇, Ω; 𝛼)) is preferable 𝑆𝐻 (𝑔𝑤𝜃(𝑥|𝜇, Ω)). 
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Fig 3: Relative loss of Entropies Versions of Nakagami Distributions 

  

Conclusions 

In this paper, the differential entropy and β-entropy for Nakagami-μ distributions and 

their associated distributions were gained. As well, the differential entropy and the β-

entropy for the weighted versions of such distributions and their special cases were 

gained. Moreover, with regard to some certain values of parameters, the differential 

entropy and the 𝛽 −entropy values for Nakagami-𝜇 distributions were derived and 

summarized in Tables 1 - 4. We revealed that our results reduce to the Shannon entropy 

as 𝛽 tends to one. 
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Table 5:   Entropy for Nakagami distribution (𝑯𝑿(𝒈(𝒙|𝝁,𝛀))) 

Ω μ=.1 μ=.25 μ=.35 μ=.5 μ=1 μ=3 μ=3.5 μ=4 μ=4.5 μ=5 μ=5.5 μ=6 

1 -1.3586 0.4812 0.6707 0.7258 0.5955 0.1437 0.0720 0.0091 -0.0469 -0.0973 -0.1432 -0.1852 

3 -0.8093 1.0305 1.2200 1.2751 1.1448 0.6930 0.6213 0.5584 0.5024 0.4520 0.4061 0.3641 

3.5 -0.7323 1.1075 1.2971 1.3522 1.2218 0.7701 0.6984 0.6354 0.5794 0.5290 0.4832 0.4412 

4 -0.6655 1.1743 1.3638 1.4189 1.2886 0.8369 0.7651 0.7022 0.6462 0.5958 0.5500 0.5080 

4.5 -0.6066 1.2332 1.4227 1.4778 1.3475 0.8958 0.8240 0.7611 0.7051 0.6547 0.6089 0.5669 

5 -0.5539 1.2859 1.4754 1.5305 1.4002 0.9485 0.8767 0.8138 0.7578 0.7074 0.6615 0.6195 

5.5 -0.5063 1.3335 1.5231 1.5782 1.4478 0.9961 0.9243 0.8614 0.8054 0.7550 0.7092 0.6672 

6 -0.4628 1.3770 1.5666 1.6217 1.4913 1.0396 0.9679 0.9049 0.8489 0.7985 0.7527 0.7107 

Table 6:   (𝑯𝜷(𝒈(𝒙|𝝁,𝛀))) with 𝜷 = 𝟐 

Ω μ=.1 μ=.5 μ=1 μ=3 μ=3.5 μ=4 μ=4.5 μ=5 μ=5.5 μ=6 

.5 1.0263 0.6011 0.5569 0.2917 0.2381 0.1878 0.1404 0.0955 0.0527 0.0117 

1 1.0186 0.7179 0.6867 0.4992 0.4612 0.4257 0.3922 0.3604 0.3301 0.3011 

3 1.0107 0.8371 0.8191 0.7108 0.6889 0.6684 0.6491 0.6307 0.6133 0.5965 

3.5 1.0099 0.8492 0.8325 0.7323 0.7120 0.6930 0.6751 0.6581 0.6419 0.6264 

4 1.0093 0.8590 0.8433 0.7496 0.7306 0.7129 0.6961 0.6802 0.6651 0.6506 

4.5 1.0088 0.8670 0.8523 0.7639 0.7460 0.7293 0.7135 0.6985 0.6842 0.6706 

5 1.0083 0.8738 0.8599 0.7760 0.7591 0.7282 0.7432 0.7140 0.7004 0.6875 

5.5 1.0079 0.8797 0.8664 0.7864 0.7703 0.7408 0.7551 0.7273 0.7144 0.7020 

6 1.0076 0.8848 0.8721 0.7955 0.7800 0.7655 0.7519 0.7389 0.7265 0.7147 

Table 7:   Entropy for SB Nakagami distribution 𝑯(𝒈𝒘𝜽(𝒙|𝝁, 𝛀)) for 𝜽 = 𝟏 

Ω μ=.1 μ=.25 μ=.35 μ=.5 μ=1 μ=3 μ=3.5 μ=4 μ=4.5 μ=5 μ=5.5 μ=6 

1 1.6104-  -1.2247 -1.0877 -0.9420 -0.6496 -0.1491 -0.0758 -0.0120 0.0447 0.0955 0.1417 0.1839 

3 2.1597-  -1.7741 -1.6370 -1.4913 -1.1989 -0.6984 -0.6251 -0.5613 -0.5046 -0.4538 -0.4076 -0.3654 

3.5 2.2368-  -1.8511 -1.7141 -1.5684 -1.2760 -0.7754 -0.7022 -0.6383 -0.5817 -0.5309 -0.4847 -0.4424 

