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Abstract
Design robustness to a single outlier is studied for Draper 1990 designs by introducing and
applying minimax outlier effect criterion. The criterion uses outlying effect of design points and
attempts to minimizes the maximum outlying effect for a design point to have design with almost
equal outlying effects and the design is adjusted for maximum outlying effect. Resultant outlier
robust Draper & Lin designs have been exhibited as more compact, so less resource intensive,
as compare to the other existing equivalent designs.

Keywords: Draper & Lin designs, Minimax Effect Criterion, Outlier, Outlier
Robust Designs, Robust Designs.

1. Introduction
Standard central composite designs (CCD), developed by Box & Wilson (1951),
for fitting second-order models usually have a large number of design points,
especially when the number of factors under consideration is large
(Angelopoulosa & Koukouvinosa 2008) These CCD by their very construction,
are quite huge and thus resource intensives (see Montgomery 2001 for details on
the construction and other characteristics of CCD). And these huge volumes
become an ominous deterrent in their practical applications (Chen, Lin & Zhang
2003, Bulutoglu & Cheng 2003,amomg many) It is always desirable to reduce the
number of runs as much as possible while maintaining the ability to estimate all
of the terms in the proposed model. Draper (1985) and Draper (1990)(DL)
composed small response surface designs by reducing the number of factorial
points in standard CCD. These reduced factorial points are extracted, usually
and mostly, from the age-old Plackett & Burman (1946) designs by intelligently
selecting some of its columns and rows. These designs are quite popular for their
cherished characteristics especially in the domain of pharmacy. Numerous
examples in this regard are found in academic literature like Gracia, et all (2003)
who use the efficiency of DL designs in optimizing both operational and chemical
crucial variables affecting a FIA-chemiluminescence detection system. Gracia, et
all (2003a) use these designs in determination of albumin in biological fluids by
flow injection analysis using the peroxyoxalate chemiluminescent system in
micellar medium. Santos. Resell & Collar (2008) use these designs in
gelatinization and retrogradation Kinetics of High-Fiber Wheat Flour Blends. An
intelligent reduction in size may increase the design's optimality as well, as
calculated in terms of alphabetic optimalities (Kiefer & Wolfowitz 1959). But, this
increased optimality is marred by the presence of an outlier. The same Draper &
Lin (DL) designs are studied, here in this paper, in presence of an outlier and it is
attempted to develop a DL design that is robust to a single outlier (ORD-1). The
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basic philosophy is taken from Siddiqi (2008) where it is explored in general
terms.

Outliers, missing observations, and other related impediments are very common
in observational, as well as in compiled data. There are different connotations to
this term. Ranging from wrongly recorded to surprising observations, academic
literature uses different names for such observations. Beckman & Cook (1983)
and Barnett & Lewis (1994) have outlined a comprehensive list of such
connotations which attempt to define outlying observation with differing
vocabularies. However, going by the conceptual similarities exist in the
definitions, outliers refers to observations having an exclusive, different, usually
vaguely delineated personality of their own. Here, in this paper, this version is
adopted as the definition of outliers. Experience shows that in a typical industrial
setting 1 to 10% of all measurements performed for the purpose of the planned
experiments results in grossly surprised data and should be treated as outlier
(see, for related comments, Daniel (1959), Anscombe (1960), Morgenthaler &
Schumacher (1999)). Such observations erode the balance and sequential
conclusioning of an investigation. Whole comparison of the data, and of its
interpretation, changes because of these outliers. Most of data analytical
technique employs special procedures to tackle them. Quoting Hawkins (1980)
and Barnett & Lewis (1994), the presence of outlier in a set of data may be
tackled by

