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Abstract 

A new lifetime model, which extends the Weibull distribution using the generalized transmuted-G family 

proposed by Nofal et al. (2017), called the generalized transmuted Weibull distribution is proposed and 

studied. Various of its structural properties are derived. The maximum likelihood method is used to 

estimate the model parameters. A small simulation study is conducted. The new distribution is applied to a 

real data set to illustrate its flexibility. It can serve as an alternative model to other lifetime models 

available in the literature for modeling positive real data in many areas. 

Keywords:   Generalized Transmuted-G Family, Order Statistics, Probability Weighted 

Moments, Maximum Likelihood, Moments.  

1.   Introduction 

There has been an increased interest among statisticians to develop new methods for 

generating new families of distributions because there is a persistent need for extending 

the classical forms of the well-known distributions to be more capable for modeling data 

in different areas such as lifetime analysis, engineering, economics, finance, demography, 

actuarial and biological and medical sciences. 

 

Many authors constructed new generators. for instance, Zografos and Balakrishanan 

(2009) proposed the gamma-G type 1, Cordeiro and de Castro (2011) studied the 

Kumaraswamy-G, Alexander et al. (2012), introduced the McDonald-G, Bourguignon et 

al. (2014) defined the Weibull-G, Afify et al. (2017) proposed the beta transmuted-G and 

Nofal et al. (2017) defined and studied the generalized transmuted-G families. 

 

The Weibull distribution is the most popular distribution in the literature for analyzing 

lifetime data. However, its major drawback is that its hazard rate cannot accommodate 

nonmonotone hazard rates (especially, bathtub shaped hazard rates and unimodal failure 

rate). The data with bathtub-shaped and unimodal failure rate function are quite common 

in reliability and biological studies. So, many generalizations of the Weibull distribution 

have been proposed and studied to cope with bathtub-shaped failure rates. 

 

Among these models, we refer to the additive Weibull (Xie and Lai, 1995), exponentiated 

Weibull (Mudholkar et al., 1995, 1996), extended Weibull (Xie et al., 2002), modified 

Weibull (Lai et al., 2003), beta modified Weibull (Silva et al., 2010), Kumaraswamy 

Weibull (Cordeiro et al., 2012), transmuted Weibull  (Aryal and Tsokos, 2011), 

Kumaraswamy modified Weibull (Cordeiro et al., 2012), transmuted complementary 
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Weibull geometric (Afify et al., 2014) and Kumaraswamy complementary  Weibull 

geometric (Afify et al., 2016) distributions. 

 

In particular, the two parameter Weibull (W) distribution with probability density 

function (pdf) and cumulative distribution function (cdf) are given (for 𝑥 ≥ 0) by    

𝑔(𝑥) = 𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)
 𝛽

and 𝐺(𝑥) = 1 − 𝑒−(𝛼𝑥)
 𝛽

,    (1) 

respectively, where 𝛼 > 0 is a shape parameter and 𝛽 > 0 is a scale parameter. 

 

In this paper, we define and study a new lifetime model called the generalized 

transmuted Weibull (GT-W) distribution. Its main feature is that two additional shape 

parameters are inserted in (1) to provide greater flexibility for the generated distribution. 

Based on the generalized transmuted-G (GT-G) family of distributions, we construct the 

new five-parameter GT-W model and give a comprehensive description of some of its 

mathematical properties hoping that it will attract wider applications in engineering, 

survival and lifetime data, reliability and other areas of research. 

 

Let 𝑔(𝑥; 𝜉) and 𝐺(𝑥; 𝜉) denote the density and cumulative functions of the baseline 

model with parameter vector 𝜉. Nofal et al. (2017) defined the cdf of their GT-G family 

by  

𝐹(𝑥; 𝜆, 𝑎, 𝑏, 𝜉) = 𝐺(𝑥; 𝜉)𝑎 {1 + 𝜆 − 𝜆𝐺(𝑥; 𝜉)𝑏}.    (2) 

 

The pdf of the GT-G family is given by  

f(x; λ, a, b, ξ) = g(x; ξ)G(x; ξ)a−1{a(1 + λ) − λ(a + b)G(x; ξ)b}.  (3) 

 

Henceforth, let G be a continuous baseline distribution. We define the GT-G distribution 

with two extra parameters 𝑎 and 𝑏 by the pdf (3). A random variable 𝑋 with pdf (3) is 

denoted by 𝑋~GT-G(𝜆, 𝑎, 𝑏, 𝜉). If 𝑎 = 𝑏 = 1, it corresponds to the transmuted class 

(TC) studied by Shaw and Buckley (2007). If 𝑎 = 1 and 𝑏 = 0, the GT-G family reduces 

to the exponentiated-G (E-G) family defined by Gupta et al. (1998) and finally the GT-G 

family reduces to the baseline distribution when 𝑎 = 𝑏 = 1 and 𝜆 = 0. 

 

Let 𝑇 be a random variable having the EW distribution with positive parameters 𝛼, 𝛽 and 

𝛿. Then the pdf and cdf of 𝑇 are given by 

𝑔(𝑡) = 𝛿𝛽𝛼𝛽𝑡𝛽−1𝑒−(𝛼𝑡)
 𝛽

[1 − 𝑒−(𝛼𝑡)
 𝛽

]
𝛿−1

and  𝐺(𝑡) = [1 − 𝑒−(𝛼𝑡)
 𝛽

]
𝛿

. 

 

For any 𝑛 > −𝛽, the 𝑛th ordinary and incomplete moments of 𝑇 are given by  

𝜇𝑛
′ = ∑∞𝑗=0 𝛿

𝜔𝑗𝛿𝛼
−𝑛 Γ(1 + 𝑛/𝛽) and 𝜑𝑛(𝑡) = ∑

∞
𝑗=0 𝛿

𝜔𝑗𝛿𝛼
−𝑛 𝛾(1 + 𝑛/𝛽, (𝛼/𝑡)𝛽), 

respectively, where  𝛿𝜔𝑗 =
(−1)𝑗Γ(𝛿)

𝑗!Γ(𝛿−𝑗)(𝑗+1)(𝑛+𝛽)/𝛽
. 

 

For further information about the EW distribution we refer to Mudholkar and Srivastava 

(1993), Mudholkar and Hutson (1996) and Nadarajah and Kotz (2006). 
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The rest of the paper is outlined as follows. In Section 2, we define the GT-W 

distribution, provide its sub-models and give some plots for its pdf and hazard rate 

function (hrf ). We derive useful mixture representations for the pdf and cdf in Section 3. 

We provide in Section 4 some mathematical properties of the GT-W distribution 

including ordinary and incomplete moments, moments of the residual life, reversed 

residual life, quantile function (qf ), moment generating function (mgf ), Rényi and q-

entropies and order statistics. The maximum likelihood estimates (MLEs) of the unknown 

parameters are obtained in Section 5. The simulation results to assess the performance of 

the proposed maximum likelihood estimation procedure are discussed in Section 6. In 

Section 7, the GT-W distribution is applied to a real data set to illustrate its potentiality. 

Finally, in Section 8, we provide some concluding remarks. 

