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Abstract 

Recently, there has been a growing interest in integer-valued time series models. In this paper, using a 

martingale difference, we prove a general theorem on the moment properties of a class of integer-valued 

time series models. This theorem not only contains results in the recent literature as special cases but also 

has the advantage of a simpler proof. In addition, we derive the closed form expressions for the kurtosis 

and skewness of the models. The results are very useful in understanding the behaviour of the processes 

involved and in estimating the parameters of the models using quadratic estimating functions (QEF). 

Specifically, we derive the optimal function for the integer-valued GARCH (p, q) known as INGARCH (p, 

q) model. Simulation study is carried out to compare the performance of QEF estimates with corresponding 

maximum likelihood (ML) and least squares (LS) estimates for the INGARCH (1,1) model  with different 

sets of parameters. Results show that the QEF estimates produce smaller standard errors than the ML and 

LS estimates for small sample size and are comparable to the ML estimates for larger sample size. For 

illustration, we fit the 108 monthly strike data to INGARCH (1, 1) models via QEF, ML and LS methods, 

and show the applicability of QEF method in practice. 

Keyword:  Skewness, kurtosis, martingale difference, quadratic estimating functions, 

integer-valued. 

1. Introduction 

An increasing number of studies that involve integer-valued time series data can be found 

in the literature. Zeger (1988) extensively studied the monthly cases of Polio infection in 

the U.S. from 1970 to 1983. Johansson (1996) considered the effect of lowering speed 

limits on the number of accidents while Li et al. (2014) investigated the implication of 

crime cases over time. As a result, there is a need for integer-valued time series models 

extended to include autoregressive moving average models, the first of which were 

introduced by Brockwell and Davis (1991) and Emad and Nadjib (1994). 

 

Later, Ferland et al. (2006) extended the classical generalized autoregressive conditional 

heteroskedastic model with Poisson deviate. To account for overdispersion, Zhu (2011) 



Nurul Najihah Mohamad, Ibrahim Mohamed, Ng Kok Haur 

Pak.j.stat.oper.res.  Vol.XIV  No.1 2018  pp157-175 158 

introduced a new version of Ferland’s model with negative binomial deviate. For cases of 

data with excess zeroes, Zhu (2012) proposed the zero-inflated models with both Poisson 

and negative binomial deviates. Here, we re-examine some of these models and present 

simpler derivations of their moment properties using martingale difference. Such 

martingale difference have been successfully applied to various time series processes, see 

for example, Thavaneswaran and Abraham (1988) and Ghahramani and Thavaneswaran 

(2009). These results are very significant for the development of simpler theories on 

integer-valued time series models, in particular, for estimating the paramaters of the 

models using the estimating functions method. 

 

The paper is divided as follows: In Section 2, we propose a general class of integer-

valued time series models including important models given in Ferland et al. (2006), Zhu 

(2011) and Zhu (2012). We also derive the basic properties of the model, namely, 

formulae for the mean, variance, autocovariance and autocorrelation using a new 

approach, i.e by employing martingale differences. In Section 3, we present the higher 

order moment properties of the model up to order 4 by using martingale difference. In 

Section 4, we derive the optimal function for INGARCH (p,q) model via quadratic 

estimating functions (QEF). Simulation study is conducted to compare the performance 

of QEF, ML and LS estimates for INGARCH (1,1) model. We illustrate the QEF method 

in practice to the monthly strike data set given in Jung et al. (2005). Concluding remarks 

are given in Section 5. 

2.   Moments of Integer-Valued Time Series Models 

Following the notation in Ferland et al. (2006), we consider four types of integer-valued 

time series model: Poisson (INGARCH), negative binomial (NBINGARCH), zero-

inflated Poisson (ZIPINGARCH) and zero-inflated negative binomial (ZINBINGARCH) 

with conditional mean   1| ttXE  is of the form: 

  TP,1| ttt aXE    ,       (1) 
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where 1t  is the  −field generated by 121 ,...,, XXX tt   with TP,t  is the intensity 

parameters with TP = Poisson (P), negative binomial (NB), zero-inflated Poisson (ZIP) 

and zero-inflated negative binomial (ZINB) for the respective models, 0 , 0i , 

pi ,...,2,1 , and 0j , qj ,...,2,1  and a is the coefficient of the conditional mean 

with 
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where r  is the number of successful trials, tp  is the probability of successful trials and 

  is the inflation parameter. 
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We now apply the martingale difference, TP,1)|( tttttt aXXEXu    with 

0)( tuE  and 2)(Var utu  .  Multiplying equation (2) by a gives  
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Since tu  is a martingale difference sequence, the equation can be rewritten in using 

backward operator, B, as 
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be represented in the form 

    tt uBaXB   .       (4) 

 

If all the roots of   0B  lie outside the unit circle, then the process  tX  is stationary.  

