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Abstract

Recently, there has been a growing interest in integer-valued time series models. In this paper, using a
martingale difference, we prove a general theorem on the moment properties of a class of integer-valued
time series models. This theorem not only contains results in the recent literature as special cases but also
has the advantage of a simpler proof. In addition, we derive the closed form expressions for the kurtosis
and skewness of the models. The results are very useful in understanding the behaviour of the processes
involved and in estimating the parameters of the models using quadratic estimating functions (QEF).
Specifically, we derive the optimal function for the integer-valued GARCH (p, g) known as INGARCH (p,
g) model. Simulation study is carried out to compare the performance of QEF estimates with corresponding
maximum likelihood (ML) and least squares (LS) estimates for the INGARCH (1,1) model with different
sets of parameters. Results show that the QEF estimates produce smaller standard errors than the ML and
LS estimates for small sample size and are comparable to the ML estimates for larger sample size. For
illustration, we fit the 108 monthly strike data to INGARCH (1, 1) models via QEF, ML and LS methods,
and show the applicability of QEF method in practice.

Keyword: Skewness, kurtosis, martingale difference, quadratic estimating functions,
integer-valued.

1. Introduction

An increasing number of studies that involve integer-valued time series data can be found
in the literature. Zeger (1988) extensively studied the monthly cases of Polio infection in
the U.S. from 1970 to 1983. Johansson (1996) considered the effect of lowering speed
limits on the number of accidents while Li et al. (2014) investigated the implication of
crime cases over time. As a result, there is a need for integer-valued time series models
extended to include autoregressive moving average models, the first of which were
introduced by Brockwell and Davis (1991) and Emad and Nadjib (1994).

Later, Ferland et al. (2006) extended the classical generalized autoregressive conditional
heteroskedastic model with Poisson deviate. To account for overdispersion, Zhu (2011)
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introduced a new version of Ferland’s model with negative binomial deviate. For cases of
data with excess zeroes, Zhu (2012) proposed the zero-inflated models with both Poisson
and negative binomial deviates. Here, we re-examine some of these models and present
simpler derivations of their moment properties using martingale difference. Such
martingale difference have been successfully applied to various time series processes, see
for example, Thavaneswaran and Abraham (1988) and Ghahramani and Thavaneswaran
(2009). These results are very significant for the development of simpler theories on
integer-valued time series models, in particular, for estimating the paramaters of the
models using the estimating functions method.

The paper is divided as follows: In Section 2, we propose a general class of integer-
valued time series models including important models given in Ferland et al. (2006), Zhu
(2011) and Zhu (2012). We also derive the basic properties of the model, namely,
formulae for the mean, variance, autocovariance and autocorrelation using a new
approach, i.e by employing martingale differences. In Section 3, we present the higher
order moment properties of the model up to order 4 by using martingale difference. In
Section 4, we derive the optimal function for INGARCH (p,q) model via quadratic
estimating functions (QEF). Simulation study is conducted to compare the performance
of QEF, ML and LS estimates for INGARCH (1,1) model. We illustrate the QEF method
in practice to the monthly strike data set given in Jung et al. (2005). Concluding remarks
are given in Section 5.

2. Moments of Integer-Valued Time Series Models

Following the notation in Ferland et al. (2006), we consider four types of integer-valued
time series model: Poisson (INGARCH), negative binomial (NBINGARCH), zero-
inflated Poisson (ZIPINGARCH) and zero-inflated negative binomial (ZINBINGARCH)
with conditional mean E(X, | J;_;) is of the form:

E(X¢ | Sia)=ak . @
p q

AP =7+ Zlaixt—i + _Zlﬁjﬂt—j,TP ) (2)
i= i=

where 3;_; is the o —field generated by X 4, X 5,..,X; With A p is the intensity

parameters with TP = Poisson (P), negative binomial (NB), zero-inflated Poisson (ZIP)
and zero-inflated negative binomial (ZINB) for the respective models, y >0, ¢; 20,

i=12..,p,and B; =20, j=12,..,q and a is the coefficient of the conditional mean
with