2.   The GT-W distribution 

By inserting the cdf in (1) in equation (2) and omitting the dependence on the parameters 

𝛼, 𝛽, 𝜆, 𝑎, 𝑏, we obtain the cdf of the five-parameter GT-W model (for 𝑥 > 0)  

𝐹(𝑥) = [1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑎

{1 + 𝜆 − 𝜆 [1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑏

}.        (4) 

 

The corresponding pdf of (4) is given by  

f(x) = βαβxβ−1e−(αx)
 β

[1 − e−(αx)
 β

]
a−1

× {a(1 + λ) − λ(a + b) [1 − e−(αx)
 β

]
b

},   (5) 

where 𝛼, 𝛽, 𝑎 and 𝑏 are positive parameters and |𝜆| ≤ 1. Here, 𝛽 is a scale parameter 

representing the characteristic life, 𝛼, 𝑎 and 𝑏 are shape parameters representing the 

different patterns of the GT-W distribution and 𝜆 is the transmuted parameter. We denote 

a random variable 𝑋 having pdf (5) by 𝑋~GT-W(𝛼, 𝛽, 𝜆, 𝑎, 𝑏, 𝑥). The reliability function 

(rf), hrf, reversid hazard rate function (rhrf) and cumulative hazard rate function (chrf) of 

𝑋 are given by  

𝑅(𝑥) = 1 − [1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑎

{1 + 𝜆 − 𝜆 [1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑏

}, 

ℎ(𝑥) =

𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)
 𝛽

[1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑎−1

{𝑎(1 + 𝜆) − 𝜆(𝑎 + 𝑏) [1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑏

}

[1 − [1 − 𝑒−(𝛼𝑥)
 𝛽
]
𝑎

{1 + 𝜆 − 𝜆 [1 − 𝑒−(𝛼𝑥)
 𝛽
]
𝑏

}]
, 

𝜏(𝑥) =

𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)
 𝛽

[1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑎−1

{𝑎(1 + 𝜆) − 𝜆(𝑎 + 𝑏) [1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑏

}

[1 − 𝑒−(𝛼𝑥)
 𝛽
]
𝑎

{1 + 𝜆 − 𝜆 [1 − 𝑒−(𝛼𝑥)
 𝛽
]
𝑏

}
 

and  

𝐻(𝑥) = −ln [1 − [1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑎

{1 + 𝜆 − 𝜆 [1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑏

}], 

respectively. 
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Asymptotics of the cdf, pdf and hrf of the GTW distribution as 𝑥 → 0 are given by 

𝐹(𝑥)~(1 + 𝜆)(𝛼𝑥)𝑎𝛽 , 

𝑓(𝑥)~𝑎𝛽(1 + 𝜆)𝛼𝛽𝑥𝑎𝛽−1, 

ℎ(𝑥)~𝑎𝛽(1 + 𝜆)𝛼𝛽𝑥𝑎𝛽−1. 
 

The asymptotics of TGW distribution from cdf, pdf and hrf as 𝑥 → ∞ are given by 

1 − 𝐹(𝑥)~𝑏𝜆𝑒−(𝛼𝑥)
𝛽
, 

𝑓(𝑥)~𝑏𝜆𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)
𝛽
, 

ℎ(𝑥)~𝛽𝛼𝛽𝑥𝛽−1. 

Table 1:   Sub-models of the GT-W model 

 Model   𝛼   𝛽   𝜆   𝑎   𝑏   Author  

GT-R   𝛼   2   𝜆   𝑎   𝑏   New  

GT-E   𝛼   1   𝜆   𝑎   𝑏   New  

TW   𝛼   𝛽   𝜆   1   1   Aryal and Tsokos (2011)  

TE   𝛼   1   𝜆   1   1   –  

TR   𝛼   2   𝜆   1   1   Merovci (2013)  

EW   𝛼   𝛽   0   𝑎   0   Mudholkar and Srivastave (1993)  

ER   𝛼   2   0   𝑎   0   Kundu and Raqab (2005)  

EE   𝛼   1   0   𝑎   0   Gupta and Kundu (2001)  

W   𝛼   𝛽   0   1   1   Weibull (1951)  

R   𝛼   2   0   1   1   Rayleigh (1880)  

E   𝛼   1   0   1   1   –  

 

The plots of the GT-W density for some parameter values 𝛼, 𝛽, 𝜆, 𝑎 and 𝑏 are displayed 

in Figure 1. Figure 2 provides some plots of the hrf of the GT-W model for selected 

parameter values. 
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Figure 1:   Plots of the GT-W density function for some parameter values. 

  
 

Figure 2:   Plots of the GT-W hazard rate function for some parameter values  

3.   Mixture representation 

The GT-W density function (5) can be expressed as 

𝑓(𝑥) = 𝑎(1 + 𝜆)𝑔(𝑥)𝐺(𝑥)𝑎−1 − 𝜆(𝑎 + 𝑏)𝑔(𝑥)𝐺(𝑥)𝑎+𝑏−1.  (6) 

 

By inserting (1) in equation (6), we obtain 

𝑓(𝑥) = 𝑎(1 + 𝜆)𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)
 𝛽

[1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑎−1

 

−𝜆(𝑎 + 𝑏)𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)
 𝛽

[1 − 𝑒−(𝛼𝑥)
 𝛽

]
𝑎+𝑏−1

.   (7) 
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So, the GT-W density can be expressed as a mixture of two E-G densities, the first with 

power parameter 𝑎 and the seconed with power parameter (𝑎 + 𝑏). Therefore, equation 

(7) can be expressed as  

𝑓(𝑥) = (1 + 𝜆)ℎ𝑎(𝑥) − 𝜆ℎ𝑎+𝑏(𝑥),      (8) 

where ℎ𝑎(𝑥) is the EW density function with power parameter 𝑎, scale parameter 𝛼 and 

shape parameter 𝛽. then, the GT-W density can be expressed as a mixture of the EW 

densities and then several of its structural properties can be obtained from (8) and those 

properties of the EW distribution. 

 

Similarly, the cdf (4) of 𝑋 can be expressed in the mixture form  

𝐹(𝑥) = 𝑓(𝑥) = (1 + 𝜆)𝐻𝑎(𝑥) − 𝜆𝐻𝑎+𝑏(𝑥), 

where 𝐻𝑎(𝑥) is the EW cdf with power parameter 𝑎, scale parameter 𝛼 and shape 

parameter 𝛽. 

4.   Mathematical properties 

Here, we investigate mathematical properties of the GT-W distribution including 

ordinary and incomplete moments, moment of the residual life, moment of the reversid 

residual life, quantile function, mgf and Rényi and q-entropies, order statistics and some 

characterizations.  

4.1 Moments 

The 𝑛th ordinary moment of 𝑋 is given by 

𝜇𝑛
′ = 𝐸(𝑋𝑛) = (1 + 𝜆)𝐸(𝑌𝑎

𝑛) − 𝜆𝐸(𝑌𝑎+𝑏
𝑛 ), 

where 

𝐸(𝑌𝑗
𝑛) = ∫

∞

0
𝑥𝑛 ℎ𝑗(𝑥)𝑑𝑥, 𝑗 = 𝑎, 𝑎 + 𝑏. 

 

Therefore, for 𝑛 > −𝛽, we obtain  

𝜇𝑛
′ = ∑∞𝑗=0 𝑎

𝜔𝑗  
(1+𝜆)𝑎

𝛼𝑛
Γ (1 +

𝑛

𝛽
) − ∑∞𝑗=0 𝑎+𝑏

𝜔𝑗  
𝜆(𝑎+𝑏)

𝛼𝑛
 Γ (1 +

𝑛

𝛽
),  (9) 

where 

 𝑎𝜔𝑗 =
(−1)𝑗Γ(𝑎)

𝑗!Γ(𝑎−𝑗)(𝑗+1)(𝑛+𝛽)/𝛽
 and  𝑎+𝑏𝜔𝑗 can be defined similarly. 

 

Setting 𝑛 = 1 in (9), we have the mean of 𝑋. The skewness and kurtosis measures can be 

calculated from the ordinary moments using well-known relationships. 

