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Abstract 

In this paper, a three parameters generalization of the power Lindley distribution is introduced. This 

includes as special cases the power Lindley and Lindley distribution.The new distribution exhibits 

decreasing, increasing and bathtub hazard rate depending on its parameters. Several statistical properties of 

the distribution are explored. Then, a bivariate version of the proposed distribution is derived. Finally, three 

real data applications illustrate the performance of our proposed distribution.  
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1. Introduction 

The Lindley distribution with probability density function (pdf)  
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was introduced by Lindley [(1958)] to illustrate a difference between fiducial distribution 

and posterior distribution. Ghitany et al. [(2013)] introduced a family of distributions 

with the pdf  
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A random variable with pdf (2) is said to have the power Lindley (PL) distribution. This 

article offers a distribution which generalizes the power Lindley distribution is based on 

certain mixture of two Stacy gamma distributions. The study discusses various properties 

of the new model. 
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The paper is organized as follows: Section 2 introduces a generalized power Lindley 

(GPL) distribution and presents its basic properties including the behaviour of the density 

and hazard rate functions, and some results on stochastic orderings. The moments of GPL 

distribution and its characteristic function are derived in Section 3. Mean residual 

function is obtained in Section 4. The Lorenz curve and Bonferroni curve are obtained in 

Section 5. Section 6 presents certain characterizations of GPL distribution and then the 

estimation of parameters is discussed in Section 7. We also proposed an algorithm for 

generating random data from the new distribution in Section 8. In Section 9, we present 

the simulation issues of the GPL distribution. Some applications of the GPL distribution 

and comparison with other distributions, are given in Section 10. 

2. Definition and some properties of GPL 

In this section, we introduce a GPL distribution and study its basic properties. Assume  
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is the density function of the generalized gamma (Stacy gamma) distribution, denoted by 

GG(  ,, ). 

 

Let ( ) ,,;1 xf  and ( ) ,2,;2 xf  be pdf’s of GG ( ) ,,  and  GG ( ) ,2,  

respectively. Let X   be a random variable with pdf given by 
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, i.e., ( ) ,,;xf  is a mixture 

pdf. Then the pdf of X  is as follows:  

1 2

(x, , , )= , > 0, , , > 0.
2

(1 )

xe x x

f x

 
    

 
  

 
     

 


 

− − +
    

 +     
    

   
+     

      

(4) 

 

We say that the random variable X  has a GPL distribution, if X  has the density 

function defined by (4) and  use the notation GPL(  ,, ). 

2.1 Special cases of the GPL distribution 

The GPL distribution has a number of distributions  as special cases as follows:   

 

(a) For  = , the GPL distribution reduces to PL distribution (2) with parameters   and 

 ; 

(b) For 1==  , GPL distribution reduces to of the Lindley distribution (1) with 

parameters  . 
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2.2 Shape 

In this section, we discuss the shape characteristics of pdf (4). The behavior of its pdf at 

0=x  and at   are as follows:  
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and  
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It is clear that if 1=  and 
2

1
� , then 0)(log

2
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xd

d
; i.e., the pdf is log-concave and 

hence unimodal. 

 

Figure 1 Shows plots of the pdf of the GPL distribution for some selected parameters  , 

  and  . 

 

Figure 1: Plots of the pdf of the GPL distribution for some selected parameters  ,   and  . 

  

  

 

The hazard rate function of the random variable X  distributed according to  

GPL(  ,, ) is  
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 Then )(xh  has different behaviours depending on its parameters. Lemma 2.1 shows that 

the distribution can have increasing hazard rate  (IFR) for a special case.  

 

Lemma 2.1 Let )(xh  be the hazard function of a random variable X  distributed 

according to the ),,( GPL . Then )(xh  is increasing for 1= , 
2

1
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Proof. From (5), we have  
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It follows that 0)(  x  when 1=  and 
2

1
� . This completes the proof of the lemma.  

 

Figure 2 Shows the hazard rate function of the GPL distribution for some selected 

parameters  ,   and  . 