1 for INGARCH(p, q),

a=-r for NBINGARCH(r, p, q) by assuming 4; ng = 1-p :
Py
1-w for ZIPINGARCH (w, p, q) and for ZINBGARCH (w, p, q)

where r is the number of successful trials, p; is the probability of successful trials and
w 1s the inflation parameter.
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We now apply the martingale difference, u; = X; —E(X{|3;_1)=X;—-akp with
E(u;) =0 and Var(u,) = 0'3. Multiplying equation (2) by a gives

p q
ak e =ay+ax o Xy +321ﬂjﬂt—j,TP :
= i

=1

Since u; is a martingale difference sequence, the equation can be rewritten in using
backward operator, B, as

(1—a_§p:ai5‘ —Zq:ﬂijth:a}/+(l—zq:,b’ijJut. (3)

)

p . q : q .
Now, let ¢(B)=1-aY o;B' -3 B;B’ and 6(B)=1-3Y B;B’. Then, equation (3) can
. &

i=1
be represented in the form

=1

#(B)X, =ay +06(B);. (4)
If all the roots of ¢(B)=0 lie outside the unit circle, then the process {X,} is stationary.
. 0 ) ay . .
By letting w(B)=——< and u=-—-, the equation (4) can be written as
® o) #60)

Xi—u=y(By, ie.
Xt—ﬂ=§OV/jUt—j ’ ®)
and the variance of X, is given by
% =ol S v,
j=0
Using first order stationarity, E(X;) =« and since for large t, E(4;) approaches 1, a

constant, then, Guz can be easily expressed in terms of x . For the processes INGARCH,

NBINGARCH and ZIPINGARCH, it can be easily shown that the corresponding values
of au2 are y,,u(1+ ﬁj and ,u(1+ 1“—”} respectively. Moreover, for ZINBINGARCH
r -

model, o2 is given by
,u(1+a+ﬂ) forc=0
2 -

O-U = ’

,u(1+ (o + a)Lj forc=1

l-w

following the index ¢ = 0, 1 appearing in the probability mass function of the zero-
inflated negative binomial distribution (see Zhu, 2012). However, we note that the strict
stationary properties have been studied only for the INGARCH (p, q) model by Ferland
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et al. (2006). As highlighted by Zhu (2011, 2012), different approaches are required to
exhibit the properties for the other three models and are of interest in future work.

The first aim here is to derive the general formula for the first two moments, the
autocovariance and the autocorrelation of the integer-valued process {X,} of the form in

equations (1-2). The result is given in Theorem 1.

Theorem 1: Under the first and second order stationarity assumptions,

@  EX)=p=— L
l1-aYa;-Y B
i=1 j=1
(0)  Var(X)=o% =oZ 3 vl
j=0

2 0
J:
@ o=

Proof: The mean of X, can be obtained by taking the expectation of equation (3). Since
E(u;) =0, 1(a) follows. From equation (5), we notice that the process can be represented

as a general form of a time series process (see Abraham and Ledolter, 2009), therefore,
the variance, autocovariance and correlation of X, are obtained.

3. Skewness and Kurtosis

In the literature, only the first two moments and the autocovariance are given for integer-
valued time series models. In this section, following Thavaneswaran et al. (2005), we
obtained the general expression for the skewness and kurtosis for the INGARCH,
NBINGARCH, ZIPINGARCH and ZINBINGARCH maodels.

o0
Theorem 2: Consider a linear stationary process of the form X —z= 3 wu,_; where
j=0

4 1s the mean of the random process and u, is an uncorrelated noise process with mean

zero, variance auz, skewness T'“) and kurtosis K“). Define St = (X4 — 11)%. Then, under

suitable stationarity conditions, such process will have variance, skewness, kurtosis and
correlation given by

2
@  Var(s)=(kW-3p T ‘/’?”“j(% W’Zj ’
j=0 i=0
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(b)

(d)

> yir
1-(x) _ j=0

L 32"
(_Z l//f}
j=0

2
(K(“)—3)Z Vv +2{ 2 Wnk}
E j=0 j=0

- 2

j=0

Yo,

respectively. The proof is given in Appendix 1.

