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Abstract 

 
We define and study a new class of continuous distributions called the Poisson-𝐺 family. We present three 

of its several special models. Some of its mathematical properties including explicit expressions for the 

ordinary and incomplete moments, quantile and generating functions and entropies are provided. The 

estimations of the model parameters is carried out using maximum likelihood method. The flexibility of the 

new family is illustrated by means of two applications to real data sets. 

 

 

Keywords: Entropy, Generating Function, Generalized Exponential Poisson, Maximum 

Likelihood. 

 

1. Introduction  

 

Recently, Many generalized families of distributions have been proposed and extensively 

used in modeling data in various applied sciences such as economics, finance, insurance, 

engineering and life testing. However, there is a clear need for extended forms of these 

distributions by adding one or more shape parameter(s) in order to obtain greater 

flexibility in modelling these data. 

 

There are many well-known families in the literature. For example, the exponentiated-G 

(Exp-𝐺) (Gupta et al., 1998), beta-G (Eugene et al., 2002), transmuted-G (Shaw and 

Buckley, 2007), Kumaraswamy-G (Cordeiro and de Castro, 2011), McDonald-G 
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(Alexander et al., 2012), transmuted exponentiated generalized-G (Yousof et al., 2015) 

and generalized transmuted-G (Nofal et al., 2017) families. 

 

In this paper, we propose and study the Poisson-G (Po-𝐺) family of distributions. The 

main advantage of the Po-𝐺 family relies on the fact that practitioners will have a quite 

flexible one-parameter class to fit real life data in applied fields. It may serve as a good 

alternative to other one, two or three-parameter families. It also may work better, in terms 

of model fitting, than other classes of distributions in certain practical situations which 

cannot always be guaranteed. Furthermore, a comprehensive account of some of its 

mathematical properties are provided. We prove empirically that the special models of 

the Po-𝐺 family can provide better fit than other competitive models generated by the 

above mentioned classes. 

 

Let 𝑝(𝑡) be the probability density function (pdf) of a random variable 𝑇 ∈ 𝑎, 𝑏] for 

−∞ < 𝑎 < 𝑏 < ∞ and let 𝑊[𝐺(𝑥)] be a function of the cumulative distribution function 

(cdf) of a random variable 𝑋 such that 𝑊[𝐺(𝑥)] satisfies the following conditions:  

(

(𝑖) 𝑊[𝐺(𝑥)] ∈ 𝑎, 𝑏],

(𝑖𝑖) 𝑊[𝐺(𝑥)] is differentiable and monotonically non − decreasing, and

(𝑖𝑖𝑖) 𝑊[𝐺(𝑥)] → 𝑎   as   𝑥 → −∞ and 𝑊[𝐺(𝑥)] → 𝑏   as   𝑥 → ∞.

                    (1) 

 

Recently, Alzaatreh et al. (2013) proposed the T-X family with cdf  

                                        𝐹(𝑥) = ∫
𝑊[𝐺(𝑥)]

𝑎
 𝑝(𝑡) 𝑑𝑡,                                          (2) 

 

where 𝑊[𝐺(𝑥)] satisfies the conditions (1). The corresponding pdf of (2) is defined by  

                                 𝑓(𝑥) = {
𝑑

𝑑𝑥
 𝑊[𝐺(𝑥)]}  𝑝{ 𝑊[𝐺(𝑥)]}.                                 (3) 

 

Based on generalized exponential power series distribution (Mahmoudi and Jafari, 2012), 

first we define the Po-𝐺 family of distributions. 

 

For 𝑊[𝐺(𝑥)] = −log[1 − 𝐺(𝑥; 𝛏)] and 𝑝(𝑡) be the pdf of generalized exponential 

Poisson with 𝛼 = 𝛽 = 1, we define the cdf of the new Po-𝐺 family of distributions by  

               
𝐹(𝑥; 𝜃, 𝛏)     =     ∫

−log[1−𝐺(𝑥;𝛏)]

0
 
𝜃 exp(− 𝑡)exp[𝜃(1−𝑒−𝑡)]

𝑒𝜃−1
 𝑑𝑡 

                       =     
exp[𝜃 𝐺(𝑥;𝛏)]−1

𝑒𝜃−1
,

                (4) 

where 𝐺(𝑥; 𝛏) is the baseline cdf depending on a parameter vector 𝛏 and 𝜃 > 0 is a shape 

parameter. 