 

Figure 2: Plots of the hazard function of the GPL distribution for some selected parameters  ,   and 

 . 

 

   
  

2.3 Stochastic Orders 

A random variable X  is said to be stochastically smaller than Y , denoted by YX s , if 

)()( tFtF YX   for all t . 
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Two stronger criteria are the hazard rate order denoted by X hr  Y if )()( thth YX  , for 

all t , and the likelihood ratio order denoted by YX lr , if )()/( tftf YX  is decreasing in t . 

Note that  

.YXYXYX shrlr    

 

For details of the proof, see Shaked and Shanthikumar [(1994)]. 

 

Let iX  be a random variable with pdf (4) and parameters ( iii  ,, ), for 1,2=i . Then  
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Clearly, if 21 =  and 21 =  , then (8) is negative when 12 2>  .  

 

Lemma 2.2 Let 1X  and 2X  be two random variables having the GPL distribution with 

parameters vector ( iii  ,, ), i=1, 2. If 21 = , 21 =   and 12 2>  , then 21 XX lr , 

21 XX hr  and 21 XX s .  

3. Moments and associated measures  

The r th moment of the GPL distribution is given by  
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Note that when 1== , i.e., in the case of Lindley distribution, the above expression 

simply reduces to  
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and when  = , i.e., in the case of power Lindley distribution, the above expression 

simply reduces to  
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Therefore using (9), the mean and variance of the generalized power Lindley distribution, 

respectively, are  
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The skewness and kurtosis measures can be obtained from the expressions  
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upon substituting for the raw moments. Table 1 gives some properties of the GPL 

distribution for some values of the parameters. 

Table 1: Moments of the GPL distribution for some parameter values. 

 16=0.5,=   7=1,=   6=0.3,=   

 2.7=  8.9=  22=  0.75=  1.3=  22=  4=  8=  

  0.156 1.531 0.907 0.12 0.209 3.536 39.867 365.723 
2  0.027 1.337 36.622 0.018 0.034 1.585 4771.08 326131 

Skewness 3.209 3.099 3.353 2.214 1.730 1.582 4.139 3.124 

Kurtosis -18.628 -29.97 -38.695 27.432 -2.981 -127.211 -11.665 -10.631 
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3.1 Characteristic function 

In this subsection, the characteristic function of the GPL distribution is derived. We know 

that  
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where 1= −i  is the imaginary number.  

4 Mean residual life function 

In this section, the mean residual life function of the GPL distribution is given. Another 

important representation for a random variable is the mean residual life (MRL) function 

defined by  
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where )(1=)( xFxF −  is the survival function. 

 

The MRL function as well as failure rate function is very important since each of them 

can determine a unique corresponding life time distribution.  

 

Lemma 4.1 The MRL function of the GPL distribution is  
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Proof. We have  
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and thus with some elementary algebraic calculations, the proof is completed.  

5.   Lorenz and Bonferroni curves 

In this section, we give the Lorenz and Bonferroni curves for our proposed distribution.  
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5.1 Lorenz curve 

The Lorenz curve for a positive random variable X  is defined as the graph of the ratio  

 ,)(
1

=))((
0

duuufyFL

y

F 
 

against )(xF  with the properties ppL =)( , 0=(0)L  and 1=(1)L . If X  represents 

annual income, )( pL  is the proportion of total income that accrues to individuals having 

the %100p  lowest incomes.  

 

If all individuals earn the same income then ppL =)(  for all p . The area between the 

line ppL =)(  and the Lorenz curve may be regarded as a measure of inequality of 

income, or more generally, of the variability of X , see Gail and Gastwirth [(1978)] and 

Dagum [(1985)] for extensive discussion of Lorenz curves.  

 

Lemma 5.1 The Lorenze curve of GPL distribution is given by  
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The rest of the proof is straightforward.  