 

The 𝑛th central moment of 𝑋, say 𝑀𝑛, follows as  

𝑀𝑛 = 𝐸(𝑋 − 𝜇)
𝑛 =∑

𝑛

𝑘=0

(−1)𝑘  (
𝑛
𝑘
) (𝜇1

′ )𝑛 𝜇𝑛−𝑘
′ . 
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The mean, variance, skewness and kurtosis plots of the GT-W are given in Figures 3 and 

4, respectively. These plots indicate that the GT-W distribution can model various data 

types in terms of skewness and kurtosis.  

 

Table 2 provides numerical values for the mean, variance, skewness and kurtosis of 𝑋 for 

selected parameter values to illustrate their effects on these measures. 

 

 

 
 

Figure 3: Plots of mean and variance of the GT-W distribution for several 

values of parameters 

 

  
Figure 4: Plots of skewness and kurtosis of the GT-W distribution for several 

values of parameters 
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4.2  Incomplete moments 

The 𝑛th incomplete moment, say 𝜑𝑛(𝑡) of the GT-W distribution is given by 𝜑𝑛(𝑡) =

∫
𝑡

0
𝑥𝑛 𝑓(𝑥)𝑑𝑥. 

 

We can write from equation (8)  

𝜑𝑛(𝑡) = (1 + 𝜆)∫
𝑡

0

𝑥𝑛 ℎ𝑎(𝑥)𝑑𝑥 − 𝜆∫
𝑡

0

𝑥𝑛ℎ𝑎+𝑏(𝑥)𝑑𝑥, 

and then using the lower incomplete gamma function, we obtain (for 𝑛 > −𝛽)  

𝜑𝑛(𝑡) =∑

∞

𝑗=0 𝑎

𝜔𝑗𝛾(𝑠, 𝑧)
(1 + 𝜆)𝑎 

𝛼𝑛
−∑

∞

𝑗=0 𝑎+𝑏

𝜔𝑗𝛾(𝑠, 𝑧)
𝜆(𝑎 + 𝑏) 

𝛼𝑛
, 

where 𝑠 = 1 + 𝑛/𝛽, 𝑧 = (𝛼/𝑡)𝛽 and 𝛾(𝑠, 𝑧) = ∫
𝑧

0
𝑦𝑠−1 𝑒−𝑦𝑑𝑦 is the the lower 

incomplete gamma function. 

 

The important application of the first incomplete moment is related to the Lorenz and 

Bonferroni curves. These curves are very useful in economics, reliability, demography, 

insurance and medicine. The answers to many important questions in economics require 

more than just knowing the mean of the distribution, but its shape as well. The Lorenz, 

say 𝐿𝐹(𝑥), and Bonferroni, say 𝐵[𝐹(𝑥)] curves are respectively defined (see Oluyede and 

Rajasooriya, 2013) by 

𝐿𝐹(𝑥) =
1

𝐸(𝑋)
∫
𝑥

0

𝑡𝑓(𝑡)𝑑𝑡 

and 

𝐵[𝐹(𝑥)] =
1

𝐸(𝑋)𝐹(𝑥)
∫
𝑥

0

𝑡𝑓(𝑡)𝑑𝑡 =
𝐿𝐹(𝑥)

𝐹(𝑥)
. 

Another application of the first incomplete moment is related to the mean residual life 

and the mean waiting time given by 𝑚1(𝑡) = [1 − 𝜑1(𝑡)]/𝑅(𝑡) − 𝑡 and 𝑀1(𝑡) = 𝑡 −
𝜑1(𝑡)/𝐹(𝑡), respectively. 

Table 2:  Mean, variance, skewness and kurtosis for selected parameter values with 

𝜶 = 𝟏. 

𝜆 𝑎 𝑏 𝛽 mean variance  skewness  kurtosis 

-1 1.5 0.75 1.5 1.2947 0.3764 0.8419 3.9857 

   2 1.1885 0.1817  0.4999 3.2626 

   5 1.0543  0.0246  -0.1443  3.0051 

-0.5 1.5 0.75 1.5 3.3103  32.7140 5.2314  56.2768 

   2 1.1139  0.1964  0.4771  3.1959 

   5 1.0229  0.0297  -0.2563  3.0947 

0.5 1.5 0.75 1.5 2.2776  21.9729  6.3056  80.2666 

   2 0.9649  0.1925  0.6450  3.3869 

   5 0.9599  0.0339  -0.1385  2.9109 

1 1.5 0.75 1.5 1.7612  15.8025  7.2935  107.3615 

   2 0.8903  0.1739  0.7541  3.6835 

   5 0.9285  0.0331  -0.0689  2.9446 
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4.3  Residual life function 

The 𝑛th moment of the residual life, say 𝑚𝑛(𝑡) = 𝐸[(𝑋 − 𝑡)
𝑛|𝑋 > 𝑡],𝑛 = 1,2,... , 

uniquely determine 𝐹(𝑥) (see Navarro et al., 1998). The 𝑛th moment of the residual life 

of 𝑋 is given by  

𝑚𝑛(𝑡) =
1

𝑅(𝑡)
 ∫

∞

𝑡

(𝑥 − 𝑡)𝑛𝑑𝐹(𝑥). 

 

Therefore, we ca write (for 𝑛 > −𝛽) 

𝑚𝑛(𝑡) =  ∑

𝑛

𝑟=0

𝑠𝑟
𝑅(𝑡)

{∑

∞

𝑗=0 𝑎

𝜔𝑗𝛾(𝑠, 𝑧)
(1 + 𝜆)𝑎 

𝛼𝑛
−∑

∞

𝑗=0 𝑎+𝑏

𝜔𝑗𝛾(𝑠, 𝑧)
𝜆(𝑎 + 𝑏) 

𝛼𝑛
}, 

where 𝑠𝑟 =
(−1)𝑛−𝑟 𝑛! 𝑡𝑛−𝑟

𝑟!Γ(𝑛−𝑟+1)
 and 𝛾(𝑠, 𝑧) = ∫

∞

𝑧
𝑦𝑠−1 𝑒−𝑦𝑑𝑦 is the the upper incomplete 

gamma function. 

 

Another interesting function is the mean residual life (MRL) function or the life 

expectation at age 𝑡 defined by 𝑚1(𝑡) = 𝐸[(𝑋 − 𝑡)|𝑋 > 𝑡], which represents the 

expected additional life length for a unit which is alive at age 𝑡. The MRL of 𝑋 can be 

obtained by setting 𝑛 = 1 in the last equation. 

4.4  Reversed residual life function 

The 𝑛th moment of the reversed residual life, say 𝑀𝑛(𝑡), uniquely determines 𝐹(𝑥) 
(Navarro et al., 1998). The 𝑀𝑛(𝑡) is defined by  

𝑀𝑛(𝑡) = 𝐸[(𝑡 − 𝑋)
𝑛|𝑋 ≤ 𝑡] =

1

𝐹(𝑡)
∫
𝑡

0

(𝑡 − 𝑥)𝑛𝑑𝐹(𝑥), 

where 𝑡 > 0 and 𝑛 = 1,2, …. 