 

The corresponding pdf of (4) is given by 

 𝑓(𝑥; 𝜃, 𝛏) =
𝜃𝑔(𝑥;𝛏)

𝑒𝜃−1
exp[𝜃 𝐺(𝑥; 𝛏)].   (5) 

 

We denote a random variable having density function (5) by 𝑋~Po-𝐺(𝜃, 𝛏). The 

reliability function (rf), hazard rate function (hrf) and cumulative hazard rate function 

(chrf) of 𝑋 are, respectively, given by  

 

 𝑅(𝑥; 𝜃, 𝛏) =
exp(𝜃)−exp[𝜃 𝐺(𝑥;𝛏)]

𝑒𝜃−1
, 
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 ℎ(𝑥; 𝜃, 𝛏) =
𝜃𝑔(;𝛏)exp[𝜃 𝐺(𝑥;𝛏)]

exp(𝜃)−exp[𝜃 𝐺(𝑥;𝛏)]
 

and  

 𝐻(𝑥; 𝜃, 𝛏) = −ln {
exp(𝜃)−exp[𝜃 𝐺(𝑥;𝛏)]

𝑒𝜃−1
}. 

 

Henceforth, we will omit the dependence on the model parameters for simplicity and 

write 𝑔(𝑥) = 𝑔(𝑥; 𝛏), 𝐹(𝑥) = 𝐹(𝑥; 𝜃, 𝛏) and 𝑓(𝑥) = 𝑓(𝑥; 𝜃, 𝛏), etc. 

 

The rest of the paper is outlined as follows. In Section 2, we derive a very useful 

representation for the Po-𝐺 density function. Three special models of this family are 

presented in Section 3 and some plots of their pdfs and hrfs are given. We obtain in 

Section 4 some general mathematical properties of the proposed family including 

ordinary and incomplete moments, quantile function (qf), moment generating function 

(mgf) and entropies. Maximum likelihood estimation of the model parameters is 

investigated in Section 5. In Section 6, simulation results to assess the performance of the 

proposed maximum likelihood estimation procedure are discussed for one special model. 

In Section 7, we perform two applications to real data sets to illustrate the potentiality of 

three special models of the proposed family. Finally, some concluding remarks are 

presented in Section 8. 

 

2. Linear representation 

 

In this section, we provide a useful mixture representation for the Po-𝐺 family in terms of 

Exp-𝐺 densities. The pdf (5) can be expressed as  

 

 𝑓(𝑥) =
𝜃𝑔(𝑥)

𝑒𝜃−1
exp[𝜃 𝐺(𝑥)]. 

 

Using the power series for exp[𝜃 𝐺(𝑥)], the pdf of the Po-𝐺 family can be expressed as 

 

 𝑓(𝑥) =
1

𝑒𝜃−1
∑∞

𝑘=0
𝜃𝑘+1

(𝑘+1)!
ℎ𝑘+1(𝑥). 

 

Then, we can write the pdf of the Po-𝐺 family as  

 

                                              𝑓(𝑥) = ∑∞
𝑘=0 𝜑𝑘ℎ𝑘+1(𝑥).                                        (6) 

where 𝜑𝑘 = 𝜃𝑘+1/[(𝑒𝜃 − 1)(𝑘 + 1)!] and ℎ𝛼(𝑥) = 𝛼 𝑔(𝑥) 𝐺(𝑥)𝛼−1 is the Exp-𝐺 

density function with power parameter 𝛼. 

 

Equation (6) reveals that the density function of 𝑋 is a mixture of the baseline density and 

the Exp-𝐺 density with power parameter 𝑘 + 1. Thus, some structural properties of the 

Po-𝐺 family such as ordinary and incomplete moments, mean deviations and generating 

function can be determined from those properties of the Exp-𝐺 distributions. 

 

 

3. Special models 
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In this section, we provide three special models of the Po-𝐺 family. The pdf (5) will be 

most tractable when 𝐺(𝑥; 𝛏) and 𝑔(𝑥; 𝛏) have simple analytic expressions. These special 

models generalize some well-known distributions corresponding to the baseline Weibull 

(W), additive Weibull (AW) and Burr X (BX) distributions. 

 

3.1 The PoW Model 

 

Consider the cdf and pdf (for 𝑥 > 0) 𝐺(𝑥) = 1 − exp[−(𝛼𝑥)𝛽] and 𝑔(𝑥) =
𝛽𝛼𝛽𝑥𝛽−1exp[−(𝛼𝑥)𝛽], respectively, of the W distribution with positive parameters 𝛼 

and 𝛽. Then, the pdf and cdf of the PoW model are, respectively, given by  

 

 𝑓(𝑥) =
𝜃𝛽𝛼𝛽𝑥𝛽−1exp[−(𝛼𝑥)𝛽]

𝑒𝜃−1
exp {𝜃 − 𝜃exp[−(𝛼𝑥)𝛽]} 

and 

 𝐹(𝑥) =
exp {𝜃−𝜃exp[−(𝛼𝑥)𝛽]}−1

𝑒𝜃−1
. 

 

For 𝛽 = 2, we have the Po-Rayleigh (PoR) distribution. For 𝛽 = 1, it gives the Po-

exponential (PoE) model. Plots of the PoW density and hrf for selected parameter values 

are displayed in Figure 1.    