1. their outright rejection from the data by considering it an error,
2. further analyses for these suspected observation to ascertain their

veracity,
3. their incorporation by special modifications either in the model or in the

design,
4. re-experimentation to be sure what is happening

It has been a common practice among researchers, especially social scientists,
to throw these observations out just by labeling them as erroneous. But these
cannot be erroneous all the time and in that case the experimenter may run the
chance of losing an important, may be the most important, hitherto unknown
dimension of the experiment. On the other hand, once the measurements have
been taken, it is in most situations impossible to check the validity of single
measurements by repeating selected parts of the experiment. It is therefore
important to search for specialized methods that may by be used to adjust the
design, analysis, and interpretations, for possible surprising observations without
kicking them out. Many attempts have been made in this direction. As a matter of
fact, most of these attempts are made in the domain of regression analysis which
may be labeled as post-design phase of any experiment. While a very little is
attempted to control these observations at the pre- or during-design phase. This
later philosophy assumes these observations as necessarily correct but
surprising and attempts to anticipate them instead of discarding. In other words,
this philosophy attempts to develop design robust enough to tackle these
observations if there exist any.
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The term robust designs is coined by Box & Draper (1975) in their attempt to
minimize the effect of outliers on the fitted values obtained by the least square
estimation based on classified linear model. Their basic philosophy involves the
minimization of the variance of discrepancy caused by outliers. They show that
the fitted response will be relatively insensitive to outliers if ith diagonal elements,
hii, of the HAT matrix, as it is called in regression literature (Cook & Weisberg
1982), given by ,)( 1 XXXXH   are as uniform and identical as possible and
suggest ∑hii as a convenient measure of such uniformity. This uniformity is
attained by intelligently choosing axial distance in central composite designs.
They have developed designs for a few number of factors and compared these
designs with rotatable designs without establishing their superiority. There are
other attempts, in the academic literature, focusing exclusively on the
development of designs robust to other problems. Draper (1961), Ghosh (1982),
Herzberg & Andrews (1975), Herzberg & Andrews (1976), Akhter & Prescott
(1986), Akram (1993) are a few names in the list who presented several
maneuvering to guard the design against missing observations. Akhter (1985),
Akhter & Prescott (1986), Akram (1993) presented designs based on central
composite designs employing a minimax criterion which works on down weighing
the effect of a missing observation. There are other problems too for which
robust designs exists. Schwabe (1995) studied robustness with respect to the
underlying model. Zhou (2001) studied the robust against serially correlated
observations. Toman (1992) and Toman & Gastwirth (1994) uses Bayesian
methodology to incorporate the results of the first study (or studies) into the
design of the follow up study. Park & Cho (2003) for example, developed designs
robust for outliers and non-normal experimental data. Fellner (1986), Zhou and
Zhu (2003) developed outlier robust designs to get more reliable estimates for
variance components in random effects models.

This article is an attempt to robustify Draper & Lin (1990) for possible outliers.
Section 2, hereunder, crafts the minimax philosophy for a design, in general, and
for a CCD in special. Section 3 shows how this criterion be applied on a DL
design to develop a robust version of the design. Section 4, at the end offer
concluding remarks for the article. The appendix, in the last pages, is showing a
code written for Mathematica to generate these minimax DL designs for different
configurations of designs points and number of runs.

2. Minimax Effect Criterion

In simple vocabulary, the criterion calls for calculation of outlying effects of all
design points and then minimizing the maximum outlying effect to have equal
outlying effect for all design points thus to adjust the whole design for the
maximum outlying effect. The basic idea is developed in Siddiqi (2008), as
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discussed earlier, while here it is been adapted for Draper & Lin (1990) designs.
Adopting usual symbols and notations where a design model assumes the form
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The outlying effect of a design point may well be given by its relative weight in
the whole design, as outliers cause disturbance in the weight structure of the
design (Prescott 1975). In alphabetic optimal designs (as derived by Kiefer &
Wolfowitz (1959)), this relative weight of a design point may be evaluated by
calculating the relative change in the determinant of the corresponding
information matrix, ( )X X , by rubbing that design point out (jackknifing, as it is
called in literature). If | |X X denotes the corresponding determinant of the
information matrix of an n point design's information matrix for which thj
( =1,2,...,j n ) design point is rubbed, the relative change in | |X X , and thus the
outlying effect for the thj ( =1,2,...,j n ) design point, is given by

| | | |
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If xjdenotes the jth design point, then
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These complex matrices may be translated into simpler matrices due to Rao &
Toutenburg (1995, p.290) as follows,