 

Therefore, the 𝑛th moment of the reversed residual life of 𝑋, given that 𝑛 > −𝛽, becomes 

𝑀𝑛(𝑡) =∑

𝑛

𝑟=0

𝑏𝑟
𝐹(𝑡)

{∑

∞

𝑗=0 𝑎

𝜔𝑗𝛾(𝑠, 𝑧)
(1 + 𝜆)𝑎 

𝛼𝑛
−∑

∞

𝑗=0 𝑎+𝑏

𝜔𝑗𝛾(𝑠, 𝑧)
𝜆(𝑎 + 𝑏) 

𝛼𝑛
}, 

where 𝑏𝑟 = (−1)
𝑟𝑛!/𝑟! (𝑛 − 𝑟)!. The mean reversed residual life, also called mean 

inactivity time (MIT) or mean waiting time (MWT), is given by 𝑀1(𝑡) = 𝐸[(𝑡 − 𝑋)|𝑋 ≤
𝑡], and it represents the waiting time elapsed since the failure of an item on condition that 

this failure had occurred in (0, 𝑡). The MIT of 𝑋 can be obtained simply by setting 𝑛 = 1 

in the above equation. For further information about the properties of the MIT, we refer 

to Kayid and Ahmad (2004) and Ahmad et al. (2005). 

4.5  Generating function 

Let 𝑀𝑎(𝑡) be the mgf of 𝑌𝑎. Therefore, using (8) the mgf of 𝑋, say 𝑀(𝑡) = 𝐸(𝑒𝑡𝑥), is 

given by 

𝑀(𝑡) = (1 + 𝜆)𝑀𝑎(𝑥) − 𝜆𝑀𝑎+𝑏(𝑥).      (10) 
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At first, we determine the mgf of (1). We can write this mgf as  

𝑀(𝑡; 𝛼, 𝛽) = 𝛽𝛼𝛽∫
∞

0

 exp(𝑡𝑥) 𝑥𝛽−1 exp{−(𝛼𝑥)𝛽}𝑑𝑥. 

 

By expanding exp(𝑡𝑥) and calculating the integral, we have  

𝑀(𝑡; 𝛼, 𝛽) = 𝛽𝛼𝛽∑

∞

𝑘=0

𝑡𝑘

 𝑘!
∫
∞

0

  𝑥𝛽+𝑘−1 exp{−(𝛼𝑥)𝛽}𝑑𝑥 

                  = ∑∞𝑘=0
 𝑡𝑘𝛼−𝑘

 𝑘!
 Γ (

𝛽+𝑘

𝛽
), 

where the gamma function is well-defined for any non-integer 𝛽. 

 

Consider the complex parameter Wright generalized hypergeometric function with 𝑝 

numerator and 𝑞 denominator parameters defined by  

 𝑝Ψ𝑞 [
(𝛼1, 𝐴1), … , (𝛼𝑝, 𝐴𝑝)

(𝛽1, 𝐵1),… , (𝛽𝑞, 𝐵𝑞)
;  𝑧] = ∑

∞

𝑛=0

∏𝑝𝑗=1 Γ(𝛼𝑗 + 𝐴𝑗  𝑛)

∏𝑞
𝑗=1 Γ(𝛽𝑗 + 𝐵𝑗 𝑛)

𝑧𝑛

𝑛!
. 

 

Then, we can write 𝑀(𝑡; 𝛼, 𝛽) as  

M(t; α, β) =1 Ψ0 [
(1, −β−1)
−

; 
t

α
]. 

 

Then, the mgf of 𝑋~EW with power parameter 𝛿 is given by  

M(t; α, β, δ) = ∑∞k=0 υk 1Ψ0 [
(1, −β−1)
−

; (k + 1)−1/β t/α],   (11) 

where 𝜐𝑘 = (−1)
𝑘Γ(𝛿 + 1)/(𝑘 + 1)! Γ(𝛿 − 𝑘). 

 

Combining expressions (10) and (11), we obtain the mgf of 𝑋, say 

M(t) =∑

∞

k=0

(−1)k

(k + 1)1
Ψ0 [

(1, −β−1)
−

; (k + 1)−1/β t/α] 

  × {a(1 + λ) (
a − 1
k

) − (a + b)λ (
a + b − 1
k

)}  . 

4.6  Rényi and q-entropies 

The Rényi entropy of a random variable 𝑋 represents a measure of variation of the 

uncertainty. Then, the Rényi entropy of the GT-W distribution is given by 

𝐼𝜃(𝑋) =
1

1 − 𝜃
 log∫

∞

−∞

𝑓(𝑥)𝜃𝑑𝑥, 𝜃 > 0and𝜃 ≠ 1. 

 

By using the pdf in (5), we can write  

f(x)θ = (1 + λ)θha(x)
θ{1 − L G(x)b}

θ
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= [aβαβ(1 + λ)]
θ
xθ(β−1)e−θ(αx)

 β

[1 − e−(αx)
 β

]
θ(a−1)

 

× {1 − L [1 − e−(αx)
 β

]
b

}

θ

⏟                
A

,     (12) 

where 𝐿 = 𝜆 (𝑎 + 𝑏)/[𝑎 (1 + 𝜆)]. 
 

Given that 𝐿 < 1 and applying a series expansion to 𝐴, equation (12) can be expressed as 

f(x)θ = [aβαβ(1 + λ)]
θ
xθ(β−1)e−θ(αx)

 β

 

×∑

∞

j=0

(
θ
j
) (−L)j [1 − e−(αx)

 β

]
bj+θ(a−1)

. 

 

Applying the series expansion to the last equation, we can write 

f(x)θ = [aβαβ(1 + λ)]
θ
∑

∞

j,k=0

mj,kx
θ(β−1)e−(k+θ)(αx)

 β

, 

where 𝑚𝑗,𝑘 = (
𝜃
𝑗
) (
𝑏𝑗 + 𝜃(𝑎 − 1)

𝑘
) (−1)𝑘+𝑗𝐿𝑗. 

 

Then, the Rényi entropy of 𝑋 is given by 

Iθ(X) =
1

1 − θ
 log {∑

∞

j,k=0

mj,k
[a(1 + λ)]θβθ−1

αθ+1(k + θ)
θβ−θ+1

β

Γ (
θβ − θ + 1

β
)}. 

 

The q-entropy, say 𝐻𝑞(𝑋), is defined by 

Hq(X) =
1

q − 1
 log {1 −∫

∞

−∞

f(x)qdx} , q > 0andq ≠ 1. 

 

Hence  

Hq(X) =
1

q − 1
 log {1 − ∑

∞

j,k=0

mj,k
[a(1 + λ)]qβq−1

αq+1(k + θ)
qβ−q+1

β

Γ (
βq − q + 1

β
)}. 

4.7  Order statistics 

Let 𝑋1, … , 𝑋𝑛 denote 𝑛 independent and identically distributed GT-W random variables. 

Further, let 𝑋(1), … , 𝑋(𝑛) denote the order statistics from these 𝑛 variables. Then, the pdf 

of the 𝑖th order statistic 𝑋(𝑖), say 𝑓𝑖(𝑥), is given by  

fi(x) =
f(x)

B(i, n − i + 1)
 ∑

n−i

j=0

 (−1)j  (
n − i
  j

)  F(x)i+j−1. 

fi(x) = ∑
n−i
j=0 ∑

∞
k=0 {wk,jhbk+a(i+j)(x) − wk,j

∗ hb(k+1)+a(i+j)(x)},  (13) 
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where 

wk,j =
(−1)k+jaΓ(j + i)(1 + λ)j+i−kλk

k! Γ(j + i − k)[bk + a(j + i)]B(i, n − i + 1)
(
n − i
  j

) 

and 

wk,j
∗ =

wk,jL[bk + a(j + i)]

[b(k + 1) + a(j + i)]
. 

and ℎ𝛿  denotes the EW density function with power parameter 𝛿. Thus, the density 

function of the GT-W order statistics is a mixture of EW densities. Based on equation 

(13), we can obtain some structural properties of 𝑋𝑖:𝑛 from those EW properties. 