 

3.2 The PoAW Model 

 

The AW distribution with parameters 𝛼, 𝛽, 𝛾, 𝛿 ≥ 0where 𝛿 < 1 < 𝛽 (or 𝛽 < 1 < 𝛿), 

𝛿and 𝛽 are the shape parameters and 𝛼 and 𝛾 are scale parameters, has pdf and cdf (for 

𝑥 > 0) given by 𝑔(𝑥) = (𝛼𝛿𝑥𝛿−1 + 𝛾𝛽𝑥𝛽−1)exp(−𝛼𝑥𝛿 − 𝛾𝑥𝛽) and 𝐺(𝑥) = 1 −

exp(−𝛼𝑥𝛿 − 𝛾𝑥𝛽), respectively. Then, the pdf and cdf of the PoAW model are given by 

 

 𝑓(𝑥) =
𝜃(𝛼𝛿𝑥𝛿−1+𝛾𝛽𝑥𝛽−1)

(𝑒𝜃−1)exp(𝛼𝑥𝛿+𝛾𝑥𝛽)
exp [𝜃 − 𝜃exp(−𝛼𝑥𝛿 − 𝛾𝑥𝛽)] 

and  

 𝐹(𝑥) =
exp [𝜃−𝜃exp(−𝛼𝑥𝛿−𝛾𝑥𝛽)]−1

𝑒𝜃−1
, 

 

respectively. Figure 2 displays plots of the PoAW density and its hrf for selected 

parameter values. 

 

3.3 The PoBX Model 

 

The BX (also known as the generalized Raleigh) model with positive parameters 𝛼 and 𝛽 

has cdf and pdf (for 𝑥 > 0) given by 𝐺(𝑥) = {1 − exp[−(𝛽𝑥)2]}𝛼 and 𝑔(𝑥) =
2𝛼𝛽2𝑥exp[−(𝛽𝑥)2] {1 − exp[−(𝛽𝑥)2]}𝛼−1, respectively. Then, the PoBX pdf and cdf 

are given, respectively, by 

 𝑓(𝑥) =
2𝜃𝛼𝛽2𝑥exp[−(𝛽𝑥)2] 

𝑒𝜃−1
{1 − exp[−(𝛽𝑥)2]}𝛼−1exp(𝜃 {1 − exp[−(𝛽𝑥)2]}𝛼) 

and  

 𝐹(𝑥) =
exp{𝜃 {1−exp[−(𝛽𝑥)2]}𝛼}−1

(𝑒𝜃−1)
. 



The Poisson-𝑮 Family of Distributions with Applications 

 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp313-326 317 

Plots of the PoBX density and its hrf for selected parameter values are displayed in 

Figure 3. 

 

 

 
Figure 1: (a) pdf of PoW distribution and (b) hrf of PoW distribution  

 
  

Figure 2: (a) pdf of PoAW distribution and (b) hrf of PoAW distribution   

 

 

 

 

4. Properties 
 

In this section, we derive some mathematical properties of the proposed family based on 

the linear representation derived in Section 2. 

 

4.1 Ordinary and incomplete moments 
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The 𝑟th moment of 𝑋, say 𝜇𝑟
′ , follows from (6) as 

 

 𝜇𝑟
′ = 𝐸(𝑋𝑟) = ∑

𝑘=0

∞

𝜑𝑘 𝐸(𝑌𝑘+1
𝑟 ). 

    

Figure 3: (a) pdf of PoBX distribution and (b) hrf of PoBX distribution  

 

Henceforth, 𝑌𝑘+1 denotes the Exp-𝐺 distribution with power parameter 𝑘 + 1. 

 

The 𝑠th incomplete moment, say 𝜑𝑠(𝑡), of 𝑋 can be expressed from (6) as  

             𝜑𝑠(𝑡) = ∫
𝑡

−∞
𝑥𝑠𝑓(𝑥)𝑑𝑥 = ∑

𝑘=0

∞

𝜑𝑘  ∫
𝑡

−∞
𝑥𝑠  ℎ𝑘+1(𝑥)𝑑𝑥.                    (7) 

 

The mean deviations about the mean [𝛿1 = 𝐸(|𝑋 − 𝜇1
′ |)] and about the median [𝛿2 =

𝐸(|𝑋 − 𝑀|)] of 𝑋 are given by 𝛿1 = 2𝜇1
′ 𝐹(𝜇1

′ ) − 2𝜑1(𝜇1
′ ) and 𝛿2 = 𝜇1

′ − 2𝜑1(𝑀), 

respectively, where 𝜇1
′ = 𝐸(𝑋), 𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝑄(0.5) is the median, 𝐹(𝜇1

′ ) is 

easily calculated from (4) and 𝜑1(𝑡) is the first incomplete moment given by (7) with 𝑠 =
1. 

 

Now, we provide two ways to determine 𝛿1 and 𝛿2. First, a general equation for 𝜑1(𝑡) 

can be derived from (6) as  

 𝜑1(𝑡) = ∑
𝑘=0

∞

 𝜑𝑘 𝐽𝑘+1(𝑥), 

where 𝐽𝑘+1(𝑥) = ∫
𝑡

−∞
 𝑥 ℎ𝑘+1(𝑥)𝑑𝑥 is the first incomplete moment of the Exp-𝐺 

distribution. 

