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Abstract 

A new six-parameter distribution called the beta generalized inverse Weibull-geometric distribution is 

proposed. The new distribution is generated from the logit of a beta random variable and includes the 

generalized inverse Weibull geometric distribution. Various structural properties of the new distribution 

including explicit expressions for the moments, moment generating function, mean deviation are derived. 

The estimation of the model parameters is performed by maximum likelihood method. 

Keywords:   Generalized Inverse Weibull, Geometric distribution, Beta-G, Moments, 

Reliability Function, Maximum Likelihood.  

1.   Introduction 

The inverse Weibull (IW) distribution has many applications in the reliability engineering 

discipline and model degradation of mechanical components such as the dynamic 

components (pistons, crankshafts of diesel engines, etc). It provides a good fit to several 

data such as the times to breakdown of an insulating fluid, subject to the action of 

constant tension. Also, it can be used to model a variety of failure characteristics such as 

infant mortality, useful life and wear-out periods, applications in medicine and ecology, 

determining the cost effectiveness, maintenance periods of reliability centered 

maintenance activities. Keller et al. (1985) obtained the IW model by investigating 

failures of mechanical components subject to degradation. de Gusmão et al. (2011) 

introduced the three-parameter generalized IW (GIW) distribution with decreasing and 

unimodal failure rate.  

 

The cumulative distribution function (cdf) and probability density function (pdf) of the 

GIW distribution are defined (for    ) by  

                           
                                            

   (1) 

respectively, where     is scale parameter and   and   are positive shape parameters. 
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Recently, there have been many attempts to define new families of probability 

distributions that extend well-known families of distributions and at the same time 

provide great flexibility in modeling data in practice. One such class of distributions 

generated by compounding the well-known lifetime distributions such as exponential, 

Weibull (W), generalized exponential and exponentiated W with the geometric (Gc) 

distribution. For example, Adamidis and Loukas (1998) introduced the exponential-

geometric (EGc), Barreto-Souza et al. (2010) pioneered the Weibull-geometric (WGc) 

and Adamidis et al. (2005) proposed the extended exponential-geometric (EEGc) 

distributions. 

 

Let   be a geometric random variable with probability mass function given by 

                                             (2) 

 

In this paper, we define and study a new lifetime model called the beta generalized 

inverse Weibull geometric (BGIWGc) distribution. Its main characteristic is that three 

additional shape parameters are added in Equation (1) to provide more flexibility for the 

generated distribution. Based on compounding the GIW distribution with the Gc 

distribution and then using the beta-G (B-G) family pioneered by Eugene et al. (2002), 

we construct the six-parameter BGIWGc model and give a comprehensive description of 

some of its mathematical properties. We aim that it will attract wider applications in 

engineering, medicine and other areas of research. 

 

At first, we will define the GIW-geometric (GIWGc) distribution and then we use the B-

G to construct the BGIWGc model. 

 

Suppose that a company has   systems functioning independently and producing a 

certain product at a given time, where   is a random variable, which is often determined 

by economy, customers demand, etc. The reason for considering   as a random variable 

comes from a practical viewpoint in which failure (of a device for example) often occurs 

due to the present of an unknown number of initial defects in the system. Let   has the 

pmf in (geometric).   

 

Now, consider the failure times of the initial defects, denoted by               be   

independent and identically distributed (iid) random variables following the GIW 

distribution with cdf and pdf (1). Note that the time to failure of the first out of the   

functioning systems is given by         {  }   
   Then, the cdf of      is given (for 

   ) by 

             
         

   *           
+
        (3) 

where                   and      
 

The corresponding pdf of the new model can be written as  

                                      
,   *           

+-
  

 (4) 
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Henceforth, we denote a random variable   having pdf (4) by   GIWGc         . 
 