4 2.3036-  -1.9179 -1.7809 -1.6352 -1.3427 -0.8422 -0.7690 -0.7051 -0.6485 -0.5976 -0.5515 -0.5092 

4.5 2.3625-  -1.9768 -1.8397 -1.6941 -1.4016 -0.9011 -0.8279 -0.7640 -0.7074 -0.6565 -0.6104 -0.5681 

5 2.4152-  -2.0295 -1.8924 -1.7468 -1.4543 -0.9538 -0.8805 -0.8167 -0.7601 -0.7092 -0.6630 -0.6208 

5.5 2.4628-  -2.0771 -1.9401 -1.7944 -1.5020 -1.0014 -0.9282 -0.8643 -0.8077 -0.7569 -0.7107 -0.6684 

6 2.5063-  -2.1206 -1.9836 -1.8379 -1.5455 -1.0449 -0.9717 -0.9078 -0.8512 -0.8004 -0.7542 -0.7119 

Table 8:   𝑯𝜷 (𝒈𝒘𝜽(𝒙|𝝁, 𝛀))of order 𝜽=1 and 𝜷=2 

Ω μ=.5 μ=1 μ=3 μ=3.5 μ=4 μ=4.5 μ=5 μ=5.5 μ=6 

1 0.1138 0.8433 0.9972 0.9988 0.9995 0.9998 0.9999 1.0000 1.0000 

3 0.4883 0.9095 0.9984 0.9993 0.9997 0.9999 0.9999 1.0000 1.0000 

3.5 0.5263 0.9163 0.9985 0.9994 0.9997 0.9999 0.9999 1.0000 1.0000 

4 0.5569 0.9217 0.9986 0.9994 0.9997 0.9999 0.9999 1.0000 1.0000 

4.5 0.5822 0.9261 0.9987 0.9994 0.9998 0.9999 1.0000 1.0000 1.0000 

5 0.6037 0.9299 0.9988 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 

5.5 0.6221 0.9332 0.9988 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 

6 0.6382 0.9360 0.9989 0.9995 0.9998 0.9999 1.0000 1.0000 1.0000 

Table 9:   Entropy  𝑯𝑿(𝒇𝑵
𝒘(𝒙|𝝁, 𝛀; 𝜶)) with α=0.5 and 𝝁 = {𝟎. 𝟓, 𝟏, 𝟑, 𝟑. 𝟓, 𝟒} 

Ω μ=.5 μ=1 μ=3 μ=3.5 μ=4 

1 × 1020.4061  - × 1040.5591  - × 10157.5606  - × 10160.9424  - × 10180.9568  

3 - × 1020.7123  × 1040.1856  - × 10156.2018  - × 10160.6485  - × 10180.3344  

3.5 - × 1020.7701  × 1040.3712  - × 10155.3722  - × 10160.4374  × 10180.1976  

4 - × 1020.8238  × 1040.5567  - × 10154.2682  - × 10160.1363  × 10181.0127  

4.5 - × 1020.8742  × 1040.7422  - × 10152.8507  × 10160.2749  × 10182.1973  

5 - × 1020.9219  × 1040.9275  - × 10151.0805  × 10160.8172  × 10183.8493  

5.5 - × 1020.9672  × 1041.1128  × 10151.0818  × 10161.5132  × 10186.0778  

6 - × 1021.0104  × 1041.2980  × 10153.6751  × 10162.3864  × 10189.0037  
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Table 10:   Entropy  𝑯𝑿(𝒇𝑵
𝒘(𝒙|𝝁, 𝛀; 𝜶)) with α=0.5 and 𝝁 = {𝟒. 𝟓, 𝟓, 𝟓. 𝟓, 𝟔} 