A second general formula for 𝜑1(𝑡) is given by  

 𝜑1(𝑡) = ∑
𝑘=0

∞

 𝜑𝑘 𝑣𝑘(𝑡), 

where 𝑣𝑘(𝑡) = (𝑘 + 1) ∫
𝐺(𝑡)

0
 𝑄𝐺(𝑢) 𝑢𝑘𝑑𝑢 can be computed numerically. 
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These equations for 𝜑1(𝑡) can be applied to construct Bonferroni and Lorenz curves 

defined for a given probability 𝜋 by 𝐵(𝜋) = 𝜑1(𝑞)/(𝜋𝜇1
′ ) and 𝐿(𝜋) = 𝜑1(𝑞)/𝜇1

′ , 

respectively, where 𝜇1
′ = 𝐸(𝑋) and 𝑞 = 𝑄(𝜋) is the qf of 𝑋 at 𝜋. 

 

 

4.2 Quantile and generating functions 

 

The qf of 𝑋, where 𝑋~Po-𝐺(𝜃, 𝛏), is obtained by inverting (4) to obtain 𝑄(𝑢) = 𝐹−1, 0 <
𝑢 < 1. 

Simulating the Po random variable is straightforward. If 𝑈 is a uniform variate on the unit 

interval (0,1), then the random variable 𝑋 = 𝑄(𝑈) follows (4). 

For simulating from Po-𝐺 if 𝑢~𝑈(0,1), then solution of nonlinear equation  

 

 𝑥𝑢 = 𝐺−1 {
1

𝜃
log[1 + 𝑢(𝑒𝜃 − 1)]}. 

 

Now, we provide two formulae for the mgf 𝑀𝑋(𝑡) = 𝐸(𝑒𝑡 𝑋) of 𝑋. Clearly, the first one 

can be derived from equation (6) as  

 𝑀𝑋(𝑡) = ∑
𝑘=0

∞

𝜑𝑘 𝑀𝑘+1(𝑡), 

 

where 𝑀𝑘+1(𝑡) is the mgf of 𝑌𝑘+1. Hence, 𝑀𝑋(𝑡) can be determined from the Exp-𝐺 

generating function. 

A second formula for 𝑀𝑋(𝑡) follows from (6) as  

 

 𝑀𝑋(𝑡) = ∑
𝑘=0

∞

𝜑𝑘 𝜏(𝑡, 𝑘), 

 

where 𝜏(𝑡, 𝑘) = ∫
1

0
exp[𝑡 𝑄𝐻(𝑢)] 𝑢𝑘𝑑𝑢 and 𝑄𝐻(𝑢) is the qf corresponding to 𝐻(𝑥; ϕ), 

i.e., 𝑄𝐻(𝑢) = 𝐻−1(𝑢; ϕ). 

 

4.3 Entropies 
 

The Rényi entropy of a random variable 𝑋 represents a measure of variation of the 

uncertainty. The Rényi entropy is defined by  

 

 𝐼𝛾(𝑋) =
1

1−𝛾
 log ∫

∞

−∞
𝑓(𝑥)𝛾𝑑𝑥, 𝛾 > 0and𝛾 ≠ 1. 

 

Using the pdf (5), we can write  

 𝑓(𝑥)𝛾 = (
𝜃

𝑒𝜃−1
)

𝛾

𝑔(𝑥; 𝛏)𝛾exp[𝜃𝛾 𝐺(𝑥; 𝛏)]. 

Using the power series for exp[𝜃𝛾 𝐺(𝑥; 𝛏)], we an write 

 

 𝑓(𝑥)𝛾 = ∑∞
𝑘=0 𝑚𝑘+1ℎ𝑘+1(𝑥), 

where 𝑚𝑘+1 = [𝜃/(𝑒𝜃 − 1)]
𝛾

(𝜃𝛾)𝑘/(𝑘 + 1)!. 
Then, the Rényi entropy of the Po-𝐺 family is given by  
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 𝐼𝛾(𝑋) =
1

1−𝛾
log [ ∑

𝑘=0

∞

𝑚𝑘+1 ∫
∞

−∞
ℎ𝑘+1(𝑥)𝑑𝑥]. 

 

The 𝛾-entropy, say 𝐻𝛾(𝑋), can be obtained as 

 𝐻𝑞(𝑋) =
1

𝛾−1
log {1 − [ ∑

𝑘=0

∞

𝑚𝑘+1 ∫
∞

−∞
ℎ𝑘+1(𝑥)𝑑𝑥]}, 

where 𝛾 > 0, 𝛾 ≠ 1. 