 

The 𝑛th moment of 𝑋𝑖:𝑛 (for 𝑛 > −𝛽) is given by  

𝐸(𝑋𝑖:𝑛
𝑛 ) = ∑𝑛−𝑖𝑗=0 ∑

∞
𝑘=0 {𝑤𝑘,𝑗  𝐸(𝑌𝑏𝑘+𝑎(𝑖+𝑗)

𝑛 ) − 𝑤𝑘,𝑗
∗ 𝐸(𝑌𝑏(𝑘+1)+𝑎(𝑖+𝑗)

𝑛 )}, (14) 

 

Equation (14) reveals that The 𝑛th moment of 𝑋𝑖:𝑛 can be expressed as an infinite linear 

combination of EW moments. 

4.8 Probability weighted moments 

The PWMs are expectations of certain functions of a random variable. They can be 

derived for any random variable whose ordinary moments exist. The PWM approach can 

be used for estimating parameters of any distribution whose inverse form cannot be 

expressed explicitly. 

 

The (𝑠, 𝑟)th PWM of 𝑋, say 𝜌𝑠,𝑟, is defined by 

ρs,r = E{X
s F(X)r} = ∫

∞

−∞

xsF(x)rf(x) dx. 

 

Using equations (4) and (5), we can write  

f(x) F(x)r =∑

∞

k=0

mk hbk+a(r+1)(x){1 − L G(x)
b}, 

Where 

mk = (−1)
kaΓ(r + 1)λk(1 + λ)r−k+1/k! Γ(r − k + 1)[bk + a[(r + 1)]. 

 
Then, the (s, r)th PWM of X can be expressed as  

ρs,r =∑

∞

k=0

mk∫
∞

0

xshbk+a(r+1)(x) {1 − L G(x)
b}dx. 

 
Therefore, 𝜌𝑠,𝑟 can be defined, as an infinite linear combination of EW moments, by 

ρs,r =∑

∞

k=0

{mkE(Ybk+a(r+1)) − mk
∗E(Yb(k+1)+a(r+1))}, 

where 𝑚𝑘
∗ = 𝐿𝑚𝑘[𝑏𝑘 + 𝑎[(𝑟 + 1)]/[𝑏(𝑘 + 1) + 𝑎(𝑟 + 1)] and 

E(Yδ) = ∫
∞

0
xs hδ(x)dx. Therefore, for n > −β, we obtain 
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ρs,r = ∑

∞

k,j=0

(m k,j
−mk,j

∗ ) α−s Γ (1 +
s

β
) 

       = ∑∞k,j=0
m k,j

αs
(1 −

λ (a+b)

a (1+λ)
)  Γ (1 +

s

β
), 

where mk,j
∗ = Lmk,j and  

mk,j =
(−1)k+jaΓ(r + 1)Γ[bk + a(r + 1)]λk (1 + λ)r−k+1

k! j! Γ(r + 1 − k)Γ[bk + a(r + 1) − j](j + 1)(s+β)/β
. 

4.9 Characterization based on two truncated moments 

Here, we provide characterizations of the GT-W distribution in terms of two truncated 

moments. This characterization result is based on a theorem (see Theorem 1 below) due 

to Glänzel (1987). The proof of Theorem 1 is given in Glänzel (1990). This result holds 

also when the interval 𝐻 is not closed. Moreover, as mentioned above, it could be also 

applied when the cdf 𝐹 does not have a closed form. Glänzel (1990) proved that this 

characterization is stable in the sense of weak convergence. 

 

Theorem 1. Let (Ω, , 𝑝) be a given probability space and let 𝐻 = [𝑎, 𝑏] be an interval for 

some 𝑎 < 𝑏(𝑎 = −∞ , 𝑏 = ∞ mightaswellbeallowed). Let 𝐻:Ω → 𝐻 be acontinuous 

random variable with cdf 𝐹 and let 𝑔  and ℎ be two real functions defined on 𝐻 such that 

E(g(x)|X ≥ x) = E(h(x)|X ≥ x)η(x), x ∈ H, 

is defined with a real function ℎ. Assume that 𝑔, ℎ ∈ 𝐶1(𝐻), 𝜂 ∈ 𝐶2(𝐻) and 𝐹 is twice 

continuously differentiable and strictly monotone function on the set 𝐻. Finally, assume 

that the equation ℎ𝜂 = 𝑔 has no real solution in the interior of 𝐻. Then 𝐹 is uniquely 

determined by the functions 𝑔, ℎ and 𝜂, particularly 

F(x) = ∫
x

a

 C |
η 
′
(u)

η(u)h(u) − g(u)
| exp(−s(u))du, 

where the function 𝑠 is a solution of the differential equation 𝑠  
′
= 𝜂 

′
ℎ/(𝜂ℎ − 𝑔) and 𝐶 

is the normalization constant, such that  𝐻𝑑𝐹 = 1. 

Proposition 1. 

Let 𝑋:Ω → (0,∞) be a continuous random variable and let 

ℎ(𝑥) = {𝑎(1 + 𝜆) − 𝜆(𝑎 + 𝑏) [1 − 𝑒−(𝛼𝑥)
𝛽
]
𝑏

}
−1

 

and 

g(x) = h(x) [1 − e−(αx)
β
]
α

. 

 

The random variable 𝑋 belongs to GT-W distribution (5) if and only if the function 𝜂 

defined in Theorem 1 has the formand 

𝜂(𝑥) =
1

2
{1 + [1 − 𝑒−(𝛼𝑥)

𝛽
]
𝑎

}. 
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Proof. 

Let 𝑋 be a random variable with density (5), then 

 𝐹(𝑥)𝐸[ℎ(𝑥)|𝑋 ≥ 𝑥] =
1

𝑎
{1 − [1 − 𝑒−(𝛼𝑥)

𝛽
]
𝑎

} 

and 

 F(x)E[g(x)|X ≥ x] =
1

2a
{1 − [1 − e−(αx)

β
]
2a

}, 

and finally 

 η(x)h(x) − g(x) =
1

2
h(x) [1 − e−(αx)

β
]
a

, 

 S 
′
(x) =

η 
′
(x)h(x)

η(x)h(x)−g(x)
=
aβαβxβ−1e−(αx)

β

[1−e−(αx)
β
]
. 

Then, we have 

S(x) = aln [1 − e−(αx)
β
]. 

Then, 𝑋 has the pdf (5). 

 

Corollary: Let 𝑋:Ω → (𝜃,∞) be a continuous random variable and let ℎ(𝑥) be as in 

Proposition (1). Then the random variable 𝑋  has the pdf (5) if and only if the functions 𝑔 

and ℎ defined in Theorem 1 satisfy the following differential equation 

η 
′
(x)h(x)

η(x)h(x)−g(x)
=
aβαβxβ−1e−(αx)

β

[1−e−(αx)
β
]
.      (15) 

 

The general solution of the above differential equation is 

η(x) = [1 − e−(αx)
β
]
a

{−∫
aβαβxβ−1e−(αx)

β

[1 − e−(αx)
β
]
×
g(x)

h(x)
dx + K}, 

where 𝐾 is a constant. There is a set of functions satisfying the differential equation (15) 

is given in Proposition 1 with 𝐾 = 0. Moreover, there are other triplets (ℎ, 𝑔, 𝜂) 
satisfying the conditions of Theorem 1. 