Ω μ=4.5 μ=5 μ=5.5 μ=6 

1 - × 10210.0827  - × 10250.0621  -0.0041 -0.0024 

3 × 10210.0514  × 10250.2314  × 10260.0611  × 10280.1444  

3.5 × 10210.1858  × 10250.5727  × 10260.1482  × 10280.3678  

4 × 10210.4071  × 10251.1756  × 10260.3133  × 10280.8222  

4.5 × 10210.7493  × 10252.1679  × 10260.6023  × 10281.6687  

5 × 10211.2537  × 10253.7134  × 10261.0781  × 10283.1409  

5.5 × 10211.9689  × 10256.0168  × 10261.8232  × 10285.5642  

6 × 10212.9514  × 10259.3276  × 10262.9439  × 10289.3772  

Table 11:   𝑯𝜷(𝒇𝑵
𝒘(𝒙|𝝁, 𝛀;𝜶)) with 𝜷 = 𝟐 and 𝜶 = 𝟎. 𝟓 

Ω μ=.5 μ=1 μ=3 μ=3.5 μ=4 μ=4.5 μ=5 μ=5.5 μ=6 

1 0.1244 5.1957-  -33.0597 -24.5532 -14.6913 -7.1261 -2.6318 -0.4262 0.5009 

3 0.5559 1.2204-  -1.7699 -0.3236 0.4804 0.8273 0.9503 0.9874 0.9972 

3.5 0.5744 1.2164-  -1.0645 0.1198 0.6929 0.9095 0.9770 0.9948 0.9990 

4 0.5843 1.3829-  -2.0340 -0.4154 0.4563 0.8227 0.9498 0.9875 0.9972 

4.5 0.5900 1.6353-  -4.7859 -2.1525 -0.4156 0.4610 0.8222 0.9484 0.9866 

5 0.5938 1.9139-  -9.1383 -5.1613 -2.0727 -0.2948 0.5287 0.8492 0.9570 

5.5 0.5970 2.1815-  -14.5494 -9.1702 -4.4436 -1.4578 0.0424 0.6723 0.9001 

6 0.6001 2.4178-  -20.3182 -13.6682 -7.2478 -2.9090 -0.5982 0.4261 0.8164 

Table 12:   Relative loss of 𝜷 −entropy (𝜷 = 𝟐) 

𝝁 𝛀 = 𝟑 𝛀 = 𝟒 𝛀 = 𝟒. 𝟓 

 𝑆𝐻𝛽
(𝑔𝑤𝜃)  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 𝑆𝐻𝛽

(𝑔𝑤𝜃)  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 𝑆𝐻𝛽
(𝑔𝑤𝜃))  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 

.5 0.4167 0.3359 0.3517 0.3198 0.3285 0.3195 

1 -0.1104 2.4899 -0.0929 2.6398 -0.0867 2.9187 

3 -0.4045 3.4899 -0.3322 3.7136 -0.3073 7.2650 

3.5 -0.4505 1.4697 -0.3679 1.5686 -0.3397 3.8853 

4 -0.4956 0.2813 -0.4025 0.3599 -0.3709 1.5699 

4.5 -0.5404 -0.2746 -0.4364 -0.1818 -0.4014 0.3539 

5 -0.5853 -0.5067 -0.4701 -0.3963 -0.4316 -0.1771 

5.5 -0.6306 -0.6101 -0.5036 -0.4847 -0.4615 -0.3861 

6 -0.6764 -0.6716 -0.5371 -0.5328 -0.4913 -0.4714 

Table 13:   Relative loss of 𝜷 −entropy (𝜷 = 𝟐) 

𝝁 𝛀 = 𝟓 𝛀 = 𝟓. 𝟓 𝛀 = 𝟔 
 𝑆𝐻𝛽

(𝑔𝑤𝜃)  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 𝑆𝐻𝛽
(𝑔𝑤𝜃)  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 𝑆𝐻𝛽

(𝑔𝑤𝜃)  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 

.5 0.3092 0.3205 0.2928 0.3214 0.2787 0.3214 

1 -0.0815 3.2258 -0.0771 3.5179 -0.0733 3.5179 

3 -0.2870 12.7758 -0.2700 19.5003 -0.2556 19.5003 

3.5 -0.3167 7.7997 -0.2976 12.9052 -0.2814 12.9052 

4 -0.3453 3.7890 -0.3240 6.8847 -0.3060 6.8847 

4.5 -0.3731 1.4049 -0.3497 2.9678 -0.3299 2.9678 

5 -0.4005 0.2595 -0.3749 0.9417 -0.3533 0.9417 

5.5 -0.4277 -0.2124 -0.3998 0.0589 -0.3764 0.0589 

6 -0.4546 -0.3921 -0.4245 -0.2822 -0.3992 -0.2822 



Mervat Mahdy, Dina S. Eltelbany 

Pak.j.stat.oper.res.  Vol.XIII  No.4 2017  pp909-930 930 

Table 14:   Relative loss of 𝜷 −entropy (𝜷 = 𝟑) 

𝝁 𝛀 = 𝟑 𝛀 = 𝟒 𝛀 = 𝟒. 𝟓 

 𝑆𝐻𝛽
(𝑔𝑤𝜃)  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 𝑆𝐻𝛽

(𝑔𝑤𝜃)  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 𝑆𝐻𝛽
(𝑔𝑤𝜃)  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 