1
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The resultant expression jxXXx  1)( happens to be the (j,j)th diagonal component
of the already-known HAT matrix (after Cook & Weisburg (1982)), given by

.)( 1 XXXXH   So the outlying effect of jth(j=1,2,…n) design point is given by hj,
where hj symbolizes the jth diagonal component of H. Siddiqi (2008) also
discussed some interesting characteristic properties of Oj defining its behavior
under different circumstances. Let us calculate the outlying effects for DL designs
to approach an ORD-1.
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3. Outlier Robust DL Designs
The data matrix, X, for the DL designs, being the family member of CCD, is
composed of three types of points, i.e. factorial, axial and the central points. In
the taxonomy laid down by Box & Wilson (1951), Table 1 gives the factorial
points for DL designs with different number of factors. The axial points, two for
each factor, in a traditional 2k factorial setting, along its axis, are at a distance
 from the design center.

Table 1: Design Points for the Draper & Lin [1990] Designs
k Runs Design Points
3 4 I, ab, ac, bc
4 8 I, c, ab, ad, bd, abc, acd, bcd
5 12 I, d, ab, ae, ce, abc, acd, bce, bcd, bde, acde, abde
6 16 I, be, cd, cf, df, abc, abd, abf, ace, ade, aef, bcde, bcef, bdef,

abcdf, acdef
… … ….

The design does have some points at the center whose number may be
determined by using Draper (1982). If Nf, Na, and Nc symbolize respectively the
number of factorial, axial, and central points then the total number of design
points for a DL design turns out to ben = Nf + Na + Nc. The corresponding HAT
matrix, the diagonal elements of which are to be calibrated, would be of an order
( )n n .

The selection of an appropriate axial distance,  , is consequential. Wu &
Hamada (2000) opine it to be between 1 and k ; for =1 the axial points would
be at the center of the faces of the cuboid while for = k all the axial and
factorial points would be in the same sphere. Composite designs with different
desirable properties, like rotatability, robustness, etc., are developed with
different selections of  . Larger values of  are increasing the efficiency of the
designs, in terms of alphabetic optimality, but making them practically more
difficult to obtain as they become more resource intensive. In minimax effect
criterion, an  is rummaged for which the maximum outlying effect jO
( =1,2,...,j n ) is minimum.

Going as per, already mentioned, philosophy of minimax designs, the maximum
outlying effects are to be calculated for all design points. For a typical CCD, there
are three groups of designs points; factorial, axial and central. If fO , aO , and cO
symbolize respectively the maximum outlying effect for these three groups of
points, then, an expression may be developed for these effects in terms of  .
Unfortunately, there is no general form of such expressions which may be
calculated for a typical 2k fractional factorial design. This is, mainly, due to non-
constant structure of such designs, especially in case of DL designs, Plackett &
Burman (1946) designs, small CCD developed in Draper (1985), and other such
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derivatives of fractional factorials. These outlying effects happens to be
polynomials in varying powers of  and getting very complex with increasing
number of factors in the design. However, an exclusive algorithm is developed in
Mathematica ver. 7, available in appendix, to compute these expressions for
different configurations of DL designs.

For a 3 factor DL design with 2 central points, for example, these are given by

2 4 2 4 4

2 4 2 4 2 4

96 48 11 23 12 3 6= , = , =
12(8 4 ) 3(8 4 ) 6(8 4 )f a cO O O    

     
    
     

Line-graph, in Fig. 1, shows how these outlying effects behave with varying
values of  , over a range of 0 to 2.5. fO seems to be a decreasing function in
 , aO an increasing, while cO seems to be a regular bell shaped curve, at least
within this range.