Example: Using Theorems 1 and 2, we derive the following results for four distributions
with p = 1 and g = 1. From equations (1) and (2), the process {X, | is such that

E(Xt | St—1)= aﬂt,TP )

At =r+aXi i1+ Bk e

It can be shown that the weight y; is given by y; =acy(acy +ﬁ1)j‘l where

1 for INGARCH(L,1)
a={r  for NBINGARCH(L1) byassuming 4, = - "t
P,
1-w for ZIPINGARCH (L,1) and for ZINBINGARCH (1,1)

Therefore, the summations of the weights v ; are given in the following form:

© 1-2am B, - S
S y?= 1P Bi

J=0 1—(aa1 +ﬁ1)2

8o 1-3a%af B —3aay B2 -

: J !

$ e 1-4a% B, —6a°al B2 —4acy 32 - 3

: J )
j=0 1—(aa1+/31)4
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1|1-amp -
1- (aocl +B )2

_Zol//j‘//j+k =a0‘1(3-0‘1 +5 )(
j=

and

)2k72 1-laay + B, ) +a%ailac + B

1—(aa1 +5 )4

[e 0]

2 2 2 2
_Zol//jl//j+k ="y (3051 + 5
J:

From Theorem 1(c), the autocovariance of the {Xt} process with order (1,1) can be
written as

)<—1 1—(aa1 + 5 ) |
1—(aa1 + 5 )2

and from Theorem 1(b), the variance of the {Xt} process is

X 2

2 1—(aa1 + 5 )2 + a2a12
lof

2 =
7 ; 1—(aa1+,81)2

while from Theorem 1(d), the correlation of the {X,} process is

x _ ao (aal + 5 )kil[l_(aal + 5 ) 1 ]
pk = 2
1—(aa1 + f, ) + (aozl)2

where a is as defined earlier for the different models.

Using the same arguments as in Section 2, we can find the skewness and kurtosis of u,.

The skewness F(”) for INGARCH, NBINGARCH and ZIPINGARCH is i

o

2 2
r+2u and oL+ 20)u” +3ou(l-0)+ (1~ 0) respectively. On the other hand,

Jrur + ) Jull-0)1- o+ ou)'?

the kurtosis, K(“) for INGARCH, NBINGARCH and ZIPINGARCH is respectively l
)7

r2 —2y2 —2ru

and K where K is
ra(r + )

(1-w)+ a),u(7—14a)+7a)2 +6u+ 1 +18uw—120° 11— 612w + 6y2w2)
(- @)ull+ou)

However, the similar corresponding expression for ZINBINGARCH is complicated but
can still be solved using standard mathematical software.
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4. General Theory of Quadratic Estimating Functions

Godambe (1960) was the first to introduce regular estimating functions (EF) that satisfy
certain conditions and procedures for choosing an optimal EF. The requirement for a
regular EF, g(X,;0) are:

(i) E[g(X;0)]=[a(X,;0)f(X;0)dX; =0,
’ 29(X;9)
(i) s

exists for all @ € ® where @ is the parameter space,

(i) [9(X(;0)f(X,;0)dX; is differentiable under the sign of integration,

N2
(iv) E{%ﬂt’e)} >0 forall 0eO,

v Var[g(X;0)]=E|g?(X,;0)<o0.

According to Godambe (1960), to find the optimal EF, say g (Xt, ) two criteria should
be satisfied. First, the estimated parameter should be as close as possible to the true
value. This means that the variance Var[g(X,;0)]= E[gz(xt;e)J should be minimized

and therefore E[g*z(xt;ﬂ)]s E[gz(xt;e)]. The second criterion is that the expected

00

should be large as possible i.e. { {%} > {E{%}} By following both

values of the derivatives of the function g(X;;0) with respect to 0 , {E{M}

criteria, the optimal EF, g”(X,;8) can be defined as follows:

Definition 1

Let G denote the class of all regular EFs. The g (X,;0)eG is said to be optimal if
Elg(xc0) _ El*(x;:0)

e )