The survival function (sf) and hazard rate function (hrf) of the GIWGc distribution are 

given by  

             
              

            
 

and  

             
                         

[               
 ][              

]
  

 

For an arbitrary baseline cdf        the B-G family due to Eugene et al. (2002) has the 

cdf and pdf given (for    ) by 

           
 

      
∫               

      

 
 

            

      
                (5) 

where     and     are two additional parameters whose role is to introduce 

skewness and to vary tail weight and 

         
 
               

is the incomplete beta function with                and         
       

      
 is the 

incomplete beta function ratio. One major benefit of this class of distributions is its 

ability of fitting skewed data that cannot be properly fitted by existing distributions. If     

    ,            and then   is usually called the exponentiated   distribution (or 

the Lehmann type-I distribution). Indeed, if   is a beta distributed random variable with 

parameters   and  , then the cdf of          agrees with the cdf given in (5). 

 

The B-G has the following special cases 

 

• If        is the cdf of a standard uniform distribution, the cdf (5) yields the cdf of the 

beta distribution with parameters   and  . 

 

• If   is an integer value and        , then the cdf (5) becomes  

           
 

          
∫               

      

 

            ∑(
 
 
) [      ] [        ]   

 

   

 

 

which is really the cdf of the     order statistic of a random sample of size   from 

distribution       . 
 

• For      , then the cdf (5) reduces to              . 

• The cdf (5) reduces to          [        ] , for      

• When    , the cdf (5) reduces to            [      ] .  
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For general   and  , the cdf (5) can be defined in terms of the well-known 

hypergeometric function by 

           
 

       
       

 
  (                )  

where   

             ∑
        
      

   | |    

 

   

 

where      
      

    
                  denotes the ascending factorial of  . We 

obtain the properties of      for any B-G distribution defined from a parent        in 

(5) could, in principle, follow from the properties of the hypergeometric function which 

are well established in the literature; see, for example, Section 9.1 of Gradshteyn and 

Ryzhik (2000). 

 

The pdf and hrf of the B-G class are given by  

           
      

      
         {        }        (6) 

and 

           
               {        }   

       [        ]     
  

respectively, where  [        ]                                is the survival 

function of the B-G distribution. 

 

The B-G class has been used to construct various extensions for the well-known 

distributions. For example, the beta normal (Eugene et al., 2002), beta Fréchet (Nadarajah 

and Gupta, 2004), beta exponential (Nadarajah and Kotz, 2006), beta W (Lee et al., 

2007), beta W-geometric (Cordeiro et al., 2011), beta generalized exponential (Barreto-

Souza et al., 2010), beta modified W (da Silva et al., 2010), beta IW (BIW) (Khan, 2010), 

beta exponential-geometric (Bidram, 2012) and beta exponential Fréchet (Mead et al., 

2017) distributions. 

 

The reminder of the paper is organized as follows. In Section 2, we define the BGIWGc 

distribution and its special cases. The expansion for its pdf and cdf are given in Section 3. 

Moments, moment generating function and mean deviation are discussed in Section 3. In 

Section 4 we obtain the Rényi  and Shannon entropy of BGIWGc distribution. Finally, 

maximum likelihood estimation is performed in Section 5. The rest of the paper is 

organized as follows. In Section 2, we present the probability density function (PDF) and 

failure rate function and provide plots of such functions for selected parameter values. In 

Section 3, we obtain the moment generating and characteristic functions. We also give 

the moments of the order statistics. The Rényi entropy is derived in Section 4. Maximum 

likelihood estimation of the parameters and the expected information matrix are 

discussed in Section 5. Section 6 deals with the estimation of the stress strength 

parameter. An application of the GEG model to real data is illustrated in 
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2.   The BGIWGc distribution 

In this section, we difine the six parameter BGIWGc distribution by inserting (3) in 

equation (5). Then, the cdf of the BGIWGc distribution is given by 

       
 

      
∫               

         

               
 

 
         (7) 

where     and     are shape parameters. The random variable   with the cdf (7) is 

said to have a BGIWGc distribution and will be denoted by   BGIWGc    where 

               . 

