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Abstract
In this paper, a stochastic queuing model for a catastrophic-cum-restorative queuing system with
correlated batch arrivals and general service time distribution has been developed. The transient
analysis of the queuing model has been performed. The Laplace Transform of the probability
generating function of the system size has been obtained. Finally, some particular cases of the
model have been derived and discussed.
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1.   Introduction
Broadband Communication Networks are playing a key role in providing a variety
of multimedia services such as voice, video and data etc. The amount of
information per unit time generated by these services varies along the connection
duration. There are certain periods in which the information rate increases and
others in which it decreases or becomes null. As the sources providing such
services are not synchronized several cells may arrive at the same slot. Thus,
they (cells) arrive in batches of variable size. Parra (1993) studied that the arrival
process in broadband communication networks is correlated in nature.

Further, the arrival of infected cells (viruses) and noise bursts etc. may annihilate
all the cells in the buffer of the server (computer) and leave it momentarily
inactivated until the new cell arrival occurs. Such infected cells may be modeled
by catastrophes. The notion of catastrophes occurring at random, leading to
annihilation of all the customers there and the momentary inactivation of service
facility until a new arrival of a customer is not uncommon in many practical
problems. Chao (1995) studied a queuing network model with catastrophes.
Crescenzo et al. (2003) studied an M/M/1 queue with catastrophes and derived
its heavy traffic approximation. Jain and Kumar (2004, 2005, 2006) obtained the
transient solution of some catastrophic queuing systems with correlated input.
Murari (1972) obtained the time dependent solution of a queuing problem with
correlated batch arrivals and general service time distribution. Kumar (2008)
obtained the time-dependent solution of a catastrophic-cum-restorative queuing
problem having correlated batch input and variable service capacity. Kumar
(2009) studied a correlated input queue with catastrophic and restorative effects
for the cell traffic generated by new broadband services. Recently, Kumar (2010)
studied an M/M/2 queue with heterogeneous servers under catastrophic and
restorative effects and obtained its transient solution.
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The concept of catastrophe has tremendous applications in a wide variety of
areas particularly in computer-communication, biosciences, population studies
and industries etc. It is based on the assumption that with the occurrence of
catastrophe, all the customers in the system are destroyed and simultaneously
the system becomes ready to accept new customers. However a system will
always require some sort of time to function in a normal way if it suffers from
catastrophe, which is taken as restoration time. Thus, it would be more
practicable if we model the restoration time required by a system which is
suffering from catastrophe. In the present example, with the occurrence of
catastrophe all the cells in the buffer of the server are destroyed immediately. But
the server can work properly after it is free from the viruses and noise bursts.
Thus, some sort of recovery / restoration time is needed. To this end, the concept
of restoration time has been introduced in which no arrival is allowed to occur.

In this paper, we incorporate the effect of catastrophes and restoration in the
correlated batch arrival queue with general service time distribution. We consider
a single server catastrophic-cum-restorative queuing system with correlated
batch input and general service time distribution. The transient solution of the
model under investigation has been derived.

This paper has been organized as follows: In section 2, the queuing model has
been formulated. In section 3, the transient solution of the model has been
obtained.

2. Formulation of Queuing Model
The queuing model investigated in this paper is based on the following
assumptions:
1. The customers arrive at a service facility in batches, the size of the batch

being a random variable with
Prob. (size of the batch is j) = cj , j=1,2,3,…
and







1

1
j

jc

2. The arrival of a batch can occur only at the transition marks
t0, t1, t2… where r = tr – tr-1; r = 1,2,3,…are random variables with
P [rx] = 1 –exp (-x); 0, r = 1,2,…
The arrival and no arrival of a batch at two consecutive transition marks
tr-1,tr; r=1,2,3,...are governed  by the following  transition probability
matrix:
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To tr
arrival of a batch               no arrival of a batch

arrival of a batch                        p11 p10 where p11+p10=1

From tr-1 and
no arrival of a batch p01 p00 p01+p00=1

Thus, the arrivals of batches at two consecutive transition marks are
correlated.

3. The queue discipline is first-come-first-served.
4. The service time distribution is general with probability distribution function

D(x).
5. When the system is not empty, the catastrophes occur at the service

facility according to a Poisson process of rate . The catastrophes
annihilate all the customers in the system instantaneously.