Further, Godambe (1985) studied the inference of discrete time series processes using

n
estimating functions. He considered a class {g :9(0)= Zat_lht}of EF which is linear
t=1

combination of h;’s where the expected value E(h | 3;_;) =0 since J;_; is the o —field
generated by {Xs;sst—l}. The theorem below is the result in Godambe (1985) on
optimal EFs for the dependent case.
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Theorem 3: Let {g :g(0)= iat_lht}be the class of all EFs where h and a;,_; are
t=1

assumed to be differentiable with respect to 6 for t=12,...,n. Then, the optimal

2(y -
estimating function g”(6) minimizing E(g (Xt’e)) is g*(e)=§n;af_1ht where

E{ag(xt;ﬁ)} 2 =
00

* oh

8t = E[aﬂt St—1:| / E [htz‘st—l]-

The EF method was later extended by Liang et al. (2011) to the case where the first four
conditional moments are known. The functions used are called quadratic estimating
functions (QEF).

Now, we assume that the discrete time stochastic process {X;,t=12,..,n} has the
following conditional moments depending only on the parameter 0 :

()= 14 =) X3 ]

We estimate the parameter 6 using two classes of martingale differences

M (8)=m; = X; —14,t=12,...,n}, (6)
and {st(e): s, =mZ —o? t :1,2,...,n}, 7)
such that

(m), = E[mtz‘ﬁt_l} =o?, (8)

() = Elstz‘st—lJ: o (i +2), 9)

(m,s), = E[mT st‘St_lJ: ol (10)

The following theorem is obtained from Liang et al. (2011).
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Theorem 4: In the class Gy ={gQ(9):gQ(9)= %(at_lmﬁb[_lst)} of all quadratic

estimating  functions, the optimal estimating functions is given by

9o (0)= %(at 1mt+b st)where
{=1

-1
<m,s>t2 oy 1 8(7t2 <m,S>t
e S
(m), ), (m), 90 (m), (s),
2 -1
and b, =[1- (m.s); opy (M:S), _603 1

(M) (s ) | D (m) () @ (s),

4.1 The INGARCH (p, q) Model

In this subsection, we focus on INGARCH (p, g) model given by
E(X; |3y 1)2/11 P

ﬂiP—7/+zalxt |+Z ﬂjﬂt

i=1
The parameters of interest are 9=(;/o,al,...,ap,ﬂl,...,ﬂq)'. The mean, variance,

skewness and kurtosis of X; conditional on J;_; are

= p(®), O = Ap, rt=JjT, and K=
P

P

From equations (6) and (7), the martingale differences considered are m; = X; —4; p and

St =(Xt —ﬂt'p)z — 4 p- On the other hand, the conditional expectations in equations (8),
(9 and (10) are (m) =4p, (S) :A’P(1+ Zﬂt,p) and (m,s) =4p. Let

-1

2
m,s 1 2
Ci=|1- < > i ﬂtp. Then, from Theorem 4, the optimal QEF is
(m), (s), 2%p
9o (0)= Z(a: m +b ) where
t=1
. m,s
al, =C, _8éut 1 +86t < >t
O (m), O (m)(s),
1+24 1 A
= = —Aip +Aip = >
22 p Aep (1+ 20 p Iﬂt.P]
Aip
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and

:l+2/1t,P Py 1 s { 1 ]
24 p W ﬂt,P(lJfZﬂt,P) g ﬂ't,P(l"'Zj‘t,P)

Therefore, one can conclude that, if the conditional mean and conditional variance are the
same, the QEF method can be reduced to the EF method. Since we have p+q+1

parameters, then A/ (0) are

Ohp Ohup M,p}

4 0) = oy ' oa; ' op
B g _aﬂt—j,P 3 _‘Mt—j,P g a/1t—k,F>
- 1+j§l,3] . ’Xt—I+E¢lﬁj—aai Jr—j,P““k%lﬂk 28] J
where i =1,2,...,p and j=1.2,..,q. Hence, the optimal QEF for each parameter are:
04 _j
— |1 X, — , 11
go(r)= tzlﬂtp[+12ﬁ, o7 }(t j¢,F>) (11)
golan)= -1 Xi+ 3 4 52 ) 12)
:/1{ t—i Pt ] aal t P
05(8)= -2 Aot 3 A KR (X, ). (13)
. /11 k=L Opj ’

The formulation of optimal equations for the other three models which are NBINGARCH
(p,q), ZIPINGARCH (p,gq) and ZINBINGARCH (p,q)models are the same as

INGARCH (p,q) model. The optimal equation(s) for the additional extra parameter (s) in
the above three models can be derived using optimal estimating functions in Theorem 4.