 

The corresponding pdf of (7) takes the form 

       
                           

(           
)
   

      *   (           
)+

         (8) 

 

The hazard (failure) rate function (hrf) of   is given by 

       
                         

*           
+
   

      {   [           
]}

   
 [            ]     

  

 

The BGIWGc distribution is a very flexible model that approaches to different 

distributions when its parameters are changed. Its 27 sub-models are listed in Table 1. 

Figure 1 displays some plots of the BGIWGc pdf for some values and the plots of its hrf 

are shown in Figure 2. 

 

 

 

Figure 1: Pdf plots of the BGIWGc distribution for selected values of the parameters 
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3.   Linear representation 

In this subsection we present a useful linear representation for the BGIWGc pdf. 

Consider the series expantion given, for | |    and   is a positive real non-integer, by 

         ∑
         

        
   

         (9) 

Applying (9) to Equations (8), we can write 

 
       

    

      
∑

     

         

         

               
          

   

                 
    

      
∑

     

             
(

         

               
 
)

     
 
    

 

Table 1:    Sub-models of the BGIWGc distribution 

  No.   Distribution                          

     BIWGc                          

    BIW                           

    BGIEGc                          

    BGIEGc                          

    BIEGc                          

    BGIE                           

    BGIRGc                          

    BIRGc                          

    BGIR                           

     BFrGc                          

     BFr                           

     BIEGc                          

     BIRGc                          

     BIE                           

     BIR                           

     GIWGc                          

     IWGc                          

     GIEGc                          

     IEGc                          

     GIRGc                          

     IRGc                          

     GIW                           

     GIE                           

     GIR                           

     IW                           

     IE                           

     IR                           
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Figure 2: Hrf plots of the BGIWGc distribution for selected values of the parameters  

 

Using the series representation   

        ∑
      

      
   | |        

            (10) 

 

The last pdf can be expressed, after applying (10), as  

       
        

    
∑

      

  
  (               ) 

       (11) 

where                      is the pdf of the BGIW distribution with parameters 

          and      . Equation (11) reveals that the BGIWGc dnsity function can be 

expressed as an infinite linear mixture of BGIW densities. Hence, we can obtain some 

mathematical properties of the BGIWGc distribution from those properties of the BGIW 

distribution. 

3.   Properties 

In this section, we study the statistical properties of the BGIWGc distribution including 

ordinary and incomplete moments and moment generating function. 

3.1  Ordinary and incomplete moments 

In this sub- section,we derive the expression for ordinary and incomplete moments of 

BGIWGc . The moments of different orders will help in determining the expected life 

time of a device and also the dispersion, skewness and kurtosis in a given set of 

observations arising in reliability applications.  th moment on the origin of   can be 

obtained using the well-known formula.  
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Lemma (3.1): If   has BGIWGc    where                 then the     moment of 

            . has the following form:  

  
  ∑   

        
 

 
 

[      ]
  

 
 

 
           (12) 

where 

   ∑
        

        
     (

   
     

)

 

   

  

Proof. 

Let   be a random variable with density function (8). The  th ordinary moment of the 

BGIWGc distribution is given by   

  
  ∫           

 

 

     
        

        
∑      (

   
    

)    

 

     

∫                         
  

 

 

     
        

        
∑      (

   
    

)
        

 

 
 

[      ]  
 

 

 

     

 ∑  

        
 

 
 

[      ]  
 

 

 

   

 

 

which completes the proof.  

 

Lemma (3.2): If   has BGIWGc   , then the moment generating function       has the 

following form  

      ∑   
 
     

  

  

        
 

 
 

[      ]
  

 
 

       (13) 

Proof.   

We start with the well known definition of the moment generating function given by 

             ∫            
 

 
  Since ∑

  

  
       

    converges and each term is 

integrable for all   close to  , then we can rewrite the moment generating function as  

      ∑
  

  
      

    by replacing      . Hence using (12) the MGF of BGIWGc 

distribution is given by 

      ∑   

 

     

  

  

        
 

 
 

[      ]  
 

 

  

which completes the proof .  