5.2 Bonferroni curve 

The Bonferroni curve has many applications not only in Economics to study income and 

poverty, but also in other fields like reliability, medicine and insurance. The Bonferroni 

curve )]([ yFBF  is given by  
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Therefore the Bonferroni curve of F  that follows the GPL distribution can be obtained 

via the expression )())/((=)]([ yFyFLyFB FF , where  
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6.   Characterizations of GPL distribution 

In designing a stochastic model for a particular modeling problem, an investigator will be 

vitally interested to know if their model fits the requirements of a specific underlying 

probability distribution. To this end, the investigator will rely on the characterizations of 

the selected distribution. Generally speaking, the problem of characterizing a distribution 

is an important problem in various fields and has recently attracted the attention of many 

researchers. Consequently, various characterization results have been reported in the 

literature. These characterizations have been established in many different directions. The 

present section deals with the characterizations of GPL distribution.  These 

characterizations are based on a simple relationship between two truncated moments. Our 

characterization results presented here will employ an interesting result due to Glänzel 

[(1987)] (Theorem 6.1 below). The advantage of the characterizations given here is that, 

cdf  F  need not have a closed form and are given in terms of an integral whose 

integrand depends on the solution of a first order differential equation, which can serve as 

a bridge between probability and differential equation. 

  

Theorem 6.1 Let ( )P,,  be a given probability space and let  baH ,=   be an interval 

for some ba <  ( ).allowed be  wellasmight =,= − ba  Let HX →:  be a continuous 

random variable with the distribution function F  and let g  and h  be two real functions 

defined on H  such that  

( )  ( )  ( ) ,,|=| HxxxXXhxXXg  EE  

 is defined with some real function  . Assume that ( )HCgh 1 , ( )HC2  and F  is 

twice continuously differentiable and strictly monotone function on the set H . Finally, 

assume that the equation gh =  has no real solution in the interior of H . Then F  is 

uniquely determined by the functions g , h  and  , particularly 

( )
( )

( ) ( ) ( )
( )( ) ,exp= duus

uguhu

u
CxF

'
x

a
−

− 


 

where the function s  is a solution of the differential equation 
gh

h
s

'
'

−


=  and C  is a 

constant, chosen to make 1=dF
H . 

 

We like to mention that this kind of characterization based on the ratio of truncated 

moments is stable in the sense of weak convergence, in particular, let us assume that 

there is a sequence  nX  of random variables with distribution functions  nF   such that 
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the functions ng , nh  and n  ( )n  satisfy the conditions of Theorem 6.1 and let 

ggn → , hhn →  for some continuously differentiable real functions g  and .h  Let, 

finally, X  be a random variable with distribution F . Under the condition that ( )Xgn  

and ( )Xhn  are uniformly integrable and the family  nF  is relatively compact, the 

sequence nX  converges to X  in distribution if and only if n  converges to  , where 

( )
( ) 
( ) 

.
|

|
=

xXXhE

xXXgE
x




  

 

This stability theorem makes sure that the convergence of distribution functions is 

reflected by corresponding convergence of the functions g  ,  h  and  , respectively. 

 

Remark  6.2 ( )a  In Theorem 6.1, the interval H  need not be closed since the condition 

is only on the interior of .H  ( )b  Clearly, Theorem 6.1 can be stated in terms of two 

functions g  and   by taking ( ) 1xh , provided that the cdf  F  has a closed form, which 

will reduce the condition given in Theorem 6.1 to ( )  ( ).=| xxXXgE   However, 

adding an extra function will give a lot more flexibility, as far as its application is 

concerned.  

 

Proposition  6.3  Let ( )→ 0,:X  be a continuous random variable and let ( )=xh  
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=  for ( ).0,x  The pdf  of X  is 

(4) if and only if the function   defined in Theorem 6.1 has the form 

( ) 0.>,2= xex x  

  

Proof. Let X  have density (4), then 
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and finally  

 ( ) ( ) ( ) ( ) 0.>0,>= xxgxgxhx −  

 

Conversely, if   is given as above, then 
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and hence 
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( ) 0.>,2= xxxs   

 

Now, in view of Theorem 6.1, X  has density (4). 