Figure  1: Dynamics of fO , aO , and cO with Varying Values of 

It has been observed that
=1

n
jj

O remains the constant for all choices of 

(Siddiqi 2008). This makes minimizing fO results in increasing aO . However, a
point does exist at =1.41421 , where =f aO O (see point A in Fig. 1). This is the
point at which maximum outlying effects are equal for factorial and axial design
points while the maximum outlying effect for central points, cO , is quite low
(merely 0.41667 observed at point B in Fig. 1). So, at =1.41421 (point A), the
outlying effects of design points are either identical or lesser than that of equi-
outlying-effect design points and the design is adjusted for this maximum outlying
effect. This is the minimax design which is not letting any single design point to
desolate whole design by having an unusual value.
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The dynamics of cO is quite interesting to observe. The maxima for the cO
decreases with increasing number of center points in the design. Figure 2, in left
panel, shows the expressions for cO for different number of center points, as
derived by using code available in appendix.
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Figure  2: Dynamics of Outlying Effect of Central Points

Its maxima is 0.5 (point B in Fig. 1), and interestingly, this maxima decreases
geometrically with increasing cN . Figure 2 shows, in the right panel, that this
maxima is given by 1/ cN ; i.e. the maxima with two center points is given by
1/ 2 = 0.5 , with three center points it is 1/ 3 = 0.333, and so on. And, this maxima
is observed at the same  .

A similar exercise may be carried out for other DL designs with varying number
of factors. The Mathematica code is available in the appendix which can be used
for developing minimax DL designs with other configurations. The code may also
be used for varying number of replications in the factorial or axial parts of the
design.

These robust DL designs are comparable with other similar designs like designs
with = k , rotatable designs, Box & Draper (1975) outlier robust designs.
These designs may be compared either on the basis of alphabetic optimality, or
with respect to design compactness which results in lesser resource-intensive
designs. An optimal design may be more efficient but it may also be resource
intensive at the same time. Table 2 shows  for different designs including
rotatable, orthogonal, Box & Draper (1975) (BD) and Minimax designs for a 3 and
4 factor DL design with two and three points at the center respectively along with
different alphabetic optimality coefficients for this design. These includes
 A optimality, results in minimizing the average variance of the estimates. So
A optimal designs would give minimum possible variances for their parameter
estimates,
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 D optimality, which results in maximizing the differential Shannon information
content of the parameter estimates. It discusses both mainD and sqreD which
focuses information contents with respect to main effects and squarred terms
respectively. So mainD designs would contain maximum information with
respect to their main effects, while sqreD would contains it with respect to
squarred terms of the 2nd response surface designs, and

 E optimalities, whic results in minimizing the variance of best linear unbiased
estimates (BLUE). So E optimal designs would attempt to create designs with
best linear unbiased estimates which have minimum variances.

As a matter of fact, a lesser coefficient for these alphabetic optimalities
represents a more efficient design while a lesser  value represents a more
compact design. For both of these DL configurations, minimax designs are more
efficient as compare to other compatible designs. In case of 3 factor DL design
with two central points, the minimax design yields an  almost equals to that of
rotatable designs, greater than that of orthogonal designs but lesser than BD
designs. So minimax designs are more compact as compare to BD. Comparing
on the basis of alphabetic optimalities, it seems that rotatable designs are almost
similar to that of minimax while rest of these competitors are not doing a good
job. The minimax designs are not as compact as the others but are giving lesser
variances to parameter estimates, and yielding more information. In case of a 4
factor DL design with three central points, the minimax designs are the most
compact after the orthogonal but are more optimal in comparison to other given
competitors. The differences in these values are small but grows with the size of
design. Designs for more factors and with different configuration can be obtained
by using the given Mathematica code, in Appendix. The minimax designs are
consistently giving better results; as for different design combinations it may
either be rotatable, orthogonal, or DL which is better either compactness wise or
optimality wise, but the minimax designs always gives an edge on either of these
grounds.