6. The restoration times are independently, identically and exponentially
distributed with parameter η.

7. The stochastic processes namely (i) distributions of r, r=1,2,3,…(ii) the
Distribution of the size of the batch (iii) service time distribution (iv) the
distribution of catastrophes, and (v) the distribution of restoration times are
independent of each other.

8. Let the time be reckoned from the instant when the service channel is idle
and a transition with no arrival of a batch has just occurred, so that
Q 0,0(0)=1

Define,
Pn, 0(x,t)dx = the probability that at time t, the queue length (the number of

customers waiting excluding those being served) is equal to n, a
unit being served with elapsed service time lying between x  and
x + dx, and no arrival of a batch has occurred at the previous
transition mark.

Pn, 1(x,t)dx = the probability that at time t, the queue length  is equal to n, a unit
being served with elapsed service time lying between x and
x + dx, and an arrival of a batch has occurred at the previous
transition mark.

Pn, 0(t)  = the probability that at time t, the queue length is equal to n, the
service channel is not idle and no arrival of a batch has occurred
at the previous transition mark.

P n, 1(t)   = the probability that at time t, the queue length is equal to n, the
service channel is not idle and an arrival of a batch has occurred
at the previous transition mark.
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Q0, 0(t)    = the probability that at time t, the queue length is equal to 0 without
the occurrence of catastrophe, the service channel is idle and no
arrival of batch has occurred at the previous transition mark.

C0, 0(t)    = the probability that at time t, the queue length is equal to 0 with the
occurrence of catastrophe, the service channel is idle and no
arrival of batch has occurred at the previous transition mark.

Q0, 1(t) = the probability that at time t, the queue length is equal to 0 without
the occurrence of catastrophe, the service channel is idle and an
arrival of a batch has occurred at the previous transition mark.

C0, 1(t)    = the probability that at time t, the queue length is equal to 0 with the
occurrence of catastrophe, the service channel is idle and an
arrival of a batch has occurred at the previous transition mark.

R n (t)       = the probability that at time t, the queue length is equal to n.

3. Transient Solution of the Model
The governing equations of the model are:-
Rn(t)=Pn,0(t)+Pn,1(t) ;n=1,2,3… (1)
R0(t) = P0,0(t) + P0,1(t) +  Q0,0(t) + Q0,1(t) (2)

dxtxPtP inin 



0

,, ),()( ; i=0,1 (3)

dt
d Q0,0(t)  = - Q0,0(t) + 



0
0,0 )(),( dxxtxP  + [ p00 Q0,0(t) + p10 Q0,1(t) ]

)(0,0 tC (4)

dt
d C0,0(t)  = - )(0,0 tC +   












n

n
on txP

0
, , (5)

dt
d Q0,1(t)=-Q0,1(t)+ 



0
1,0 )(),( dxxtxP  + )(1,0 tC (6)

dt
d C0,1(t)  = - )(1,0 tC +   












n

n
n txP

0
1, , (7)

),(),( 0,0, txP
t

txP
x nn 







= - (+(x )+)Pn,0(x, t) + [ p00 Pn,0(x, t)+p10 Pn,1(x, t)]

; n =1,2,3, (8)

),(),( 1,1, txP
t

txP
x nn 







= - (+(x)+)Pn,1(x, t) + 


n

j
jc

1
[ p01 P n -j,0(x, t)+p11 Pn-j,1(x, t)]

;n =1,2,3, (9)
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),(),( 1,01,0 txP
t

txP
x 





 =- (+( x )+)P0,1(x, t) (10)

where  (x)dx is the first order probability that the service will be completed in
time interval (x, x+dx) conditioned that the same had not been completed till time
x, and is related to D(x) by the relation

D(x) = (x)

x

dxx

e 0

)(

(11)

These equations are to be solved subject to the following boundary conditions:

dxxtxPtP nn )(),(),0(
0

0,10, 


 (12)

dxxtxPtP nn )(),(),0(
0

1,11, 


 +cn+1[p01Q0,0(t)+p11Q0,1(t)] (13)

Define, the Laplace Transform (L. T.) of f (t) by

f*(s)= 


0

st- f(t)dte

Taking L.T.’s of (1) - (10), we have
R*

n(s) = P*
n,0(s) + P*

n,1(s); n=1,2,3, (14)
R*

0(s) = P*
0,0(s) + P*

0,1(s) +  Q*
0,0(s) + Q*

0,1(s) (15)

dxsxPsP inin 



0

,
*

,
* ),()( ; i=0,1 (16)