 

Corollary  6.4  Let ( )→ 0,:X  be a continuous random variable and let ( )xh   be as 

in Proposition 6.3. The pdf  of X  is (4) if and only if there exist functions g  and   

defined in Theorem 6.1 satisfying the differential equation 

( ) ( )
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Remark  6.5  

( )a  The general solution of the differential equation in Corollary 6.4 is 

( ) ( )( ) ( ) ,2=
1212 Ddxxgxhexex xx +−
−−−


   

for 0>x , where D  is a constant. One set of appropriate functions is given in Proposition 

6.3 with 0.=D  

( )b  Clearly there are other triplets of functions ( ),, gh  satisfying the conditions of  

 

Theorem 6.1. We presented one such triplet in Proposition 6.3.  

7.   Different methods for estimating 

In this section, the maximum likelihood and the minimum spacing distance estimators are 

discussed and compared.  

7.1 Maximum likelihood estimation 

In this subsection, the maximum likelihood estimators of GPL(  ,, ) are considered. If 

nXX ,......1  is a random sample from the GPL distribution, then the log-likelihood 

function, ),,( l  is: 

)(log1)(=),,(
1=1=

i

i

i

i

xxl 


−+−    























+








+













+ 











 





2

loglog
1=

i

i

xn  

.
2

)(1log 























+−








n  

 

Therefore, the normal equations are  
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The maximum likelihood estimates ̂ , ̂  and ̂  for the parameters  ,  ,  , 

respectively, can be obtained by solving iteratively Equations (11)-(13).  

7.2 Minimum spacing distance estimator 

In this subsection, we provide the minimum spacing distance estimator (MSDE) of the 

generalized power Lindley distribution. Let nXX ,,1   be a random sample from 

continuous function θF , kRΘθ  with support on R . Let the order statistics be 

denoted by nYY ,,1  . Define  

1,,1,=),()(=)( 1 +− − niYFYFD iii θθθ  

where 0=)( 0YFθ  and 1=)( 1+nYFθ . The MSDE of θ  is obtained the estimators by 

minimizing  
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in which ),( yxh  is an appropriate distance. Some choices of ),( yxh  are || yx−  and 

|lnln| yx− , which are called “absolute” and “absolute-log” distance, respectively. The 
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corresponding estimators are called “minimum spacing absolute distance estimator” 

(MSADE) and “minimum spacing absolute-log distance estimator” (MSALDE). This 

method was originally explored by Torabi [(2008)] and it is used quite successfully for 

the generalized power Lindley distribution. 

8.   Simulation method for the GPL distribution 

The density function of the GPL distribution can be written in terms of the generalized 

gamma density function as  

),,2,;(
1

1
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+
 

To generate random data iX , ni 1,...,= , from GPL ),,(  , one can use the following 

algorithm: 

1. Generate iU , ni 1,...,= , from (0,1)U  distribution. 

2. Generate iV1 , ni 1,...,= , from the Stacy gamma( ,  ,   ). 

3. Generate iV2 , ni 1,...,= , from the Stacy gamma( ,  , 2 ). 

4. If 
1+





iU , then set iVXi 1= ; otherwise set ii VX 2= , ni 1,...,= . 

9.   Simulation study 

We simulate n  =20, 30, 50, 100 and 200 times the generalized power Lindley 

distribution for 0.2= , 4=  and 0.5= . For each sample size, we compute the 

MLE’s, MME’s, MSADE’s and MSALDE’s of the parameters. We repeat this process 

1000 times and compute the average estimate (AE) and MSE. The results are reported in 

Table 2.  

Table 2:  Estimated AE and MSE of MLE, MME and MSLDE of parameters 

based on 1000 simulations of the generalized power Lindley distribution 

for 0.2= , 4=  and 0.5=  and with 0020,30,50,1=n  and 200. 