An optimal estimate of 0 can be obtained by solving the equation(s) gg(e) =0.

4.2 Simulation Study

Let N and n be the number of simulations and the sample size generated respectively
from the INGARCH (1, 1) models given by

Model 1: E(X; | Si_1)=4p; A4p=02+04X4+0.14 4 p
Model 2: E(X; | Si_1)=4p; A4 p=01+0.6X_,+0.34 1p
Model 3: E(X; | Si_1)=4p; 4 p=03+04X,_1+0.24_4p
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Here, we demonstrate how to estimate the parameters using the QEF method:

«Step 1-  Generate the data: We first generate the data from given true values. Then,
we choose the observations numbering from 100 to 100 + n.

« Step 2- Initialize the parameters: We set the initial values for «; and p; by taking
the typical values for each parameter, namely «; =0.1 and S, =0.8. On the
other hand, we take the value of y to be the mean uy , of the generated data
in Step 1, namely, y =0.1uy , (see Ferland et al., 2006).

» Step 3- Estimate the parameters: Using nlegslv, we solve the simultaneous optimal

equations (11) to (13) in R-cran programming language in order to obtain the
QEF estimates of y, oy and g, for the INGARCH (1,1) model.

Table 1:  Simulation results for INGARCH (1,1) with y=0.2, «; =04 and
P =0.1.

n =100 n =250 n =500

ML LS QEF ML LS QEF ML LS QEF

Mean | 0.167 | 0.241 | 0.170 | 0.198 | 0.185 | 0.185 | 0.202 | 0.190 | 0.191
Bias | -0.032 | -0.159 | -0.030 | -0.002 | -0.015 | -0.015 | 0.002 | -0.010 | -0.010
SE 0.067 | 0.101 | 0.057 | 0.049 [ 0.048 | 0.046 | 0.035 | 0.037 | 0.034

RMSE | 0.074 | 0.108 | 0.065 | 0.049 [ 0.048 | 0.046 | 0.035 | 0.058 | 0.035

>

a, | Mean | 0346 | 0.367 | 0.339 | 0.387 | 0.366 | 0.375 [ 0.393 | 0.379 | 0.386
Bias | -0.054 | -0.033 | -0.062 | -0.012 | -0.034 ([ -0.025 | -0.007 | -0.021 | -0.014
SE 0.126 | 0.145 | 0.129 | 0.089 [ 0.098 | 0.089 | 0.060 | 0.062 | 0.060

RMSE | 0.136 | 0.149 | 0.142 | 0.090 [ 0.098 | 0.092 | 0.061 | 0.065 | 0.061

Mean | 0.228 | 0.004 | 0.216 | 0.131 | 0.162 | 0.155 | 0.096 | 0.144 | 0.132
B Bias 0.128 | -0.096 | 0.116 | 0.013 [ 0.062 | 0.055 | -0.004 | 0.044 | 0.032

SE 0.185 | 0.265 | 0.145 | 0.131 | 0.116 | 0.111 | 0.092 | 0.092 | 0.086
RMSE | 0.225 | 0.282 | 0.180 | 0.132 | 0.132 | 0.124 | 0.092 | 0.102 | 0.092

Discussion

In order to evaluate the performance of the QEF, maximum likelihood (ML) and least
squares (LS) methods for INGARCH (1,1) model, a simulation study was carried out
with N =500, n=100, 250, 500,1000,1500. The performance of each parameter