As a matter of fact, rotatble and orthogonal designs are kind of generic designs
and do not change with the situation at hand to maintain their characteristics.
They are not meant for the situations where outliers present. Outliers, missing
observations, other related impediments may easily take the cherished properties
of these designs away. BD designs are, however, robust in nature and attempt to
circumvent these impediments. But these designs, as require variance caused by
these impediments, are calculation intensive and for heavy design configuration
are almost impossible to develop. Even the Mathematica code given in Appendix,
takes double the time to compute BD design as compare to minimax design.
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Table 2: Alphabetic Efficiency Comparison

For a 3 factor DL Design with two central Points

8 7 6 5

Rotatable Orthogonal BD MinMax
alpha 1.41421 1.21 1.698525 1.414214
A optimality 3.16667 3.81538 2.6182 3.1667
D optimality 7.94 10 6.58 10 0 10 0 10
Dmain 0.00195312 0.00300703 0.00107231 0.00195313
Dsqre 0.00078125 0

   


    

.00334048 0.00012598 0.00078125
E optimality 0.654508 0.83017 0.68262 0.654508

For a 4 factor DL Design with three central Points

15 14 17 14

Rotatable Orthogonal BD MinMax
alpha 1.68179 1.47119 2.029419 1.523458
A optimality 2.47509 2.87648 2.05735 2.75634
D optimality 2.27 10 2.61 10 5.44 10 1.39 10
Dmain 0.0000287473 0.0000432825 0.0000143869 0.000

   


    

6 7

039152
Dsqre 5.08 10 0.000029389 3.89 10 0.000018697
E optimality 0.426777 0.532824 0.41680 0.502246

  