   MLE   MME   MSADE   MSALDE  

 n    AE   MSE  AE  MSE  AE  MSE  AE  MSE  

 

 

20 

   0.37 0.794 1.082 0.898 0.230 0.035 0.242 0.082 

   5.306 25.960 0.379 13.667 3.924 1.294 4.785 19.331 

   0.596 0.123 5.248 302.489 0.480 0.019 0.513 0.079 

 

 

30 

   0.281 0.156 0.997 0.736 0.212 0.012 0.214 0.022 

   5.114 17.336 0.378 13.459 3.972 1.345 4.660 14.359 

   0.578 0.095 6.181 352.755 0.481 0.016 0.507 0.053 

 

50 
   0.230 0.016 0.946 0.660 0.211 0.010 0.211 0.011 

   4.504 7.508 0.427 13.538 4.011 1.521 4.398 8.675 

   0.535 0.046 7.509 468.317 0.487 0.014 0.501 0.038 

 

 

100 

   0.207 0.002 0.883 0.588 0.205 0.002 0.203 0.003 

   4.381 3.144 0.553 12.527 4.007 1.185 4.255 3.604 

   0.528 0.019 8.825 454.427 0.490 0.009 0.501 0.020 

 

 

200 

   0.204 0.001 0.878 0.609 0.202 0.001 0.201 0.001 

   4.167 1.514 0.672 12.122 4.023 0.812 4.101 1.390 

   0.512 1.010 11.675 612.257 0.497 0.006 0.499 0.009 
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Comparing the performance of all the estimators, it is observed that for all methods, the 

MSE’s decrease as the sample size increases. Note that, the performances of the 

MSADE’s are the best as far as the MSE is concerned, but after this method, the MLE’s 

and the MME’s performances are considerable. Considering all the points, we 

recommend to use the MSADE for estimating of parameters.  

10.   Applications 

In this section, we use three real data sets to show that the generalized power Lindley 

distribution can be a better model than the power Lindley and Lindley distributions. In 

order to compare the models, estimates of the parameters of the distributions, Akaike 

Information Criterion ( kLIC 2ˆlog2=A +− ), Bayesian Information Criterion  

( nkLIC logˆlog2=B +− ), Consistent Akaike Information Criterion  

(
1

1)(2
A=C

kn

kk
ICAIC

−

+
+ ) and Hannan-Quinn information criterion  

( knLQIC ))(log(log2ˆlog2=H +− , where L̂  is the value of the likelihood function 

evaluated at the parameter estimates, n  is the number of observations and k  is the 

number of estimated parameters. For fitting a data set, the best model is a model with the 

smallest value of AIC, BIC, CAIC and HQIC. We can also perform formal goodness-of-

fit tests in order to verify which distribution fits better to these data. We apply 

Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Cramer Von Mises (CVM) 

statistics, where small values of theses statistics for models indicate that these models 

could be chosen as the best model to fit the data. These statistics evaluations were 

implemented using the R software through the commands testks. , testad.  and testcvm.  

(for the last two commands, the package  nortest is required). 

 

The first data set represents the maintenance data with 52  observations reported on data 

concerning the Oits IQ Scores for 52  non-White males hired by a large insurance 

company in 1971, Roberts [(1988)]. It consists of the observations listed below:  
 18,103,,104,108,197,109,108 15,,117,122,191,102,100  

 95, 97, 107,3,107,108,118,100,103,106,102,123,123,10  

 04,122,,102,111,199,116,114 112,8,103,102,119,102,10  

 07,95.,102,104,197,109,106 99,121, 91, 1,103,111,10  

The second data set represents the number of successive failures for the air conditioning 

system of each member in a fleet of 13 Boeing 720 jet airplanes reported in Proschan 

[(1963)]. See the listed below:  

 
33,,44,9,254,320,261,51,14,10,57,,57,102,1550,130,48797,50,359,,74,55,23,194,413,90  

,61,,283,7,4937,4,72,27086,29,104,14,29,37,12,12,5,14,6,87,11,1058,60,48,518,209,41,  

2,9,9,3,12,5,339,14,18,365,49,12,200,11,181,35,98,54,141,22,603,,220,120,1100,61,502  

7,156,7,201,84,26,1,79,3,29,59,33,24152,5,36,70,188,230,6,182,71,8,184,20,38438,43,134