By letting  
 
 B

B
B




   and 

 B

a




  , the equation (4) can be written as 

  tt uBX   ,  i.e.  
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and the variance of tX  is given by  
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Using first order stationarity, )( tXE  and since for large t, )( tE   approaches  , a 

constant, then, 2
u  can be easily expressed in terms of  . For the processes INGARCH, 

NBINGARCH and ZIPINGARCH, it can be easily shown that the corresponding values 

of 2
u  are  , 
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following the index c = 0, 1 appearing in the probability mass function of the zero-

inflated negative binomial distribution (see Zhu, 2012). However, we note that the strict 

stationary properties have been studied only for the INGARCH (p, q) model by Ferland 
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et al. (2006). As highlighted by Zhu (2011, 2012), different approaches are required to 

exhibit the properties for the other three models and are of interest in future work. 

 

The first aim here is to derive the general formula for the first two moments, the 

autocovariance and the autocorrelation of the integer-valued process  tX  of the form in 

equations (1-2). The result is given in Theorem 1. 

 

Theorem 1: Under the first and second order stationarity assumptions, 
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Proof: The mean of tX  can be obtained by taking the expectation of equation (3). Since 

0)( tuE , 1(a) follows. From equation (5), we notice that the process can be represented 

as a general form of a time series process (see Abraham and Ledolter, 2009), therefore, 

the variance, autocovariance and correlation of tX  are obtained. 

3.   Skewness and Kurtosis 

In the literature, only the first two moments and the autocovariance are given for integer-

valued time series models. In this section, following Thavaneswaran et al. (2005), we 

obtained the general expression for the skewness and kurtosis for the INGARCH, 

NBINGARCH, ZIPINGARCH and ZINBINGARCH models. 

Theorem 2: Consider a linear stationary process of the form 





0j
jtjt uX  where 

  is the mean of the random process and tu  is an uncorrelated noise process with mean 

zero, variance 2
u , skewness 

 u   and kurtosis 
 uK . Define 2)(  tt XS . Then, under 

suitable stationarity conditions, such process will have variance, skewness, kurtosis and 

correlation given by 
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(b)  
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respectively. The proof is given in Appendix 1. 

 

Example: Using Theorems 1 and 2, we derive the following results for four distributions 

with p = 1 and q = 1. From equations (1) and (2), the process  tX  is such that 
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From Theorem 1(c), the autocovariance of the  tX  process with order (1,1) can be 

written as 
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and from Theorem 1(b), the variance of the  tX  process is 
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while from Theorem 1(d), the correlation of the  tX  process is 
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where a is as defined earlier for the different models. 

 

Using the same arguments as in Section 2, we can find the skewness and kurtosis of .tu  

The skewness 
 u  for INGARCH, NBINGARCH and ZIPINGARCH is 
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However, the similar corresponding expression for ZINBINGARCH is complicated but 

can still be solved using standard mathematical software. 
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4.   General Theory of Quadratic Estimating Functions 

Godambe (1960) was the first to introduce regular estimating functions (EF) that satisfy 

certain conditions and procedures for choosing an optimal EF. The requirement for a 

regular EF,  θ;tXg  are: 

(i)        0;;;  tttt dXXfXgXgE θθθ , 

(ii) 
 
θ

θ



 ;tXg
 exists for all θ  where  is the parameter space, 

(iii)     ttt dXXfXg θθ ;;  is differentiable under the sign of integration, 

(iv) 
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(v)        θθ ;;Var 2
tt XgEXg . 