5.   Estimation 

The maximum likelihood method is the most commonly employed method for parameter 

estimation among several approaches in the literature. The maximum likelihood 

estimators (MLEs) have desirable properties and can be used when constructing 

confidence intervals and regions and also in test statistics. The normal approximation for 

MLEs in large sample distribution theory is easily handled either analytically or 

numerically. Therefore, we consider the maximum likelihood to estimate the unknown 

parameters of the GT-W model from complete samples only. Let 𝑋1, … , 𝑋𝑛 be a random 

sample of this distribution with unknown parameter vector 𝜐 = (𝛼, 𝛽, 𝜆, 𝑎, 𝑏)T. 

The log-likelihood function for 𝜐, say ℓ = ℓ(𝜐), is given by 

ℓ = nlnβ + nβlnα + (β − 1)∑

n

i=1

ln(xi) −∑

n

i=1

si 

+(a − 1)∑ni=1 ln(zi) + ∑
n
i=1 ln(ki),     (16) 

where 𝑠𝑖 = (𝛼𝑥𝑖)
 𝛽, 𝑧𝑖 = 1 − 𝑒−𝑠𝑖 and 𝑘𝑖 = {𝑎(1 + 𝜆) − 𝜆(𝑎 + 𝑏)𝑧𝑖}. 
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Equation (16) can be maximized either directly by using the SAS (PROC NLMIXED), R 

(optim function) or by solving the nonlinear system of equations obtained by 

differentiating (16). The score vector is given by 𝐔(𝜐) =
∂ℓ

∂𝜐
= (

∂

∂𝛼
,
∂

∂𝛽
,
∂

∂𝜆
,
∂

∂𝑎
,
∂

∂𝑏
)T =

(𝐽𝛼 , 𝐽𝛽 , 𝐽𝜆, 𝐽𝑎 , 𝐽𝑏)
T
. Then, 

Jα =
nβ

α
−
β

α
∑

n

i=1

si −
(a − 1)β

α
∑

n

i=1

sie
−si

zi
+
λb(a + b)β

α
∑

n

i=1

sie
−sizi
ki

, 

Jβ =
n

β
+ nlnα+i=1

n ln(xi) −∑

n

i=1

siln(αxi) 

+(a − 1)∑

n

i=1

sie
−si

zi[ln(αxi)]−1
+ λb(a + b)∑

n

i=1

sizie
−si

ki[ln(αxi)]−1
, 

Jλ =∑

n

i=1

a − (a + b)zi
ki

, Ja =∑

n

i=1

lnzi +∑

n

i=1

1 + λ − λzi
b

ki
 

and 

Jb =∑

n

i=1

λzi
b + λ2zilnzi

ki
. 

 

We can obtain the estimates of the unknown parameters by setting the score vector to 

zero, 𝐔(𝜐̂) = 0. By solving these equations simultaneously gives the MLEs 𝛼̂, 𝛽̂, 𝜆̂, 𝑎̂ and 

𝑏̂. Statistical software can be used to solve these equations numerically by means of 

iterative techniques such as the Newton-Raphson algorithm because they can not be 

solved analytically. For the GT-W distribution all the second order derivatives exist. 

 

For interval estimation of the model parameters, we require the 5 × 5 observed 

information matrix 𝐽(𝜐) = {𝐽𝑟𝑠} for 𝑟, 𝑠 = 𝛼, 𝛽, 𝜆, 𝑎, 𝑏, whose elements are given in the 

Appendix. Under standard regularity conditions, the multivariate normal 𝑁5(0, 𝐽(𝜐̂)
−1) 

distribution can be used to construct approximate confidence intervals for the model 

parameters. Here, 𝐽(𝜐̂) is the total observed information matrix evaluated at 𝜐̂. Therefore, 

approximate 100(1 − 𝜙)% confidence intervals for 𝛼, 𝛽, 𝜆, 𝑎 and 𝑏 can be determined 

as: 

α̂ ± zϕ/2√Ĵαα,  β̂ ± zϕ/2√Ĵββ, λ̂ ± zϕ/2√Ĵaa,  â ± zϕ/2√Ĵaa and b̂ ± 𝑧𝜙/2√𝐽𝑏𝑏, where 

𝑧𝜙/2 is the upper 𝜙th percentile of the standard normal distribution. 

 

6.   Simulation Study 

In this section, we conduct a small Monte Carlo simulation based on 3000 Monte Carlo 

replications. The true parameter values used in the data generating processes are 𝑎 = 0.1,
𝑏 = 0.5, 𝛼 = 1, 𝛽 = 7.3 and 𝜆 = −0.8. Different sample sizes 𝑛 = 50, 60, 70, 80, 90, 

100, 150, 200 and 500 were considered. The mean estimate, bias and the root-mean-

square error (RMSE) of the parameter estimates for the maximum likelihood estimates 

were determined from this simulation study and are presented in Table 2. It can be seen 
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that the estimates are stable and quite close the true parameter values for these sample 

sizes. Furthermore, as the sample size increases the RMSE decreases in all cases. 

Table 3:   Mean estimates, bias and root mean squared errors of 𝒂, 𝒃, 𝜶, 𝜷 and 𝝀 

𝑛 Parameter Mean estimate Bias RMSE 

𝑛
=
5
0

 

𝑎 = 0.1 0.2297822 -0.1297822 0.327024463 

𝑏 = 0.5 1.255719 -0.755719 8.109112849 

𝛼 = 1 1.541074 -0.541074 0.955562124 

𝛽 = 7.3 6.748934 0.551066 2.947305334 

𝜆 = −0.8 -0.5511439 -0.2488561 0.5905149096 

𝑛
=
6
0

 

𝑎 = 0.1 0.1951376 -0.0951376 0.220395469 

𝑏 = 0.5 1.032509 -0.532509 5.96435795 

𝛼 = 1 1.4754 -0.4754 0.72339841 

𝛽 = 7.3 6.84503 0.45497 2.78995353 

𝜆 = −0.8 -0.6011422 -0.1988578 0.523234483 

𝑛
=
7
0

 

𝑎 = 0.1 0.1912887 -0.0912887 0.212256016 

𝑏 = 0.5 0.9122504 -0.4122504 5.016811775 

𝛼 = 1 1.471143 -0.471143 0.691495355 

𝛽 = 7.3 6.803299 0.496701 2.7090957685 

𝜆 = −0.8 -0.6263422 -0.1736578 0.4825763478 

𝑛
=
8
0

 

𝑎 = 0.1 0.1624461 -0.0624461 0.1819903167 

𝑏 = 0.5 0.8991859 -0.3991859 4.4955866560 

𝛼 = 1 1.428468 -0.428468 0.5563865805 

𝛽 = 7.3 6.975834 0.324166 2.44068711545 

𝜆 = −0.8 -0.6818705 -0.1181295 0.4220811281 

𝑛
=
9
0

 

𝑎 = 0.1 0.1525878 -0.0525878 0.1627860458 

𝑏 = 0.5 0.7091427 -0.2091427 3.1018647083 

𝛼 = 1 1.411616 -0.411616 0.5011926789 

𝛽 = 7.3 7.074512 0.225488 2.3617131151 

𝜆 = −0.8 -0.712956 -0.087044 0.4007942838 

𝑛
=
1
0
0

 

𝑎 = 0.1 0.1449813 -0.0449813 0.1496813193 

𝑏 = 0.5 0.6207838 -0.1207838 2.5477297200 

𝛼 = 1 1.397203 -0.397203 0.4871008552 

𝛽 = 7.3 7.145722 0.154278 2.2156427287 

𝜆 = −0.8 -0.7271562 -0.0728438 0.3935592956 
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Table 3:  Mean estimates, bias and root mean squared errors of 𝒂, 𝒃, 𝜶, 𝜷 and 𝝀 

(Continuing) 