estimates is measured using bias, standard error (SE) and root mean squared error
(RMSE). The results are shown in Tables 1 to 3.
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Table 1:  Simulation results for INGARCH (1,1) with y=0.2, ;=04 and
S =0.1 (Cont.).
n = 1000 n = 1500
ML LS QEF ML LS QEF
Mean 0.201 0.196 0.197 0.201 0.197 0.198
7 Bias 0.001 -0.005 | -0.003 | 0.001 -0.003 | -0.002
SE 0.026 0.028 0.026 0.023 0.025 0.022
RMSE | 0.027 0.028 0.027 0.023 0.025 0.022
a, Mean 0.399 0.395 0.396 0.399 0.396 0.399
Bias -0.001 | -0.005 | -0.004 | -0.001 | -0.004 | -0.001
SE 0.041 0.045 0.042 0.031 0.037 0.030
RMSE | 0.041 0.045 0.043 0.033 0.038 0.031
Mean 0.097 0.116 0.112 0.097 0.109 0.102
/§1 Bias -0.003 0.016 0.012 | -0.003 0.009 0.002
SE 0.072 0.073 0.066 0.054 0.064 0.049
RMSE | 0.072 0.075 0.067 0.055 0.064 0.050
Table 2:  Simulation results for INGARCH (1,1) with =01, ¢; =0.6 and
5120.3.
n =100 n =250 n =500
ML LS QEF ML LS QEF ML LS QEF
7 | Mean | 0.137 | 0.169 | 0.099 | 0.117 | 0.131 | 0.111 | 0.109 | 0.118 | 0.104
Bias | 0.037 | 0.069 | -0.001 | 0.017 | 0.031 | 0.011 | 0.009 | 0.018 | 0.004
SE 0.085 | 0.100 | 0.055 | 0.041 | 0.052 | 0.037 | 0.026 | 0.034 | 0.023
RMSE | 0.093 | 0.122 | 0.055 | 0.044 | 0.061 | 0.038 | 0.027 | 0.039 | 0.024
4, | Mean | 0.564 | 0.533 | 0.542 | 0.591 | 0.569 | 0.584 | 0.595 | 0.583 | 0.591
Bias | -0.036 | -0.067 | -0.058 | -0.009 | -0.031 | -0.016 | -0.005 | -0.017 | -0.009
SE | 0.128 | 0.162 | 0.105 | 0.089 | 0.101 | 0.088 | 0.059 | 0.073 | 0.058
RMSE | 0.132 | 0.175 | 0.189 | 0.089 | 0.105 | 0.089 | 0.059 | 0.075 | 0.059
/§l Mean | 0.272 | 0.227 | 0.282 | 0.277 | 0.282 | 0.287 | 0.286 | 0.288 | 0.294
Bias |-0.027 | -0.073 | -0.018 | -0.023 | -0.018 | -0.013 | -0.013 | -0.012 | -0.006
SE 0.129 | 0.218 | 0.127 | 0.094 | 0.114 | 0.093 | 0.062 | 0.082 | 0.062
RMSE | 0.132 | 0.230 | 0.149 | 0.097 | 0.115 | 0.094 | 0.063 | 0.083 | 0.062
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Table 2:  Simulation results for INGARCH (1,1) with y=0.1, oy =0.6and
S, =0.3 (Cont.).
n = 1000 n = 1500
ML LS QEF ML LS QEF
4 Mean 0.104 0.111 0.102 0.103 0.108 0.102
Bias 0.004 0.011 0.002 0.003 0.008 0.002
SE 0.016 0.024 0.016 0.013 -0.020 0.009
RMSE 0.017 0.026 0.017 0.014 0.022 0.011
a Mean 0.598 0.594 0.596 0.595 0.597 0.598
Bias -0.002 -0.01 -0.004 | -0.005 -0.003 -0.002
SE 0.038 0.051 0.040 0.033 0.044 0.025
RMSE 0.038 0.051 0.040 0.033 0.044 0.026
B Mean 0.294 0.289 0.297 0.294 0.291 0.297
Bias -0.006 -0.01 -0.003 -0.005 -0.009 -0.003
SE 0.041 0.056 0.043 0.034 0.048 0.028
RMSE 0.042 0.057 0.043 0.034 0.049 0.030