.5 0.0066 0.1334 𝑆𝑆𝐵(𝛽) 𝑆𝐴𝑍(𝛽) 0.0044 0.0884 

1    -0.0351 2.0222 0.0049 0.0980    -0.0231 1.4194 

3    -0.1062 4.5587    -0.0261 1.4248    -0.0684 4.1475 

3.5    -0.1251 1.4743    -0.0776 1.7248    -0.0801 1.6435 

4    -0.1448 0.2608    -0.0910 0.4670    -0.0921 0.4367 

4.5    -0.1651    -0.0853    -0.1048 0.0258    -0.1043 0.0223 

5    -0.1862    -0.1736    -0.1189    -0.0948    -0.1169    -0.0925 

5.5    -0.2081    -0.2064    -0.1334    -0.1298    -0.1297 -0.1258 

6    -0.2308 -0.2306    -0.1483    -0.1479    -0.1429    -0.1424 

Table 15:   Relative loss of 𝜷 −entropy (𝜷 = 𝟑) 

𝝁 𝛀 = 𝟓 𝛀 = 𝟓. 𝟓 𝛀 = 𝟔 
 𝑆𝐻𝛽

(𝑔𝑤𝜃)  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 𝑆𝐻𝛽
(𝑔𝑤𝜃)  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 𝑆𝐻𝛽

(𝑔𝑤𝜃)  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 

.5 0.0039 0.0816 0.0036 0.0765 0.0033 0.0726 

1    -0.0207 1.5101    -0.0188 1.6466    -0.0172 1.7950 

3    -0.0611 9.8300    -0.0553 18.8792 -0.0504 30.3960 

3.5 -0.0715 4.7071    -0.0646 10.1035    -0.0589 17.5239 

4    -0.0821 1.6289    -0.0741 3.9568    -0.0675 7.4190 

4.5    -0.0929 0.3818    -0.0838 1.1522    -0.0763 2.3884 

5 -0.1040 0.0016    -0.0936 0.2100    -0.0852 0.5647 

5.5    -0.1153    -0.0959    -0.1037    -0.0423    -0.0942 0.0468 

6    -0.1268    -0.1238    -0.1139    -0.1035    -0.1035    -0.0777 

Table 16:   Relative loss of entropy  

𝝁 𝛀 = 𝟑 𝛀 = 𝟒 𝛀 = 𝟒. 𝟓 

 𝑆𝐻𝛽
(𝑔𝑤𝜃)  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 𝑆𝐻𝛽

(𝑔𝑤𝜃)  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 𝑆𝐻𝛽
(𝑔𝑤𝜃)  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 

.5 2.1696 -54.8631  2.1524 -57.0571  2.1463 -58.1549  

1 2.0473 -0.1620× 104 2.0420 -0.4319× 104 2.0402 -0.5507× 104 

3 2.0077 0.8949× 1014 2.0064 0.5100× 1014 2.0059 0.3182× 1014 

3.5 2.0062 0.1044× 1017 2.0050 0.0178  × 1017 2.0047 -0.0334× 1017 

4 2.0052 0.0060× 1020 2.0041 -0.0144× 1020 2.0038 -0.0289× 1020 

4.5 2.0045 -0.10221021 2.0035 -0.6300 × 1021 2.0032 -1.0627 × 1021 

5 2.0040 -0.0512× 1024 2.0031 -0.1973× 1024 2.0028 -0.3311× 1024 

5.5 2.0037 -0.1504 ×1026 2.0027 -0.5696 × 1026 2.0025 -0.9892× 1026 

6 2.0034 -0.0397× 1029 2.0025 -0.1619× 1029 2.0022 -0.2944× 1029 

Table 17:   Relative loss of entropy 

𝝁 𝛀 = 𝟓 𝛀 = 𝟓. 𝟓 𝛀 = 𝟔 
 𝑆𝐻𝛽

(𝑔𝑤𝜃)  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 𝑆𝐻𝛽
(𝑔𝑤𝜃)  𝑆𝐻𝛽

(𝑓𝑁
𝑤) 𝑺𝑯𝜷

(𝒈𝒘𝜽))  𝑆𝐻𝛽
(𝑓𝑁

𝑤) 

.5 2.1413 -59.2323 2.1370 -60.2838 2.1333 -61.3074 

1 2.0387 -0.6623× 104 2.0374 -0.7685× 104 2.0363 -0.8703× 104 

3 2.0056 0.1139× 1014 2.0053 -0.1086× 1014 2.0051 -0.3535× 1014 

3.5 2.0044 -0.0932 × 1017 2.0042 -0.1637 × 1017 2.0040 -0.2466 × 1017 

4 2.0036 -0.0473× 1020 2.0034 -0.0706× 1020 2.0032 -0.0995× 1020 

4.5 2.0030 -1.6544 × 1021 2.0028 -2.4444 × 1021 2.0027 -3.4765 × 1021 

5 2.0026 -0.5250× 1024 2.0024 -0.7969× 1024 2.0023 -1.1681× 1024 

5.5 2.0023 -1.6296 × 1026 2.0021 -2.5708 × 1026 2.0020 -3.9111× 1026 

6 2.0020 -0.5070× 1029 2.0019 -0.8340× 1029 2.0018 -1.3194× 1029 
 