 

According to Godambe (1960), to find the optimal EF, say  θ;*
tXg  two criteria should 

be satisfied. First, the estimated parameter should be as close as possible to the true 

value. This means that the variance      θθ ;;Var 2
tt XgEXg   should be minimized 

and therefore      θθ ;; 22*
tt XgEXgE  .  The second criterion is that the expected 

values of the derivatives of the function  θ;tXg  with respect to θ  , 
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criteria, the optimal EF,   θ;*
tXg  can be defined as follows: 

Definition 1 
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Further, Godambe (1985) studied the inference of discrete time series processes using 

estimating functions. He considered a class  
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combination of th ’s where the expected value  0)|( 1  tthE  since 1t  is the  −field 

generated by  1;  tsX s . The theorem below is the result in Godambe (1985) on 

optimal EFs for the dependent case. 
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Theorem 3: Let  
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The EF method was later extended by Liang et al. (2011) to the case where the first four 

conditional moments are known. The functions used are called quadratic estimating 

functions (QEF).  

 

Now, we assume that the discrete time stochastic process  ntX t ,...,2,1,   has the 

following conditional moments depending only on the parameter θ : 
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We estimate the parameter θ  using two classes of martingale differences 
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The following theorem is obtained from Liang et al. (2011). 
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Theorem 4: In the class      
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4.1 The INGARCH (p, q) Model 

In this subsection, we focus on INGARCH (p, q) model given by 

  P,1| tttXE   , 

 







q

j
jtj

p

i
itit X

1
P,

1
P,  . 

The parameters of interest are  '110 ,...,,,...,, qp θ . The mean, variance, 

skewness and kurtosis of tX  conditional on 1t  are  

P,P,

P,
2

P,P,

1
 and,

1
,),(

t
t

t

tttttt





  θ . 

From equations (6) and (7), the martingale differences considered are P,ttt Xm 
 
and 

  P,
2

P, tttt Xs   . On the other hand, the conditional expectations in equations (8), 

(9) and (10) are P,tt
m  ,  P,P, 21 ttt

s    and P,, tt
sm  . Let 

P,

P,

1
2

2

21,
1

t

t

tt

t
t

sm

sm
C























.  Then, from Theorem 4, the optimal QEF is 

    




n

t
ttttQ sbmag

1

*

1

*

1

*
θ   where 

  

,

21

1

2

21

,1

P,

P,

2

P,P,

P,

,

P,

P,

P,

P,

2
*

1

t

t

tt

t

Pt

t

t

t

t

tt

tt

t

t
tt

sm

sm

m
Ca





































































θθ

 



Nurul Najihah Mohamad, Ibrahim Mohamed, Ng Kok Haur 

Pak.j.stat.oper.res.  Vol.XIV  No.1 2018  pp157-175 166 

and 
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The formulation of optimal equations for the other three models which are NBINGARCH 

(p,q), ZIPINGARCH (p,q) and ZINBINGARCH ),( qp models are the same as 

INGARCH (p,q) model. The optimal equation(s) for the additional extra parameter (s) in 

the above three models can be derived using optimal estimating functions in Theorem 4. 

An optimal estimate of θ  can be obtained by solving the equation(s)   0* θQg . 

4.2 Simulation Study 

Let N and n be the number of simulations and the sample size generated respectively 

from the INGARCH (1, 1) models given by 

Model 1:   P,1| tttXE   ; P,11P, 1.04.02.0   ttt X   

Model 2:   P,1| tttXE   ; P,11P, 3.06.01.0   ttt X   

Model 3:   P,1| tttXE   ; P,11P, 2.04.03.0   ttt X   
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Here, we demonstrate how to estimate the parameters using the QEF method: 

• Step 1-  Generate the data: We first generate the data from given true values. Then, 

we choose the observations numbering from 100 to 100 + n. 

• Step 2-  Initialize the parameters: We set the initial values for 1  and  1  by taking 

the typical values for each parameter, namely 1.01   and 8.01  . On the 

other hand, we take the value of    to be the mean X , of the generated data 

in Step 1, namely, X 1.0 , (see Ferland et al., 2006). 

• Step 3-  Estimate the parameters: Using nleqslv, we solve the simultaneous optimal 

equations (11) to (13) in R-cran programming language in order to obtain the 

QEF estimates of  , 1  and 1  for the INGARCH (1,1) model. 

Table 1:  Simulation results for INGARCH (1,1) with 2.0 , 4.01   and 

1.01  . 