Table 3:  Simulation results for INGARCH (1,1) with

y=03, a1 =04 and

B =02,
n=100 n =250 n =500
ML LS QEF ML LS QEF ML LS QEF
y | Mean | 0.299 | 0.248 | 0.275 | 0.317 | 0.304 | 0.299 | 0.314 | 0.307 | 0.306
Bias | -0.001 [ -0.052 | -0.025 | 0.017 | 0.004 | -0.001 | 0.014 | 0.007 | 0.006
SE 0.113 | 0.115 | 0.101 | 0.082 | 0.081 | 0.074 | 0.060 | 0.063 | 0.060
RMSE | 0.113 | 0.126 | 0.104 | 0.084 | 0.081 | 0.074 | 0.062 | 0.063 | 0.060
0}1 Mean | 0.379 | 0.366 | 0.379 | 0.398 | 0.382 | 0.388 | 0.399 | 0.392 | 0.395
Bias | -0.021 | -0.034 | -0.021 | -0.002 | -0.018 | -0.012 | -0.001 | -0.008 | -0.005
SE 0.106 | 0.145 | 0.108 | 0.072 | 0.075 | 0.070 | 0.050 | 0.055 | 0.050
RMSE | 0.109 | 0.149 | 0.113 | 0.072 | 0.081 | 0.071 | 0.050 | 0.055 | 0.050
Bl Mean | 0.226 | 0.109 | 0.236 | 0.178 | 0.209 | 0.210 | 0.180 | 0.201 | 0.194
Bias | 0.026 | -0.091 | 0.036 | -0.022 | 0.009 | 0.010 | -0.020 | 0.001 | -0.006
SE 0.163 | 0.269 | 0.153 | 0.128 | 0.125 | 0.119 | 0.098 | 0.098 | 0.095
RMSE | 0.164 | 0.284 | 0.163 | 0.130 | 0.125 | 0.119 | 0.099 | 0.099 | 0.095
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Table 3:  Simulation results for INGARCH (1,1) with =03, a; =04 and
S =0.2 (Cont.).

n =1000 n = 1500
ML LS QEF ML LS QEF
7 Mean | 0.309 | 0.308 | 0.307 | 0.306 | 0.305 | 0.304
Bias | 0.009 | 0.008 | 0.007 | 0.006 | 0.005 | 0.004
SE 0.046 | 0.051 | 0.044 | 0.038 | 0.042 | 0.034
RMSE | 0.046 | 0.051 | 0.045 | 0.038 | 0.042 | 0.035
a, Mean | 0.401 | 0.399 | 0.400 | 0.401 | 0.398 | 0.401
Bias | 0.001 | -0.001 | 0.000 | 0.001 | -0.002 | 0.001
SE 0.034 | 0.038 | 0.034 | 0.028 | 0.032 | 0.027
RMSE | 0.034 | 0.038 | 0.034 | 0.028 | 0.032 | 0.029
B, Mean | 0.186 | 0.185 | 0.189 | 0.190 | 0.192 | 0.192
Bias | -0.014 | 0.015 | -0.011 | -0.010 | -0.008 | -0.008
SE 0.074 | 0.079 | 0.070 | 0.059 | 0.066 | 0.052
RMSE | 0.075 | 0.080 | 0.071 | 0.059 | 0.066 | 0.055

A number of interesting results can be highlighted. Firstly, for the small sample sizes,
n =100, 250, 500, the QEF estimates give the smaller values of SE and RMSE compared
to other two methods. However, as n increases, the SE and RMSE values for the QEF
estimates are always marginal smaller than ML and LS estimates. Secondly, as expected,
as n increases from 100 to 1500, all the SE and RMSE of QEF, ML and LS estimates are
consistently decreases. Lastly, it is important to point out the computational times for the
QEF method is four times shorter than the ML method and three times shorter than the
LS method when the simulation is done using R-cran programming. The R codes are
available upon request.

Therefore, we can conclude that the QEF method provided consistently accurate
estimates and computation effective than the ML and LS methods in the parameter
estimation of INGARCH models.

4.3 Real data Example

We apply the proposed methodology to analyze the 108 monthly strike data from January
1994 to December 2002 given by Jung et al. (2005). The data are available at the U.S.
Bureau of Labor Statistics (http://www.bls.gov/wsp/) (see Weif, 2010). It describes the
number of work stoppages leading to 1000 workers or more effectively idle during the
period. The time series is given in Figure 1.
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monthly strike data

0 20 40 6o B0

Figure 1: The monthly strike data from January 1994 to December 2002.

We fit the data using the INGARCH (1,1) model via the QEF, ML and LS methods. Then
we obtain the parameter estimates together with their respective standard errors in
parenthesis are shown in Table 4. We observe that, the QEF and ML methods give the
same values of estimates. As expected, the standard errors of the QEF estimates are the
smallest as compared to other two methods.