𝑛 Parameter Mean estimate Bias RMSE 

𝑛
=
1
5
0

 𝑎 = 0.1 0.1396533 -0.0396533 0.1166192274 

𝑏 = 0.5 0.58137 -0.08137 1.2698756147 

𝛼 = 1 1.355434 -0.355434 0.3992931734 

𝛽 = 7.3 7.200587 0.099413 1.7022385098 

𝜆 = −0.8 -0.7353586 -0.0646414 0.3502029562 

𝑛
=
2
0
0

 𝑎 = 0.1 0.12117204 -0.02117204 0.0940367283 

𝑏 = 0.5 0.5507085 -0.0507085 0.826900932 

𝛼 = 1 1.333046 -0.333046 0.3186760245 

𝛽 = 7.3 7.234297 0.065703 1.4922472233 

𝜆 = −0.8 -0.7638331 -0.0361669 0.3033842689 

𝑛
=
5
0
0

 𝑎 = 0.1 0.10117204 -0.00117204 0.051629824 

𝑏 = 0.5 0.5007085 -0.0007085 0.698312924 

𝛼 = 1 1.211367 -0.211367 0.2242738698 

𝛽 = 7.3 7.2912457 0.0087543 0.7600244960 

𝜆 = −0.8 -0.7936831 -0.0063169 0.2012870279 

7.   Application 

In this section, we provide an application of the GT-W distribution to show the 

importance of the new model. We now provide a data analysis in order to assess the 

goodness-of-fit of the proposed model. We will make the use of the data set on the 

remission times (in months) of a random sample of 128 bladder cancer patients (Lee and 

Wang, 2003) is given by: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 

4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 

5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 

3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39,10.34, 14.83, 34.26, 0.90 , 

2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 

43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 

79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 

4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 

8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

These data were previously studied by Mead and Afify (2017) to fit the Kumaraswamy 

exponentiated Burr XII distribution. We compare the fits of the GT-W distribution with 

other competitive models, namely: the McDonald Weibull (McW) (Cordeiro et al., 2014), 

transmuted linear exponential (TLE) (Tian et al., 2014), transmuted modified Weibull 

(TMW) (Khan and King, 2013), modified beta Weibull (MBW) (Khan, 2015), 

transmuted additive Weibull distribution (TAW) (Elbatal and Aryal, 2013), 

exponentiated transmuted generalized Rayleigh (ETGR) (Afify et al., 2015) and Weibull 

(W) distributions with corresponding densities (for 𝑥 > 0): 

• McW: 𝑓(𝑥) =
𝛽𝑐𝛼𝛽

𝐵(𝑎/𝑐,𝑏)
 𝑥𝛽−1 𝑒−(𝛼𝑥)

𝛽
[1 − 𝑒−(𝛼𝑥)

𝛽
]
𝑎−1

{1 − (1 − 𝑒−(𝛼𝑥)
𝛽
)
𝑐

}
𝑏−1

. 
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• TLE: 𝑓(𝑥) = (𝛼 + 𝛾𝑥) [1 − 𝑒−(𝛼𝑥+
𝛾

2
𝑥2)] {1 − 𝜆 + 2𝜆𝑒−(𝛼𝑥+

𝛾

2
𝑥2)}. 

 

• TMW: 𝑓(𝑥) =  (𝛼 + 𝛾𝛽𝑥𝛽−1)𝑒−(𝛼𝑥+𝛾𝑥
𝛽) {1 − 𝜆 + 2𝜆𝑒−(𝛼𝑥+𝛾𝑥

𝛽)}. 

 

• MBW: 𝑓(𝑥) =
𝛽𝛼−𝛽𝑐𝑎

𝐵(𝑎/𝑐,𝑏)
 𝑥𝛽−1 𝑒−𝑏(

𝑥

𝛼
)
𝛽

[1 − 𝑒−(
𝑥

𝛼
)
𝛽

]

𝑎−1

 

× {1 − (1 − 𝑐) (1 − 𝑒−(
𝑥

𝛼
)
𝛽

)

𝑐

}

−𝑎−𝑏

. 

 

• TAW: 𝑓(𝑥) = (𝛼𝜃𝑥𝜃−1 + 𝛾𝛽𝑥𝛽−1)𝑒−(𝛼𝑥
𝜃+𝛾𝑥𝛽) {1 − 𝜆 + 2𝜆𝑒−(𝛼𝑥

𝜃+𝛾𝑥𝛽)}. 

 

• ETGR: 𝑓(𝑥) = 2𝛼𝛾𝛽2 𝑥 𝑒−(𝛽𝑥)
2
 [1 − 𝑒−(𝛽𝑥)

2
]
𝛼𝛾−1

 

× [1 + 𝜆 − 2𝜆(1 − 𝑒−(𝛽𝑥)
2
)
𝛼
] {1 + 𝜆 − 𝜆(1 − 𝑒−(𝛽𝑥)

2
)
𝛼
}
𝛾−1

.  

 

The parameters of the above densities are all positive real numbers except for the TLE, 

TMW, TAW and ETGR distributions for which |𝜆| ≤ 1 and 0< 𝜃 < 𝛽 (or 0< 𝛽 < 𝜃) for 

the TAW. 

 

In order to compare the fitted models, we consider some goodness-of-fit measures 

including the Akaike information criterion (𝐴𝐼𝐶), consistent Akaike information criterion 

(𝐶𝐴𝐼𝐶) and −2ℓ̂, where ℓ̂ is the maximized log-likelihood, 𝐴𝐼𝐶 = −2ℓ̂ + 2𝑝, 𝐶𝐴𝐼𝐶 =

−2ℓ̂ + 2𝑝𝑛/(𝑛 − 𝑝 − 1), 𝑝 is the number of parameters and 𝑛 is the sample size. 

Moreover, we use the Anderson-Darling (𝐴∗) and the Cramér-von Mises (𝑊∗) statistics 

in order to compare the fits of the two new models with other nested and non-nested 

models. The statistics are widely used to determine how closely a specific cdf fits the 

empirical distribution of a given data set. These statistics are given by  

𝐴∗ = (
9

4𝑛2
+
3

4𝑛
+ 1) {𝑛 +

1

𝑛
∑

𝑛

𝑗=1
(2𝑗 − 1)log[𝑧𝑖(1 − 𝑧𝑛−𝑗+1)]} 

and  

𝑊∗ = (
1

2𝑛
+ 1) {∑

𝑛

𝑗=1
(𝑧𝑖 −

2𝑗 − 1

2𝑛
)
2

+
1

12𝑛
}, 

respectively, 𝑧𝑖 = 𝐹(𝑦𝑗), where the 𝑦𝑗’s values are the ordered observations. The smaller 

these statistics are, the better the fit. Upper tail percentiles of the asymptotic distributions 

of these goodness-of-fit statistics were tabulated in Nichols and Padgett (2006). 

 

Table 4 lists the values of −2ℓ̂, 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝑊∗ and 𝐴∗ whereas the MLEs, their 

corresponding standard errors, of the model parameters are given in Table 5. These 

numerical results are obtained using the MATH-CAD PROGRAM. 

 

The fitted pdf, estimated cdf and QQ-plot of the GT-W model are displayed in Figures 5 

and 6, respectively. 
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In Table 4, we compare the fits of the GT-W model with the Mc-W, TLE, TMW, MBW, 

TAW, ETGR and W models. We note that the GT-W model has the lowest values for the 

−2ℓ̂, 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝑊∗ and 𝐴∗ statistics among all fitted models. So, the GT-W model 

could be chosen as the best model. It is quite clear from the figures in Table 2 and 

Figures 3 and 4, that the GT-W distribution can provide the best fits to these data. So, we 

prove that this new model can be better model than other competitive lifetime models. 