  

  

n = 100   n  = 250    n = 500  

ML LS QEF ML LS QEF ML LS QEF 

 Mean  0.167 0.241 0.170 0.198 0.185 0.185 0.202 0.190 0.191 

̂  Bias -0.032 -0.159 -0.030 -0.002 -0.015 -0.015 0.002 -0.010 -0.010 

SE  0.067 0.101 0.057 0.049 0.048 0.046 0.035 0.037 0.034 

 RMSE 0.074 0.108 0.065 0.049 0.048 0.046 0.035 0.058 0.035 

1̂  Mean  0.346 0.367 0.339 0.387 0.366 0.375 0.393 0.379 0.386 

Bias -0.054 -0.033 -0.062 -0.012 -0.034 -0.025 -0.007 -0.021 -0.014 

 SE  0.126 0.145 0.129 0.089 0.098 0.089 0.060 0.062 0.060 

 RMSE 0.136 0.149 0.142 0.090 0.098 0.092 0.061 0.065 0.061 

 Mean  0.228 0.004 0.216 0.131 0.162 0.155 0.096 0.144 0.132 

1̂  Bias 0.128 -0.096 0.116 0.013 0.062 0.055 -0.004 0.044 0.032 

SE  0.185 0.265 0.145 0.131 0.116 0.111 0.092 0.092 0.086 

 RMSE 0.225 0.282 0.180 0.132 0.132 0.124 0.092 0.102 0.092 

Discussion 

In order to evaluate the performance of the QEF, maximum likelihood (ML) and least 

squares (LS) methods for INGARCH (1,1) model, a simulation study was carried out 

with 500N , 1500,1000,500,250,100n . The performance of each parameter 

estimates is measured using bias, standard error (SE) and root mean squared error 

(RMSE). The results are shown in Tables 1 to 3.  
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Table 1:  Simulation results for INGARCH (1,1) with 2.0 , 4.01   and 

1.01   (Cont.). 

  

  

n = 1000   n = 1500   

ML LS QEF ML LS QEF 

 Mean  0.201 0.196 0.197 0.201 0.197 0.198 

̂  Bias 0.001 -0.005 -0.003 0.001 -0.003 -0.002 

SE  0.026 0.028 0.026 0.023 0.025 0.022 

 RMSE 0.027 0.028 0.027 0.023 0.025 0.022 

1̂  Mean  0.399 0.395 0.396 0.399 0.396 0.399 

Bias -0.001 -0.005 -0.004 -0.001 -0.004 -0.001 

SE  0.041 0.045 0.042 0.031 0.037 0.030 

 RMSE 0.041 0.045 0.043 0.033 0.038 0.031 

 Mean  0.097 0.116 0.112 0.097 0.109 0.102 

1̂  Bias -0.003 0.016 0.012 -0.003 0.009 0.002 

SE  0.072 0.073 0.066 0.054 0.064 0.049 

 RMSE 0.072 0.075 0.067 0.055 0.064 0.050 

Table 2:  Simulation results for INGARCH (1,1) with 1.0 , 6.01   and 

3.01  . 

  

  

n = 100 n = 250 n = 500 

ML LS QEF ML LS QEF ML LS QEF 

̂  Mean  0.137 0.169 0.099 0.117 0.131 0.111 0.109 0.118 0.104 

Bias 0.037 0.069 -0.001 0.017 0.031 0.011 0.009 0.018 0.004 

SE  0.085 0.100 0.055 0.041 0.052 0.037 0.026 0.034 0.023 

RMSE 0.093 0.122 0.055 0.044 0.061 0.038 0.027 0.039 0.024 

1̂  Mean  0.564 0.533 0.542 0.591 0.569 0.584 0.595 0.583 0.591 

Bias -0.036 -0.067 -0.058 -0.009 -0.031 -0.016 -0.005 -0.017 -0.009 

SE  0.128 0.162 0.105 0.089 0.101 0.088 0.059 0.073 0.058 

RMSE 0.132 0.175 0.189 0.089 0.105 0.089 0.059 0.075 0.059 

1̂  Mean  0.272 0.227 0.282 0.277 0.282 0.287 0.286 0.288 0.294 

Bias -0.027 -0.073 -0.018 -0.023 -0.018 -0.013 -0.013 -0.012 -0.006 

SE  0.129 0.218 0.127 0.094 0.114 0.093 0.062 0.082 0.062 

RMSE 0.132 0.230 0.149 0.097 0.115 0.094 0.063 0.083 0.062 
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Table 2:  Simulation results for INGARCH (1,1) with 1.0 , 6.01  and 

3.01   (Cont.). 