 

Similarly, the characteristic function of the BGIWGc distribution becomes       

       where   √   is the unit imaginary number.  
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3.2  Conditional moments 

For lifetime models, it is also of interest to find the conditional moments and the mean 

residual lifetime function. The conditional moments for BGIWGc distribution is given by 

the following Lemma.  

 

Lemma (3.3): If   has BGIWGc   , the conditional moments for BGIWGc distribution 

is given by 

    |     ∑  [
        

 

 
              

[      ]  
 

 

]

 

   

  

Proof.   

    |     ∫           
 

 

    
        

        
∑      (

   
    

)    

 

     

∫                         
  

 

 

 ∑  [
        

 

 
              

[      ]  
 

 

]

 

   

 

 

where        ∫          
 

 
 is the upper incomplete gamma function.  

 

The mean residual lifetime function of beta additive Weibull distribution is given by  

        |       
 

    
∑  [

        
 

 
              

[      ]  
 

 

]   

 

   

  

 

The importance of the MRL function is due to its uniquely determination of the lifetime 

distribution as well as the hrf. 

3.3  Residual and reversed residual functions 

Given that a component survives up to time    , the residual life is the period beyond   

until the time of failure and defined by the conditional random variable    |   . In 

reliability, it is well known that the mean residual life function and ratio of two 

consecutive moments of residual life determine the distribution uniquely. Therefore, the 

 th-order moment of the residual lifetime can be obtained via the general formula 

               |     
 

    
∫                   

 

 
  

 

Applying the binomial expansion of        into the above formula, we have 

      
 

    
∑ ∑        (

 
 
)  

 

   

     

 

   

∫                       
  

 

 

            
 

    
∑ ∑        (

 
 
)

 

   

 

   

     
   

 
              

    [      ]  
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On the other hand, we analogously discuss the reversed residual life and some of its 

properties. The reversed residual life can be defined as the conditional random variable 

   |    which denotes the time elapsed from the failure of a component given that 

its life is less than or equal to  . 

 

The  th-order moment of the reversed residual life can be obtained as 

              |     
 

    
∫                    

 

 

 

 

Using (8) and applying the binomial expansion of       , we can write 

      
 

    
∑ ∑        (

 
 
)   

 

   

     

 

   

∫                       
  

 

 

            
 

    
∑ ∑       (

 
 
)

 

   

 

   

     
   

 
              

    [      ]  
   

 

 

 

where        ∫          
 

 
 is the lower incomplete gamma function. 

3.4  Mean deviations and Bonferroni and Lorenz curves 

The mean deviation about the mean and mean deviation about the median measure the 

amount of scatter in a population. For random variable   with pdf     , cdf     , mean 

       and    Median    , the mean deviation about the mean and mean deviation 

about the median are, respectively, defined by   

      ∫ |   |      
 

 

            ∫        
 

 

 

and 

      ∫ |   |
 

 

           ∫        
 

 

  

 

Then, for  , we have 

∫        
 

 

 ∑  [
        

 

 
              

[      ]  
 

 

]

 

   

 

and 

∫        
 

 

 ∑  [
        

 

 
              

[      ]  
 

 

]

 

   

  

 

Using the last two integrals, one can obtain       and      . 
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The Bonferroni and Lorenz Curves have applications not only in economics to study 

income and poverty, but also in other fields like reliability, demography, insurance and 

medicine. The Bonferroni and Lorenz curves are defined by  

     
 

  
∫        

 

 

 
 

  
∑  [

        
 

 
              

[      ]  
 

 

]

 

   

 

and 

     
 

 
∫        

 

 

 
 

 
∑  [

        
 

 
              

[      ]  
 

 

]

 

   

  

4.   Maximum likelihood estimation 

In this section, we determine the maximum likelihood estimates (MLEs) of the 

parameters of the BGIWGc distribution from complete samples only. Let           be a 

random sample of size   from the BGIWGc distribution given by (8). 