(s+)Q*
0, 0(s)-1= 



0

0,0
* )(),( dxxsxP  +[p00 Q

0,0(s)+p10Q *
0, 1(s) ]+ )(0,0* sC (17)

)()( 0,0
* sCs  =   












n

n
on sxP

0
,

* , (18)

(s+)Q*
0,1(s) = 



0

1,0
* )(),( dxxsxP  + )(1,0* sC (19)

)()( 1,0
* sCs  =   












n

n
n sxP

0
1,

* , (20)

),())((),( 0,
*

0,
* sxPxssxP

x
nn  


 = [ p00 P*n,0(x, s)+p10 P*

n,1(x, s)]
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; n =1,2,3, (21)

),())((),( 1,
*

1,
* sxPxssxP

x
nn  


 = 



n

j
jc

1
[ p01 P*

n-j,0(x, s)+p11 P*
n-j,1(x, s)]

;n =1,2,3,… (22)

),())((),( 1,0
*

1,0
* sxPxssxP

x
 


 =0 (23)

Define, the following probability generating functions by

P*
i(x,s,) =   1,0,,

0

*
, 





isxP
n

n
in

n (24)

P*
i(s,) =  





n

0n

*
i,n

n sPα ,i=0,1 (25)

R*(s,) =  




n

n
n

n sR
0

* (26)

Multiplying (14) and (15) by appropriate powers of  and adding, we have

R*(s,) = P*
0(s, ) + P*

1(s, ) + Q*
0,0(s) + Q*

0,1(s) (27)
Similarly, from (16) we have

P*
i(s,) = 



0

*
i )s,(x,P dx (28)

(21) gives

),,(),,(])([),,( 1
*

100
*

000
*  sxPpsxPpxssxP

x



 (29)

and (22) and (23) yield

),,()(),,(])()([),,( 0
*

011
*

111
*  sxPpCsxPpCxssxP

x



 (30)

Where    C()=


1n
n

nc

Substituting for P*
1(x, s,) from (29) in (30), we get

 

0),,(])(][)()([)()(

),,())(())((2),,(

0
*

00110110
2

0
*

11000
*

2

2





 













sxPpxspCxsppCx
dx
d

sxP
x

pCpxssxP
x

(31)
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Solving this differential equation we have

  )(),,( 110
* xUeBeAsxP axax   (32)

  







 
x

dxxxsxpCpxU
0

1100 )()()(
2

exp)(  (33)

2
1100

0110
2

2
)(

)( 



 


pCpppCa 

 (34)

Where A1, B1 are constants of integration.

Substituting for P*
0(x, s,) from (32) in (29), we have

 
10

111
* )()()(),,(

p
xUeBbaeAbasxP axax   (35)

Where

2
)( 1100 pCpb 

 (36)

Setting x= 0 in (32) and (35) and then solving simultaneously, we have








 


a
sPpsPbaA

2
),,0(),,0()( 1

*
100

*

1


(37)








 


a
sPpsPbaB

2
),,0(),,0()( 1

*
100

*

1


(38)

Therefore, we have

 

  






















x

x

dxxxhsPpsPba
a

dxxxhsPpsPba
a

sxP

0
21

*
100

*

0
11

*
100

*
0
*

)(exp),,0(),,0()(
2
1

)(exp),,0(),,0()(
2
1),,(





(39)

 

  






















x

x

dxxxhsPpCsPba
a

dxxxhsPpCsPba
a

sxP

0
20

*
011

*

0
10

*
011

*
1
*

)(exp),,0()(),,0()(
2
1

)(exp),,0()(),,0()(
2
1),,(




(40)

Where

)( 011 abpsh  

)( 012 abpsh  
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Substituting for ),,(0* sxP and ),,(1* sxP from (39) and (40) in (28) and using
(27), we get

 

 
2

2
*

1
*

100
*

01

1

1
*

1
*

100
*

01

1,0
*

0,0
**

)(1
),,0()(),())((

2
1

)(1
),,0()(),())((

2
1

)()(),(

h
hDsPpbasPpCba

a

h
hDsPpbasPpCba

a

sQsQsR

















(41)