82,9,26,35,5,,5,66,34,2104,20,20626,59,153,06,46,230,44,15,42,130,14,118,21,16,88,1  

7,62,6,14,111,96,210,57,767,310,3,48,216,139,20,31,22,134,18,25,1,12,54,36,31,118,326

101,52,208,24,70,16,,163,208,1,18,130,908,13,34,1622,23,14,1,11,63,23,39,30,7,44  

91,14,71.95,62,11,1  
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The third data set consists Kevlar 49/Epoxy Strands Failure at 0.7  Stress Level Andrews 

[(1985)]. The data is presented the listed below:  

 
5620,5817,4921,5445,4012,4063,3629,4006,1942,2322,1389,1921,1051,1337,  

9711,8831,9106,8546,8666,7886,8108,6473,7501,6068,6121,5905,5956,  

1762,08,11745,1,11604,1161214,1136261,11026,1,10396,1089806,10205  

17568.092,17568,5,16179,1714496,1539670,14110,4,13520,1311895,1204  

 

Estimates of the parameters of GPL distribution, AICs, BICs, CAICs, HQICs, 

Kolmogorov-Smirnov, Anderson-Darling and Cramer Von Mises statistics are given in 

Tables 5, 6 and 7 for data sets 1-3, respectively. From these tables, we conclude that the 

GPL distribution provides a better fit to this data than the PL and Lindley distributions. 

The plots of the empirical and theoretical density and cumulative distribution function 

(cdf) (left plots) and Q-Q and P-P plots (Right plots) are given in Figures 3-5. These 

figures show again that the GPL distribution gives a good fit for these data. 

Table 3:   MLEs, KS, AD and CVM statistics, AIC, BIC, CAIC, HQIC for the first 

real data set. 

Dist.  MLEs  KS AD CVM AIC BIC CAIC HQIC 

GPL  ̂ = 1.618  0.107 0.862 0.114 375.973 381.827 376.473 378.217 

  ̂ = 0.037  

  ̂ =56.599  

PL  ̂ =1.464  0.506 16.885 3.614 515.431 519.334 515.676 516.927 

  ̂ =0.002 

Lindley  ̂ =0.019  0.510 17.302 3.671 552.716 554.667 552.796 553.464 

 

 

Figure 3: Fitted plots for the first real data set. 
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Table 4:   MLEs, KS, AD and CVM statistics, AIC, BIC, CAIC, HQIC for the 

second real data set. 

 Dist.     MLEs     KS   AD  CVM   AIC   BIC   CAIC   HQIC  

GPL    ̂ = 0.411    0.041   0.251   0.037   2070.888   2080.598 2071.018 2074.822  

   ̂ = 1.582   

   ̂ =2.625   

PL    ̂ =0.660     0.048   0.715   0.108   2075.393   2081.865  2075.458 2078.01 

   ̂ =0.109    

Lindley   ̂ =0.022   0.215   23.547   3.143   2167.309   2170.546   2167.331 2168.62  

 

 

Figure  4: Fitted plots for the second real data set.
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Table 5:   MLEs, KS, AD and CVM statistics, AIC, BIC, CAIC, HQIC for the third 

real data set. 

Dist.  MLEs  KS AD CVM AIC BIC CAIC HQIC 

GPL  ̂ = 0.51  0.082 0.324 0.055 965.197 970.872 965.7303 967.3503 

  ̂ = 0.238  

  ̂ =6.596  

PL  ̂ =0.732  0.224 3.891 0.750 987.896 991.679 988.1569 989.3315 

  ̂ =0.003  

Lindley  ̂ =9.181e-05  0.521 26.998 5.482 1031.723 1033.615 1031.808 1032.441 

 

 

Figure  5:   Fitted plots for the third real data set. 
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11.   Concluding remarks 

In this article, we introduced a new flexible generalization of the power Lindley 

distribution. We derived some important properties of the new distribution and 

application to three real data sets were presented and discussed to demonstratethat this 

distribution can be used quite effectively to provide better fit than other available 

subclass models such as the power Lindley and Lindley distributions. 
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