 

The total log-likelihood function for  , where                  , is given by 

                                         

                    ∑  
 

   
           ∑  

 

   
     

  

                    ∑  
 

   
   (          

  
)

                    ∑  
 

   
   *   (          

  
)+  

 

 

The log-likelihood can be maximized either directly by using the SAS program or R-

language or by solving the nonlinear likelihood equations obtained by differentiating the 

last equation. 

The components of the score function       (
   

  
 
   

  
 
   

  
 
   

  
 
   

  
 
   

  
)
 

 are 

   

  
 

 

 
      ∑   

    
 

 
     ∑   

          
    

              ∑   
   

          
            

  

          
  

               ∑   
   

          
            

  
(           

)

*   (           
)+

   

  

   

  
 

 

 
 ∑  

 

   
        ∑  

 

   
         ∑  

 

   
     

         

              ∑  
 

   

      
          

       
  

(          
  

)

               ∑  
 

   

      
          

       
  

(          
  

)

[   (          
  

)]
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  ∑  

 

   
     

        ∑  
 

   

     
          

  

(          
  

)

               ∑  
 

   

     
          

  

[   (          
  

)]
   

 

   

  
 

   

 
      ∑  

 

   

(          
  

)

[   (          
  

)]
    

   

  
              ∑  

 

   
   *   (          

  
)+    

and 

   

  
                       ∑  

 

   
   (          

  
)     

 

The maximum likelihood estimation (MLE) of  , say  ̂ , is obtained by solving the 

nonlinear system        . These equations cannot be solved analytically, and 

statistical software can be used to solve them numerically via iterative methods. We can 

use iterative techniques such as a Newton-Raphson type algorithm to obtain the estimate 

 ̂. For interval estimation and hypothesis tests on the model parameters, we require the 

information matrix. 

 

Applying the usual large sample approximation, MLE of  , i.e  ̂ can be treated as being 

approximately              , where        [     ]. Under conditions that are 

fulfilled for parameters in the interior of the parameter space but not on the boundary, the 

asymptotic distribution of √   ̂     is             , where      =                

is the unit information matrix. This asymptotic behavior remains valid if      is replaced 

by the average sample information matrix evaluated at  ̂, say        ̂  . The estimated 

asymptotic multivariate normal          ̂     distribution of  ̂ can be used to construct 

approximate confidence intervals for the parameters and for the hazard rate and survival 

functions. An          asymptotic confidence interval for each parameter    is given 

by 

     . ̂    

 

√   ̂   ̂    

 

√   ̂/ 

where    is the upper        percentile of the standard normal distribution.  

5.   Data analysis 

In this section, we provide an application to a real data set to assess the performance and 

flexibility of the BGIWGc distribution. In order to compare the new model with other 

fitted distributions, we consider some goodness-of-fit statistics including    ̂, Anderson-

Darling statistic      and Cramér-von Mises statistic     , where  ̂ denotes the 

maximized log-likelihood, Generally, the smaller these statistics are, the better the fit. 
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The data set (Gross and Clark, 1975, page 105) on the relief times of twenty patients 

receiving an analgesic is: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 

1.4, 3, 1.7, 2.3, 1.6, 2. For these data, we compare the fits of the BGIWGc distribution 

with the beta transmuted W (BTW) (Afify et al., 2017), McDonald log-logistic (McLL) 

(Tahir et al., 2014), McDonald Weibull (McW) (Cordeiro et al., 2014), new modified W 

(NMW) (Almalki and Yuan, 2013), transmuted complementary W-geometric (TCWG) 

(Afify et al., 2014), beta W (BW) (Lee et al., 2007) and exponentiated transmuted 

generalized Rayleigh (ETGR) (Afify et al., 2015) distributions. The pdfs of these 

distributions are given in Appendix A. 

 

Tables 2 list the values of    ̂,    and    whereas the MLEs of the model parameters 

and their corresponding standard errors are given in Table 3. 