 

5. Maximum likelihood estimation 
 

Here, we determine the MLEs of the parameters of the new family of distributions from 

complete samples only. Let 𝑋1, … , 𝑋𝑛 be a random sample from the Po-𝐺 family with 

parameters 𝜃 and 𝛏. Let Θ = (𝜃, 𝛏T)𝑇 be the (𝑝 × 1) parameter vector. Then, the log-

likelihood function for Θ, say ℓ = ℓ(Θ), is given by 
𝜃𝑔(𝑥;𝛏)

𝑒𝜃−1
exp[𝜃 𝐺(𝑥; 𝛏)] 

 

ℓ = 𝑛log𝜃 − 𝑛log(𝑒𝜃 − 1) + ∑𝑛
𝑖=1 log𝑔(𝑥𝑖; 𝛏) + 𝜃 ∑𝑛

𝑖=1 𝐺(𝑥𝑖; 𝛏).                   (8) 

 

Equation (8) can be maximized either directly by using the R (optim function), SAS 

(PROC NLMIXED) or Ox program (sub-routine MaxBFGS) or by solving the nonlinear 

likelihood equations obtained by differentiating (8). 

The score vector components, say 𝐔(Θ) =
∂ℓ

∂Θ
= (

∂ℓ

∂𝜃
,

∂ℓ

𝛏𝑘
)T = (𝑈𝜃, 𝑈𝛏𝑘

)
T
, are given by 

 

 𝑈𝜃 =
𝑛

𝜃
−

𝑛𝑒𝜃

𝑒𝜃−1
+ ∑𝑛

𝑖=1 𝐺(𝑥𝑖; 𝛏) 

and 

 𝑈𝛏𝑘
= ∑𝑛

𝑖=1
1

𝑔(𝑥𝑖;𝛏)

∂𝑔(𝑥𝑖;𝛏)

∂𝛏𝑘
+ 𝜃 ∑𝑛

𝑖=1
∂𝐺(𝑥𝑖;𝛏)

∂𝛏𝑘
. 

 

Setting the nonlinear system of equations 𝑈𝜃 = 𝑈𝛏𝑘
= 𝟎 and solving them simultaneously 

yields the MLE Θ̂ = (𝜃, �̂�T)T of Θ = (𝜃, 𝛏T)T. These equations cannot be solved 

analytically and statistical software can be used to solve them numerically using iterative 

methods such as the Newton-Raphson type algorithms. For interval estimation of the 

parameters, we obtain the 𝑝 × 𝑝 observed information matrix 𝐽(Θ) = {
∂2ℓ

∂𝑟 ∂𝑠
} (for 𝑟, 𝑠 =

𝜃, 𝛏), whose elements can be computed numerically. 

 

Under standard regularity conditions when 𝑛 → ∞, the distribution of Θ̂ can be 

approximated by a multivariate normal 𝑁𝑝(0, 𝐽(Θ̂)−1) distribution to obtain confidence 

intervals for the parameters. Here, 𝐽(Θ̂) is the total observed information matrix evaluated 

at Θ̂. The method of the re-sampling bootstrap can be used for correcting the biases of the 

MLEs of the model parameters. Good interval estimates may also be obtained using the 

bootstrap percentile method. The elements of 𝐽(Θ) are given by  

 

 𝑈𝜃𝜃 =
−𝑛

𝜃2
+

(𝑛−1)𝑒2𝜃+𝑒𝜃

𝑒𝜃−1
, 𝑈𝜃𝛏𝑘

= ∑𝑛
𝑖=1

∂𝐺(𝑥𝑖;𝛏)

∂𝛏𝑘
 

and 
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 𝑈𝛏𝑘𝛏𝑟
= ∑𝑛

𝑖=1
1−𝑔(𝑥𝑖;𝛏)−1

𝑔(𝑥𝑖;𝛏)

∂2𝑔(𝑥𝑖;𝛏)

∂𝛏𝑘 ∂𝛏𝑟
+ 𝜃 ∑𝑛

𝑖=1
∂2𝐺(𝑥𝑖;𝛏)

∂𝛏𝑘 ∂𝛏𝑟
. 

 

 

6. Simulation 

 

In this section for different combination of 𝛼, 𝛽 and 𝜃, samples of sizes 𝑛 =
50,100,200,500 and 1000 are generated from the PoW distribution. From the 1000 

repetition we calculated the mean and the root mean square errors (RMSEs) of each 

parameters. Table 1 provides the results of the simulation results for two different 

combination of the PoW parameters. It can be clearly observed from these data that as 

sample size increases the mean square error decreases, it proves the consistency of the 

estimators. 