Table 4:   The statistics −𝟐𝓵̂, 𝑨𝑰𝑪, 𝑪𝑨𝑰𝑪, 𝑾∗ and 𝑨∗ for cancer patient data 

  Model   −2ℓ̂   𝐴𝐼𝐶   𝐶𝐴𝐼𝐶  𝑊∗  𝐴∗    

 GT-W   821.347   831.347   831.839   0.04691   0.30583  

 McW   821.68   831.68   832.172   0.05037   0.32985  

 TLE   826.971   832.971   833.165   0.06085   0.55402  

 W   828.158   832.158   832.254   0.10553   0.66279  

 TMW   828.45   836.45   836.775   0.12511   0.76028  

 MBW   828.027   838.027   838.519   0.10679   0.72074  

 TAW   828.478   838.478   838.97   0.11288   0.70326  

 ETGR   858.35   866.35   866.675   0.39794   2.36077  

Table 5:   MLEs and their standard errors for cancer patient data 

  Model   𝛼   𝛽   𝑎   𝑏   𝜆  
 W   9.5593   1.0477   1   1   0  
  (0.853)   (0.068)   –   –   –  

 GT-W   0.2991   0.6542   2.7965   0.0128   0.002  
  (0.151)   (0.121)   (1.117)   (7.214)   (1.769)  

  𝛼   𝛽   𝑎   𝑏   𝑐  
 McW   0.1192   0.5582   4.0633   2.6036   0.0393  

  (0.109)   (0.178)   (2.111)   (2.452)   (0.202)  
 MBW   10.1502   0.1632   57.4167   19.3859   2.0043  

   (22.437 )   (0.044)   (37.317)   (13.49)   (0.789)  

  𝛼   𝛽   𝛾   𝜃   𝜆  
 TAW   0.1139   0.9722   3.0936 × 10−5   1.0065   −0.163  

   (0.032 )   (0.125)   (6.106 × 10−3)   (0.035)   (0.28)  
 TLE   𝛼   𝛾   𝜆      

  0.0612   3.0877 × 10−5   0.8568      

  (0.01)   (6.819 × 10−4)    (0.203 )      

  𝛼   𝛽   𝛾   𝜆    
 TMW   0.1208   0.8955   0.0002  −0.2513    

  (0.024)   (0.626)   (0.011)   (0.407)    
 ETGR   7.3762   0.0473   0.0494   0.118    

  (5.389)   (3.965 × 10−3)   (0.036)   (0.26))    
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Figure 5: The fitted pdf and estimated cdf of the GT-W model 

 

 

Figure 6: QQ-plot of the GT-W model  

8.   Conclusions 

In this paper, we propose and study a new model, based on the GT-G family proposed by 

Nofal et al. (2017), called the generalized transmuted Weibull (GT-W) model, which 

extends the Weibull distribution. An obvious reason for generalizing a classical 

distribution is the fact that the new model provides more flexibility to analyze real life 

data. We provide some of its mathematical and statistical properties. The GT-W density 

function can be expressed as a mixture of EW densities. We derive explicit expressions 

for the ordinary and incomplete moments, quantile and generating functions, probability 

weighted moments, Rényi and q-entropies and order statistics. We discuss maximum 

likelihood estimation. The proposed distribution applied to a real data set provides better 

fits than some other nested non-nested models. We hope that the proposed model will 
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attract wider application in areas such as engineering, reliability, survival and lifetime 

data, hydrology, economics and others. 

Appendix 

The elements of the observed information matrix are given by 

𝐽𝛼𝛼 =
−𝑛𝛽

𝛼2
+
𝛽(1 − 𝛽)

𝛼2
∑

𝑛

𝑖=1

𝑠𝑖 +
(𝑎 − 1)𝛽

𝛼2
∑

𝑛

𝑖=1

𝑠𝑖𝑒
−𝑠𝑖[1 − 𝛽(1 − 𝑠𝑖)]

𝑧𝑖
 

+
𝜆𝑏(𝑎 + 𝑏)𝛽

𝛼2
∑

𝑛

𝑖=1

𝑠𝑖𝑒
−𝑠𝑖𝑧𝑖[(𝑏 − 1)𝑠𝑖𝑒

−𝑠𝑖𝑘𝑖 − 𝜆𝑏(𝑎 + 𝑏)𝑧𝑖]

𝑘𝑖
 

−
𝜆𝑏(𝑎 + 𝑏)𝛽

𝛼2
∑

𝑛

𝑖=1

𝑠𝑖𝑒
−𝑠𝑖𝑧𝑖[1 − 𝛽(1 − 𝑠𝑖)]

𝑘𝑖
, 

Jαβ =
n

α
−
1

α
∑

n

i=1

si[1 + βln(αxi)] [1 + (a − 1)
e−si

zi
] 

−
(a − 1)

α
∑

n

i=1

sie
−si[βsie

−si + βsizi]

zi[ln(αxi)]−1
 

+
λb(a + b)

α
∑

n

i=1

sie
−sizi[1 + β(1 − si)]

ki[ln(αxi)]−1
 

−
λb(a + b)β

α
∑

n

i=1

sie
−2Sizi
ki

{
λbzi

b

(a + b)−1
+
(b − 1)ki
[ln(αxi)]−1

}, 

Jαλ =
b(a + b)β

α
∑

n

i=1

sie
−sizi
ki

{ki − λ[a − (a + b)zi]}, 

Jαa =
−β

α
∑

n

i=1

sie
−si

zi
+
λbβ

α
∑

n

i=1

sie
−sizi{ki − (a + b)[1 + λ − λzi

b]}

ki
, 

Jαb =
λ2b(a + b)β

α
∑

n

i=1

sie
−sizi[1 + λlnzi]

ki
, 

Jββ =
−n

β2
−∑

n

i=1

si
[ln(αxi)]−2

− (a − 1)∑

n

i=1

sie
−si[sie

−si − sizi + zi]

zi[ln(αxi)]−2
 

−λb(a + b)∑

n

i=1

sie
−sizi[ln(αxi)]

2[kizi − λb(a + b)zisie
−si]

ki
 

+λb(a + b)∑

n

i=1

sie
−sizi[ln(αxi)]

2[sikizi + (b − 1)kisie
−si]

ki
, 

Jβλ = −b(a + b)∑

n

i=1

sie
−sizi{ki − λ[a − (a + b)zi]}

ki[ln(αxi)]−1
, 
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Jβa = −∑

n

i=1

sie
−si

zi[ln(αxi)]−1
− λb∑

n

i=1

sie
−sizi{ki − (a + b)[1 + λ − λzi

b]}

ki[ln(αxi)]−1
, 

Jβb =∑

n

i=1

−sie
−sizi{λ(a + 2b)ki + λ

2b(a + b)zi(1 + λlnzi)}

ki[ln(αxi)]−1
, 

Jλλ = −∑

n

i=1

{
a − (a + b)zi

ki
}

2

, Jλa = −∑

n

i=1

[1 + λ − λzi
b][a − (a + b)zi]

ki
, 

Jλb = −∑

n

i=1

zi[1 + λlnzi]

ki{ki − λ[a − (a + b)zi]}−1
, Jaa = −∑

n

i=1

[
1 + λ − λzi

b

ki
]

2

, 

Jab = λ∑

n

i=1

zi[1 + λ − λzi
b][1 + λlnzi]

ki
andJbb = −λ

2∑

n

i=1

zi[1 + λlnzi]
2

ki
. 
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