Multiplying (12) by n, summing over 0 to  and taking Laplace Transform, we
have

0
0

0
*

0
* )(),,(),,0( KdxxsxPsP  



 (42)

Where

K0 = dxxsxP )(),(
0

0,0
* 



 (43)

Similarly, (13) gives

1
0

1
*

1
* )(),,(),,0( KdxxsxPsP  



 (44)

Where

K1=   dxxsxPpsQpsQC )(),()()()(
0

1,0
*

111,0
*

010,0
*  



 (45)

Substituting for ),,(* sxP i from (39) and (40) in (42) and (44), we have

   
 ),,0(),,0()(

)()(
2
1),,0()(

1
*

100
*

2
*

1
*

0
*

2
*

0





sPpsPba

hDhD
a

sPhDK




(46)

   
 ),,0()(),,0()(

)()(
2
1),,0()(

0
*

011
*

2
*

1
*

1
*

2
*

1





sPpCsPba

hDhD
a

sPhDK




(47)

Solving (46) and (47) for ),,0(* sP i , we have

),,0(* sP i = 1,0, i
E
N i (48)

Where
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   
 1100

2
*

1
*

02
*

0

)(

)()(
2
1)(

KpKba

hDhD
a

KhDN



 
(49)

   
 0011

2
*

1
*

12
*

1

)()(

)()(
2
1)(

KpCKba

hDhD
a

KhDN








(50)

  )()( 2
*

1
* hDhDE   (51)

Combining (41) and (48), we get

 
   

   
)(

)(
2

)(1

)(
)(

2
)(1

)()(),(

2
*

110001

2

2
*

1
*

101001

1

1
*

1,0
*

0,0
**

hD
KpbaKpCba

ah
hD

hD
KpbaKpCba

ah
hD

sQsQsR



















(52)

Also, ),,(0* sxP and ),,(1* sxP from (39) and (40) for =1 give the values of the

summations  




n

n
on sxP

0
,

* , and  




n

n
n sxP

0
1,

* , respectively.

Also from (18) and (20), we have

 

















 




n

n
on sxP

s
sC

0
,

*
0,0

* ,)(


 (53)

and



















 


0
1,

*
1,0

* ),()(
n

n sxP
s

sC


 (54)

Thus, substituting the values of )(0,0* sC and )(1,0* sC in (17) and (19) we get two
equations in four unknowns.

By Rouche’s theorem )( 1
* hD has exactly one root inside the unit circle 1 .

Since R* (s,) is analytic inside the unit circle, this root must vanish the
numerator of the second term of the right hand side of (52), giving rise to one
equation. Similarly, one root of )( 2

* hD must vanish the numerator of the third
term of the right hand side of (52) giving rise to one equation. Solving, these two
equations along with (17) and (19), one can determine all the four unknowns viz.
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)(),( 1,0
*

0,0
* sQsQ , dxxsxP )(),(

0

0,0
* 



and dxxsxP )(),(
0

1,0
* 



occurring in K0 and K1.

Thus, R*(s,) is completely determined.

Particular Cases
(1) When the service time is exponential with parameter , then

1
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h

hD

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
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2
2
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hD
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



and from (52), we have
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(55)

Where     sh and
K0 = – P*

0,0(s)
K1 = + [p01Q*

0,0(s)+ p11Q*
0,1(s)] -P*

0,1(s)
That is, the model reduces to a catastrophic-cum-restorative queuing system with
correlated batch input and exponential service time distribution.

(2)  When =0 and η = ∞ (i.e. there are no catastrophic and restorative effects),
from (52)-(54), we have
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(56)

Where

)( 011 abpsh  

)( 012 abpsh  
0)()( 1,0

*
0,0

*  sCsC (57)

(56) provides us the Laplace transform of the probability generating function of
system size of a correlated batch input queue having general service time
distribution studied by Murari (1972).
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Conclusion
A correlated batch input, single server queuing system with catastrophic and
restorative effects has been studied. The service time distribution has been taken
as general. The transient analysis of the queuing model has been carried out.
The Laplace transform of the probability generating function of system size has
been obtained. Two particular cases of the model have been discussed. The
limitation of the queuing model studied in this paper is that the explicit
expressions for time-dependent probabilities have not been obtained.
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