 
Table 1: Empirical means and the RMSEs (in parentheses) of the PoW distribution 

 

  𝑛    Parameters  

   𝛼 = 1.5, 𝛽 = 2.5 and 𝜃 = 2   𝛼 = 2.0, 𝛽 = 2.5 and 𝜃 = 3  

   �̂�   �̂�   �̂�   �̂�   �̂�   �̂�  

  50  1.593416 2.650682 2.423578 2.116847 2.740666 3.592813 
 (0.5787654) (0.7052244) (3.514729) (0.6992011) (0.8705789) (4.416976) 

  100  1.529359 2.618779 2.032909 2.036667 2.685397 3.089807 

 (0.305633) (0.5727127) (1.797346) (0.4455729) (0.7110352) (2.591586) 

  200  1.514847 2.588562 1.976926 2.001678 2.624106 2.924342 

 (0.2472859) (0.4766343) (1.468686) (0.2926851) (0.5497098) (1.634355) 

  500  1.49699 2.571473 1.903862 1.978921 2.609259 2.844702 

 (0.170683) (0.3780256) (1.090873) (0.2087809) (0.4347991) (1.179798) 

1000  1.50043 2.535365 1.953882 1.986808 2.561902 2.907293 
 (0.1309552) (0.2923231) (0.8294808) (0.1524578) (0.3134692) (0.8599232) 

 

7. Real data analysis                                              
 

In this section, we provide two applications to real data to illustrate the flexibility of the 

PoW, PoAW and  PoBX models presented in Section 3. The goodness-of-fit statistics for 

these models are compared with other competitive models and the MLEs of the model 

parameters are determined. In order to compare the fitted models, we consider some 

goodness-of-fit measures including the Akaike information criterion (𝐴𝐼𝐶), consistent 

Akaike information criterion (𝐶𝐴𝐼𝐶), Hannan-Quinn information criterion (𝐻𝑄𝐼𝐶), 

Bayesian information criterion (𝐵𝐼𝐶) and −2ℓ̂, where ℓ̂ is the maximized log-likelihood. 

Further, we adopt the Anderson-Darling (𝐴∗) and Cramér-von Mises (𝑊∗) statistics in 

order to compare the fits of the two new models with other nested and non-nested 

models. The smaller these statistics are, the better the fit. 

 

7.1 The nicotine data 
 

The first data set refers to nicotine measurements, made from several brands of cigarettes 

in 1998, collected by the Federal Trade Commission which is an independent agency of 

the US government. The free form data set can be found at 
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http://pw1.netcom.com/rdavis2/smoke.html. The site http://home.att.net/rda vis2/cigra.ht 

ml contains n = 346 observations.  

 

We compare the fit of the PoW and PoAW distributions with those of other competitive 

models, namely: the additive Weibull (AW), beta Weibull (BW), transmuted Weibull 

Lomax (TWL), transmuted exponentiated generalized Weibull (TExGW), Kumaraswamy 

Weibull (Kw-W), New modified Weibull (NMW) and W distributions. The pdfs of these 

models are given in Appendix A. 

 

7.2 The gauge lengths data 

 

The second data set (gauge lengths of 20 mm) (Kundu and Raqab, 2009) consists of 74 

observations. For these data, we compare the fit of the PoW and PoBX distributions with 

those of the generalized transmuted Burr X (GTBX), exponentiated transmuted 

generalized Rayleigh (ETGR), TGR, GR and Rayleigh (R) models. 

 

Tables 2 and 4 list the values of −2ℓ̂, 𝐴𝐼𝐶, 𝐶𝐴𝐼𝐶, 𝐻𝑄𝐼𝐶, 𝐵𝐼𝐶, 𝑊∗ and 𝐴∗, whereas the 

MLEs and their corresponding standard errors (in parentheses) of the model parameters 

are given in Tables 3 and 5. 

 

In Table 2, we compare the fits of the PoW and PoAW models with the AW, BW, TWL, 

Kw-W, NMW, ETGR and Mc-W distributions. We note that the PoW and PoAW 

distributions have the lowest values for the −2ℓ̂,𝐴𝐼𝐶,𝐶𝐴𝐼𝐶,𝐻𝑄𝐼𝐶,𝐵𝐼𝐶,𝑊∗ and 𝐴∗ 

statistics (for nicotine data) among all fitted models. So, the PoW and PoAW models 

could be chosen as the best models.  

 
Table 2:  Goodness-of-fit statistics for nicotine data   

  Model  −2ℓ̂ 𝐴𝐼𝐶 𝐶𝐴𝐼𝐶 𝐻𝑄𝐼𝐶 𝐵𝐼𝐶 𝑊∗ 𝐴∗ 

 PoW  215.923 221.923 221.993 226.518 233.462 0.41905 2.31183 

PoAW  215.922 225.922 226.099 233.58 245.154 0.41527 2.28913 

BW  225.173 233.173 233.29 239.30 248.559 0.49664 2.89774 

AW  226.581 234.581 234.698 240.707 249.966 0.55222 3.17512 

TWL  225.832 235.832 236.009 243.491 255.064 0.50049 2.92291 

TExGW  226.317 236.317 236.494 243.976 255.55 0.5205 3.02977 

Kw-W  226.184 234.184 234.302 240.311 249.57 0.5325 3.08454 

NMW  225.284 235.284 235.461 242.943 254.517 0.49269 2.87829 

W  226.581 230.581 230.616 233.644 238.274 0.55744 3.20719 

   

In Table 4, we compare the fits of the PoW and PoBX models with the GTBX, ETGR, 

TGR, GR and R models. The figures in this table reveal that the PoW and PoBX models 

have the lowest values for −2ℓ̂,𝐴𝐼𝐶,𝐶𝐴𝐼𝐶,𝐻𝑄𝐼𝐶,𝐵𝐼𝐶,𝑊∗ and 𝐴∗ statistics (for gauge 

lengths data) among all fitted models. So, the PoW and PoBX distributions can be chosen 

as the best models. So, we prove that these new distributions can be better models than 

other competitive lifetime models. 