4. Concluding Remarks

The DL designs are widely used especially in pharmaceutical industry for their
manageable size, optimality and other properties where these properties are
compromised in presence of outliers which are very common in the industrial
setup. The paper is an attempt to generate DL designs which are robust to these
outliers. The minimax effect criterion, introduced and used in this paper, yield
outlier robust designs for which almost all the design points have equal
significance. Such a design would not let any potential outlier, at any design
point, to distort the harmony, balance and the sequential conclusioning of the
design. Moreover, these designs are more efficient as compare to the existing
competitors, e.g. the rotatable, least-outlying-effect-variance Box & Draper
(1975) designs which are making this criterion more useful. Designs robust to a
single outlier are introduced in this paper but the idea can easily be generalized
for more than a single outlier. However, their are certain limitations are there in
these designs like the non-availability of these robust designs for certain design
points. For example in the replicated (where factorial parts is replicated) k = 5
minimax DL designs are not available.
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Appendix
Clear["Global`*"]
{fact,rns,rf,ra,cent}={3,4,1,1,2};
d={"1","ab","ac","bc"};
Print["Outlier Robust Central Composite Designs; Single Outlier"]
Print["Basic Design = 2^"<>ToString[fact]<>" in "<>ToString[rns]<>"
runs"]
Print["Design Pts:",d]
Print["2nd order RSCCD = factorial x "<>ToString[rf]<>", axial x "<>
ToString[ra]<>", center pts. x "<>ToString[cent]]
{w,ax,des,rows,col}={1,2*fact,rns+2*fact+cent,rns*rf+2*fact*ra+cent,(fa
ct+1) (fact+2)/2};
{t,q}={2 fact ra+cent,
((rns rf+t)^(1/2)-(rns rf)^(1/2))^2};
x=Array[ds,{rows,col}];
Do[ds[i,j]=0,{j,col},{i,rows}]
Do[ds[i,1]=1,{i,rows}]
Do[rn=d[[i]];
k=1;
Do[If[StringTake[rn,k #0]==FromCharacterCode[95+j],
ds[i,j]=1;k=k+1;If[StringLength[rn]<k,rn=rn<>"z"],
ds[i,j]=-1],
j,2,fact+1],
i,rns]
Do[w=w+1;
Do[If[j==w,ds[i,j]=a;ds[i+1,j]=a,ds[i,j]=0;ds[i+1,j]=0],
{j,2,fact+1}],
{i,rns+1,rns+ax,2}]
Do[ds[i,j]=0,{j,2,fact+1},{i,rns+ax+1,des}]
Do[ds[i,j]=ds[i,j-fact]^2,{j,fact+2,ax+1},{i,des}]
Do[t1=2;t2=t1+1;
Do[ds[i,j]=ds[i,t1] ds[i,t2];t2=t2+1;
If[t2>fact+1,t1=t1+1;t2=t1+1],
j,ax+2,col],
i,des]
If[rf==2,Do[x[[j]]=x[[j-des]],j,des+1,des+rns]]
p=des+rns(rf-1);
If[ra==2,Do[x[[j]]=x[[j-p+rns]],j,p+1,p+ax]]
orth=N[(q rns rf/4)^(1/4)];
rot=N[(rns rf)^(1/4)];
xxi=Inverse[Transpose[x].x];
hat=x.xxi.Transpose[x];
wgt1[dp_]:=hat[[dp,dp]];
s,ss=0,0;
Do[s=s+wgt1[i];ss=ss+(wgt1[i]^2),i,rows]
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var=ss/rows-(s/rows)^2;
bd=NSolve[D[var,a]==0,a,7];
bd=a/.%;
Do[If[Re[bd[[i]]]==bd[[i]]&&bd[[i]]>0,bd1=bd[[i]]],i,Length[bd]}]
fmax,amax=0,0;
Do[at1=wgt1[i]/.a->1;If[at1>fmax,fp=i,fmax=at1],i,rns]
Do[at1=wgt1[i]/.a->1;If[at1>amax,ap=i,amax=at1],i,rns+1,rns+ax]
fatm,aatm,catm=wgt1[fp],wgt1[ap],wgt1[des]};
ord1,ordfa,ordfc,ordac=0,0,0,0;
sol=NSolve[fatm==aatm,a,7];
sol=a/.%;
Do[If[Re[sol[[i]]]==sol[[i]]&&sol[[i]]>0,ordfa=sol[[i]]],
i,Length[sol]}]
sol=NSolve[fatm==catm,a,7];
sol=a/.%;
Do[
If[Re[sol[[i]]]==sol[[i]]&&sol[[i]]>0,ordfc=sol[[i]]],
i,Length[sol]}]
sol=NSolve[aatm==catm,a,7];
sol=a/.%;
Do[If[Re[sol[[i]]]==sol[[i]]&&sol[[i]]>0,ordac=sol[[i]]],
i,Length[sol]}]
9
If[ordfa>0&&(fatm/.a->ordfa)>(catm/.a->ordfa),ord1=ordfa];
If[ordfc>0&&(fatm/.a->ordfc)>(aatm/.a->ordfc),ord1=ordfc];
If[ordac>0&&(aatm/.a->ordac)>(fatm/.a->ordac),ord1=ordac];
Print[" "]
Print["The Analysis"]
aop=Sum[xxi[[i,i]],i,col];
dop=Det[xxi];
dm=Det[Inverse[Transpose[x][[Range[2,fact+1]]].Transpose[Transpose[x][[
Range[2,fact+1]]]]]];
ds=Det[Inverse[Transpose[x][[Range[2+fact,2*fact+1]]].
Transpose[Transpose[x][[Range[2+fact,2*fact+1]]]]]];
t={{"
","Rotatable","Orthogonal","BD","MinMax"},{"alpha",rot,orth,bd1,ord1,
{"A-opt",aop/.a->rot,aop/.a->orth,aop/.a->bd1,aop/.a->ord1,
{"D-opt",dop/.a->rot,dop/.a->orth,dop/.a->bd1,dop/.a->ord1,
{" Dmain",dm/.a->rot,dm/.a->orth,dm/.a->bd1,dm/.a->ord1,
{" Dsqre",dm/.a->rot,dm/.a->orth,dm/.a->bd1,dm/.a->ord1,
{"E-opt",Max[Eigenvalues[xxi]/.a->rot],Max[Eigenvalues[xxi]/.a->orth],
Max[Eigenvalues[xxi]/.a->bd1],Max[Eigenvalues[xxi]/.a->ord1]}};
Print[TableForm[t]]
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