  

  
n = 1000 n = 1500 

ML LS QEF ML LS QEF 

̂  Mean  0.104 0.111 0.102 0.103 0.108 0.102 

 Bias 0.004 0.011 0.002 0.003 0.008 0.002 

 SE  0.016 0.024 0.016 0.013 -0.020 0.009 

 RMSE 0.017 0.026 0.017 0.014 0.022 0.011 

1̂  Mean  0.598 0.594 0.596 0.595 0.597 0.598 

 Bias -0.002 -0.01 -0.004 -0.005 -0.003 -0.002 

 SE  0.038 0.051 0.040 0.033 0.044 0.025 

 RMSE 0.038 0.051 0.040 0.033 0.044 0.026 

1̂  Mean  0.294 0.289 0.297 0.294 0.291 0.297 

 Bias -0.006 -0.01 -0.003 -0.005 -0.009 -0.003 

 SE  0.041 0.056 0.043 0.034 0.048 0.028 

 RMSE 0.042 0.057 0.043 0.034 0.049 0.030 

 

Table 3:  Simulation results for INGARCH (1,1) with 3.0 , 4.01   and 

2.01  . 

 n = 100 n = 250 n = 500 

ML LS QEF ML LS QEF ML LS QEF 

̂  Mean  0.299 0.248 0.275 0.317 0.304 0.299 0.314 0.307 0.306 

Bias -0.001 -0.052 -0.025 0.017 0.004 -0.001 0.014 0.007 0.006 

SE  0.113 0.115 0.101 0.082 0.081 0.074 0.060 0.063 0.060 

RMSE 0.113 0.126 0.104 0.084 0.081 0.074 0.062 0.063 0.060 

1̂  Mean  0.379 0.366 0.379 0.398 0.382 0.388 0.399 0.392 0.395 

Bias -0.021 -0.034 -0.021 -0.002 -0.018 -0.012 -0.001 -0.008 -0.005 

SE  0.106 0.145 0.108 0.072 0.075 0.070 0.050 0.055 0.050 

RMSE 0.109 0.149 0.113 0.072 0.081 0.071 0.050 0.055 0.050 

1̂  Mean  0.226 0.109 0.236 0.178 0.209 0.210 0.180 0.201 0.194 

Bias 0.026 -0.091 0.036 -0.022 0.009 0.010 -0.020 0.001 -0.006 

SE  0.163 0.269 0.153 0.128 0.125 0.119 0.098 0.098 0.095 

RMSE 0.164 0.284 0.163 0.130 0.125 0.119 0.099 0.099 0.095 
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Table 3:  Simulation results for INGARCH (1,1) with 3.0 , 4.01   and 

2.01   (Cont.). 

  

  

n = 1000 n = 1500 

ML LS QEF ML LS QEF 

̂  Mean  0.309 0.308 0.307 0.306 0.305 0.304 

Bias 0.009 0.008 0.007 0.006 0.005 0.004 

SE  0.046 0.051 0.044 0.038 0.042 0.034 

 RMSE 0.046 0.051 0.045 0.038 0.042 0.035 

1̂  Mean  0.401 0.399 0.400 0.401 0.398 0.401 

Bias 0.001 -0.001 0.000 0.001 -0.002 0.001 

SE  0.034 0.038 0.034 0.028 0.032 0.027 

 RMSE 0.034 0.038 0.034 0.028 0.032 0.029 

1̂  Mean  0.186 0.185 0.189 0.190 0.192 0.192 

Bias -0.014 0.015 -0.011 -0.010 -0.008 -0.008 

SE  0.074 0.079 0.070 0.059 0.066 0.052 

 RMSE 0.075 0.080 0.071 0.059 0.066 0.055 

 

 

A number of interesting results can be highlighted. Firstly, for the small sample sizes, 

,500,250,100n the QEF estimates give the smaller values of SE and RMSE compared 

to other two methods.  However, as n increases, the SE and RMSE values for the QEF 

estimates are always marginal smaller than ML and LS estimates. Secondly, as expected, 

as n increases from 100 to 1500, all the SE and RMSE of QEF, ML and LS estimates are 

consistently decreases. Lastly, it is important to point out the computational times for the 

QEF method is four times shorter than the ML method and three times shorter than the 

LS method when the simulation is done using R-cran programming. The R codes are 

available upon request. 

 

Therefore, we can conclude that the QEF method provided consistently accurate 

estimates and computation effective than the ML and LS methods in the parameter 

estimation of INGARCH models. 

 

4.3   Real data Example 

We apply the proposed methodology to analyze the 108 monthly strike data from January 

1994 to December 2002 given by Jung et al. (2005). The data are available at the U.S. 