 

 

 

 

http://pw1.netcom.com/rdavis2/smoke.html
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Table 3 : MLEs and their standard errors (in parentheses) for nicotine data  

Model    Estimates  

PoW  �̂� = 1.4575   �̂� = 1.9347   �̂� = 2.8271    

 (0.134) (0.194) (0.744)   

PoAW  �̂� = 2.0673   �̂� = 0.6039   𝛾 = 0.0053   �̂� = 1.9391   �̂� = 2.828  

 (0.232) (0.015) (2.917 × 10−3) (0.196) (0.745) 

BW  �̂� = 0.6686   �̂� = 3.1645   �̂� = 0.7784   �̂� = 3.0922   

 (0.578) (0.426) (0.163) (8.174)  

AW  �̂� = 1.135   �̂� = 0.3084   𝛾 = 0.0002   �̂� = 2.7219   

 (0.062) (0.1) (1.369 × 10−3) (0.114)  

TWL  �̂� = 7.8903   �̂� = 17.1065   �̂� = 3.8175   �̂� = 2.3499   �̂� = 0.16  

 (15.497) (44.562) (4.1843) (0.309) (0.214) 

TExGW  �̂� = 1.0589  �̂� = 3.3201   �̂� = 0.2257   �̂� = 0.6338   �̂� = 0.7665  

 (4.268) (0.279) (0.23) (8.482) (0.13) 

Kw-W  �̂� = 0.6157   �̂� = 3.1187   �̂� = 0.8395   �̂� = 3.7931   

 (0.392) (0.698) (0.233) (6.921)  

NMW  �̂� = 0.0012   �̂� = 2.3518   𝛾 = 0.7453   �̂� = 0.3956   �̂� = 2.083  

 (0.036) (0.337) (0.276) (0.344) (0.584) 

W  �̂� = 1.0477   �̂� = 2.7208     

 (0.022) (0.114)    

  

The histogram and the estimated densities for nicotine and gauge lengths data are 

displayed in Figure 4. QQ-plots for the best fitted distributions are shown in Figure 5. 

From these graphs it is evident that the PoW, PoAW and PoBX distributions best 

describe both data sets. 

  
Figure 4: Fitted pdfs for nicotine data (left panel) and for gauge lengths data (right panel) 
 

Table 4 : Goodness-of-fit statistics for gauge lengths data  

  Model   −2ℓ̂   𝐴𝐼𝐶   𝐶𝐴𝐼𝐶   𝐻𝑄𝐼𝐶   𝐵𝐼𝐶   𝑊∗   𝐴∗  

 PoW  103.45 109.45 109.793 112.207 116.362 0.0287 0.25174 

PoBX  106.659 112.659 113.001 115.416 119.571 0.09016 0.57835 

GTBX  108.055 118.055 118.937 122.65 129.575 0.10458 0.68807 

ETGR  113.4 121.352 121.9 125.029 130.6 0.20714 1.3407 

TGR  123.61 129.61 129.95 132.376 136.5 0.16923 1.28629 

GR  135.202 139.202 139.371 141.041 143.811 0.13403 0.86836 

R  188.302 190.302 190.375 191.221 192.606 1.77111 32.95987 
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Table 5 : MLEs and their standard errors (in parentheses) for gauge lengths data 

Model    Estimates  

PoW  �̂� = 0.405   �̂� = 4.8081   �̂� = 1.4149   

 (0.054) (1.424) (2.28)    

PoBX  �̂� = 0.6444   �̂� = 0.681  �̂� = 17.0518    

 (0.686) (0.029) (15.441)   

GTBX  �̂� = 3.4900   �̂� = 0.6615   �̂� = 2.5190   �̂� = 0.0161   �̂� = 0.0019  
 (2.084) (0.12) (1.503) (0.428) (0.048)  
ETGR  �̂� = 2.1214   �̂� = 0.6985   �̂� = 0.3201   �̂� = 7.790   
 (0.315) (0.040) (0.228) (1.727)  
TGR  �̂� = 5.5052   �̂� = 0.6245   �̂� = 0.3599    

 (0.776) (0.017) (0.253)   

GR  �̂� = 7.784   �̂� = 0.6445     

 (1.625) (0.024)    

R  �̂� = 0.3962      
 (0.023)     

 

  
Figure 5: QQ plots for the PoW and PoAW models (left panel) and PoW and 

PoBX models (right panel)  

8. Conclusions 
 

The idea of generating new extended models from classic ones has been of great interest 

among researchers in the past decade. We present a new Poisson-G (Po-𝐺) family of 

distributions. We provide some mathematical properties of the new family including 

explicit expansions for the ordinary and incomplete moments, quantile and generating 

functions and entropies. The maximum likelihood estimation of the model parameters is 

investigated and the observed information matrix is determined. By means of two real 

data sets, we verify that special cases of the Po-𝐺 family can provide better fits than other 

models generated from well-known families. 