Table4: The estimated parameters of INGARCH (1,1) model. Values in
parentheses are standard errors of parameter estimates.
Method 14 o ﬂA1
QEF 1.623 (0.428) | 0.610 (0.081) | 0.064 (0.114)
ML 1.623 (0.502) | 0.610 (0.095) | 0.064 (0.125)
LS 1.854 (0.512) | 0.596 (0.112) | 0.032 (0.128)

Then, to investigate the model fitting adequacy, we consider the Pearson residual defined

X; = A pl0
by z; ﬁ’g() . According to Kedeem and Fakianos (2002), for the specified
P

model, the sequence z, should have mean and variance close to 0 and 1 respectively and

the sequence does not have serial correlation. We found that in our case, the mean and
variance of the Pearson residuals are 0.032 and 1.009 respectively and are thus close to
zero and unity as desired. Moreover, by using Ljung-Box (LB) statistics, the results from
Table 5 indicate that there is no significant serial correlation in the residual.

Table 5: Diagnostics for INGARCH (1,1) model using QEF method.

LB(z) LB( z?)
P 28.1 21.3
p-value 0.565 0.878
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Furthermore, to examine the model adequacy, from Figure 2(a), there is no trend
observed indicating the randomness of the residuals and in Figure 2(b), the plot does not
exceed the dotted line. Therefore, the INGARCH (1, 1) model is a good fit for the
monthly strike data given in Jung et al. (2005).

5. Concluding Remarks

This paper studied the moments of four integer-valued time series models, namely, the
Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial
models. We used the martingale difference to derive the higher order moments of all four
models. The results for the first two moments are similar to those found in Zhu (2011)
and Zhu (2012), but the derivation was much simpler. In addition, we derived the higher
order moments of integer-valued time series up to order 4. However, the results hold for
only the INGARCH (p, g) model. Further investigations on the stationarity of the other
three models are required. Furthermore, we developed the quadratic estimating functions
method mainly focusing on the INGARCH (p, g) model.

To investigate the performance of the QEF method compared to those of the LS and ML
methods, simulation was carried out to obtain the estimated parameters together with
their standard errors. The results showed that the QEF estimates give smaller standard
errors and computation effective compared to the ML and LS estimates. Lastly, we model
the monthly strike data using the INGARCH (1,1) model via QEF method. The
adequacy of fit was investigated using diagnostic tools based on the Pearson residuals.
For the future research, other estimation methods such as Kalman filter can be
considered.

(a) (b)

Thay resichanly vorsus. tene Cumulative pericdgram plat

Figure 2: (a) The Pearson residual plot. (b) The periodagram plot.
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Appendix 1
(@) Let S, =(X;—u)*. Then,

0

£(50)= E{X, P = var(x,) = £ v,

E(s2)=E[(x, - ]E@ Uy ,]4,

=ot Ty 6ol s Syl
j=0 i=0j=i+1

and

Since from the multinomial expansion, E(u,)=0 and E(ut“): K(“)o—lj". Similarly, we can

show that

2
6% Syiy 2—3[2 V/,J -3 v

i=0j=i+1 j=0

Hence,
Var [(Xt - y)ZJ: Var (St )

—(s?)- [E(St )]2

2
:O'SZ‘//? ()+6O-uz zl/’|‘/’] [UL%_ZO‘//]ZJ
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j=0 i=0j=i+1

2 2
ot S ik vaol| 503 a0t ui-all 4]
J= J= j=0 J=

2
= (k) -3 5yt +203[ > wfj -
j=0 j=0
(b) Using the third moment and Theorem 1(b), the skewness of X, is
E[(X — )’
r(x) _ t —H

[Var (Xt )]3/2
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(c) Using the fourth moment and Theorem 1(c), the kurtosis of X, is

0

KU >

Dol 3yt + 30,

j=0
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(d) It is easily shown that
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Since u, ’s are uncorrelated, we have
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Therefore, the covariance is given by
CoV(SStik ) = E(StStrk )~ E(St JE(Stk)
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and the correlation is
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