Bureau of Labor Statistics (http://www.bls.gov/wsp/) (see Weiβ, 2010). It describes the 

number of work stoppages leading to 1000 workers or more effectively idle during the 

period. The time series is given in Figure 1. 
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Figure 1:   The monthly strike data from January 1994 to December 2002. 

 

We fit the data using the INGARCH (1,1) model via the QEF, ML and LS methods. Then 

we obtain the parameter estimates together with their respective standard errors in 

parenthesis are shown in Table 4. We observe that, the QEF and ML methods give the 

same values of estimates. As expected, the standard errors of the QEF estimates are the 

smallest as compared to other two methods. 

Table 4:  The estimated parameters of INGARCH (1,1) model. Values in 

parentheses are standard errors of parameter estimates. 

Method            ̂         1̂          1̂  

QEF 1.623 (0.428)  0.610 (0.081) 0.064 (0.114) 

ML 1.623 (0.502) 0.610 (0.095) 0.064 (0.125) 

LS 1.854 (0.512) 0.596 (0.112) 0.032 (0.128)  

 

Then, to investigate the model fitting adequacy, we consider the Pearson residual defined 

by 
 

 θ̂
θ̂

P,

P,

t

tt
t

X
z




 . According to Kedeem and Fakianos (2002), for the specified 

model, the sequence tz  should have mean and variance close to 0 and 1 respectively and 

the sequence does not have serial correlation. We found that in our case, the mean and 

variance of the Pearson residuals are 0.032 and 1.009 respectively and are thus close to 

zero and unity as desired. Moreover, by using Ljung-Box (LB) statistics, the results from 

Table 5 indicate that there is no significant serial correlation in the residual. 

Table 5:   Diagnostics for INGARCH (1,1) model using QEF method. 

 LB(zt) LB( zt
2) 

       χ2 28.1 21.3 

p-value 0.565 0.878 
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Furthermore, to examine the model adequacy, from Figure 2(a), there is no trend 

observed indicating the randomness of the residuals and in Figure 2(b), the plot does not 

exceed the dotted line. Therefore, the INGARCH (1, 1) model is a good fit for the 

monthly strike data given in Jung et al. (2005). 

5.   Concluding Remarks 

This paper studied the moments of four integer-valued time series models, namely, the 

Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial 

models. We used the martingale difference to derive the higher order moments of all four 

models. The results for the first two moments are similar to those found in Zhu (2011) 

and Zhu (2012), but the derivation was much simpler. In addition, we derived the higher 

order moments of integer-valued time series up to order 4. However, the results hold for 

only the INGARCH (p, q) model. Further investigations on the stationarity of the other 

three models are required. Furthermore, we developed the quadratic estimating functions 

method mainly focusing on the INGARCH (p, q) model.  

 

To investigate the performance of the QEF method compared to those of the LS and ML 

methods, simulation was carried out to obtain the estimated parameters together with 

their standard errors. The results showed that the QEF estimates give smaller standard 

errors and computation effective compared to the ML and LS estimates. Lastly, we model 

the monthly strike data using the INGARCH (1,1) model via QEF method.  The 

adequacy of fit was investigated using diagnostic tools based on the Pearson residuals. 

For the future research, other estimation methods such as Kalman filter can be 

considered. 

 

 

(a)

 

(b)

 

 

Figure 2:   (a) The Pearson residual plot. (b) The periodagram plot. 
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Appendix 1 

(a)   Let  2 tt XS . Then,  
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Since from the multinomial expansion,   0tuE  and     44
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t KuE  .  Similarly, we can 

show that 














 















 0

4

2

0

2

0

2

1

2 .336
j

j
j

j
i

j
ij

i   

 

Hence,  

    
    

 

 

   .23

33

6

VarVar

2

0

24

0

44

2

0

24

0

44

2

0

24

0

44

0

2

0

222

1

24

0

44

22

2













































 


























































j
ju

j
ju

u

j
ju

j
ju

j
ju

u

j
ju

i j
juj

ij
iu

u

j
ju

tt

tt

K

K

K

SESE

SX









 
 

(b) Using the third moment and Theorem 1(b), the skewness of tX  is  
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(c) Using the fourth moment and Theorem 1(c), the kurtosis of tX  is  
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(d) It is easily shown that 
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Since tu ’s are uncorrelated, we have 
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Therefore, the covariance is given by 
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and the correlation is 
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