 

Appendix A: 

The pdfs of the fitted models are given (for 𝑥 > 0): 
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• The AW density (Xie and Lai, 1995) given by 

𝑓(𝑥) = (𝛼𝛿𝑥𝛿−1 + 𝛾𝛽𝑥𝛽−1)𝑒−𝛼𝑥𝛿−𝛾𝑥𝛽
, 

where 𝛼 > 0, 𝛽 > 0, 𝛾 > 0 and 𝛿 > 0.  
 

• The BW density (Lee et al., 2007) given by 

𝑓(𝑥) =
𝛽𝛼𝛽

𝐵(𝑎, 𝑏)
𝑥𝛽−1𝑒−𝑏(𝛼𝑥)𝛽

[1 − 𝑒−(𝛼𝑥)𝛽
]

𝑎−1

, 

where 𝛼 > 0, 𝛽 > 0, 𝑎 > 0 and 𝑏 > 0.  
 

• The TWL density (Afify et al., 2015) given by 

𝑓(𝑥) =
𝑎𝑏𝛼

𝛽
(1 +

𝑥

𝛽
)

𝑏𝛼−1

exp {−𝑎 [(1 +
𝑥

𝛽
)

𝛼

− 1]
b

} 

× [1 − (1 +
𝑥

𝛽
)

−𝛼

]
𝑏−1

{1 − 𝜆 + 2𝜆𝑒
−𝑎[(1+

𝑥

𝛽
)

𝛼
−1]

𝑏

}, 

where 𝛼 > 0, 𝛽 > 0, 𝑎 > 0, 𝑏 > 0 and |𝜆| ≤ 1.  
 

• The TExGW density (Yousof et al., 2015) given by 

𝑓(𝑥) = 𝑎𝑏𝛽𝛼𝛽𝑥𝛽−1𝑒−𝑎(𝛼𝑥)𝛽
[1 − 𝑒−𝑎(𝛼𝑥)𝛽

]
𝑏−1

{1 + 𝜆 − 2𝜆 [1 − 𝑒−𝑎(𝛼𝑥)𝛽
]

𝑏

}, 

where 𝛼 > 0, 𝛽 > 0, 𝑎 > 0, 𝑏 > 0 and |𝜆| ≤ 1. 
• The Kw-W density (Cordeiro et al., 2010) given by 

𝑓(𝑥) = 𝑎𝑏𝛽𝛼𝛽𝑥𝛽−1 𝑒−(𝛼𝑥)𝛽
[1 − 𝑒−(𝛼𝑥)𝛽

]
𝑎−1

{1 − [1 − 𝑒−(𝛼𝑥)𝛽
]

𝑎

}
𝑏−1

, 

where 𝛼 > 0, 𝛽 > 0, 𝑎 > 0 and  𝑏 > 0. 
• The NMW density (Almalki and Yuan, 2013) given by 

𝑓(𝑥) = (𝛼𝜃𝑥𝜃−1 + 𝛾(𝛽 + 𝛿𝑥)𝑥𝛽−1𝑒𝛿𝑥)𝑒−(𝛼𝑥𝜃+𝛾𝑥𝛽)𝑒𝛿𝑥
, 

where 𝛼 > 0, 𝛽 > 0, 𝛾 > 0, 𝛿 > 0 and θ > 0. 
 

• The GTBX density (Nofal et al., 2017) given by 

𝑓(𝑥) = 2𝛼𝛽2𝑥𝑒−(𝛽𝑥)2
[1 − 𝑒−(𝛽𝑥)2

]
𝛼𝑎−1

𝑎 {(1 + 𝜆) − 𝜆(𝑎 + 𝑏)[1 − 𝑒−(𝛽𝑥)2
]

𝛼𝑏
}, 

where 𝛼 > 0, 𝛽 > 0, 𝑎 > 0, 𝑏 > 0 and |𝜆| ≤ 1. 
• The ETGR density (Afify et al., 2015) given by 

𝑓(𝑥) = 2𝛼𝛿𝛽2 𝑥 𝑒−(𝛽𝑥)2
 [1 − 𝑒−(𝛽𝑥)2

]
𝛼𝛿−1

 

× {1 + 𝜆 − 2𝜆[1 − 𝑒−(𝛽𝑥)2
]

𝛼
} {1 + 𝜆 − 𝜆[1 − 𝑒−(𝛽𝑥)2

]
𝛼

}
𝛿−1

,  

where 𝛼 > 0, 𝛽 > 0, 𝛿 > 0 and |𝜆| ≤ 1. 
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