 

Table 2 compares the fits of the BGIWGc distribution with the BTW, McLL, McW, 

NMW, TCWG, BW and ETGR distributions. The figures in these tables show that the 

BGIWGc distribution has the lowest values for    ̂,    and    statistics among all 

fitted distributions. So, it could be chosen as the best model. The fitted pdf and QQ plot 

for the BGIWGc distribution are displayed in Figure 3. Figure 4 shows the estimated cdf 

and sf for the BGIWGc model. It is evident from these plots that the new model provides 

close fit to the data. 

Table 2:   Goodness-of-fit statistics for the relief times data 

   Model      ̂              

  BGIWGc    31.662    0.0434    0.24665  

 BTW    33.051    0.06896    0.39769  

 McLL    33.854    0.07904    0.46199  

 McW    33.907    0.08021    0.46927  

 NMW    41.173    0.17585    1.0678  

 TCWG    33.607    0.07252    0.43603  

 BW    34.396    0.0873    0.51316  

 ETGR    36.856    0.13629    0.79291  
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Table 3:   MLEs and their standard errors for the relief times data 

  Model   Estimates (standard errors)  

BGIWGc 19.1874 20.5968 1.4346 9.8485 39.2308      5.8015 

(            ) (33.03) (43.241) (0.837) (2.001) (63.252) (4.346) 

BTW 5.6186 0.5311 53.3438 3.5683 -0.7718 
 

(          ) (9.353) (0.148) (111.453) (4.265) (3.894) 
 

McLL 0.8811 2.0703 19.2254 32.0332 1.9263 
 

(          ) (     ) (     ) (      ) (      ) (     ) 
 

McW 2.7738 0.3802 79.108 17.8976 3.0063 
 

(          ) (6.38) (0.188) (119.131) (39.511) (13.968) 
 

NMW 0.1215 2.7837             0.0003 2.7871 
 

(          ) (     ) (     ) (          ) (     ) (     ) 
 

TCWG 43.6627 5.1271 0.2823 -0.2713 
  

(        ) (      ) (     ) (     ) (     ) 
  

BW 0.8314 0.6126 29.9468 11.6319 
  

(        ) (     ) (    ) (      ) (    ) 
  

ETGR 0.1033 0.6917 -0.342 23.5392 
  

(        ) (     ) (     ) (     ) (       ) 
  

 

 

Figure 3: The fitted pdf and QQ plot of the BGIWGc model 

 

 

Figure 4: The estimated cdf and sf of the BGIWGc model 
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6.   Conclusions 

In this paper, we propose a new six-parameter model called the beta generalized inverse 

Weibull-geometric (BGIWGc) distribution, which extends the generalized inverse 

Weibull-geometric (GIWGc) distribution. The BGIWGc density function can be 

expressed as a linear mixture of GIWGc densities. We derive explicit expressions for 

some of its mathematical properties. We discuss maximum likelihood estimation. The 

proposed distribution provides better fits than some other competitive models using a real 

data set. We hope that the proposed model will attract wider applications in applied areas 

such as lifetime analysis, hydrology, reliability, engineering. 

Appendix A: 

The pdfs of the fitted distributions are given (for    ) by 

BTW:      
   

      
    *             + ,*         + *          +-

   

 

        ,  *         + *          +-
   

  

McLL:      
  

         
(
 

 
)
    

*  (
 

 
)
 

+
    

.  {  *  (
 

 
)
 

+
  

}
 

/   

McW:      
    

        
               *         +

   

,  *         +
 

-
   

  

NMW:      [                     ]  (          )  

TCWG:                         *                          + 

                            *                +
  

  

ETGR:                       ,      [         ]
 
-  

            [         ]
    

,     [         ]
 
-
   

  

BW:      
   

      
            *         +

   

  

 

The parameters of the above pdfs are all positive real numbers except for the TCWG and 

ETGR distributions for which | |   . 
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