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Abstract 

Nassar (2016) considers an interesting univariate continuous distribution called Kumaraswamy-Laplace 

which has different forms on two subintervals. He studies certain properties and applications of this 

distribution. Shahbaz et al. (2016) consider another interesting distribution called McDonald Inverse 

Weibull distribution. They present some basic properties of their distribution and study the estimations of 

the parameters as well as discussing its application via an illustrative example. What is lacking in both 

papers, in our opinion, is the characterizations of these two interesting distributions. The present work is 

intended to complete, in some way, the works of Nassar and Shahbaz et al. via establishing certain 

characterizations of these distributions in four directions. We also introduce several New Generalized 

Exponential distributions and present their characterizations as well.  

1.   Introduction  

The problem of characterizing a distribution is an important problem which can help the 

investigator to see if their model is the correct one.  This work deals with various 

characterizations of Kumaraswamy-Laplace (KL) and McDonald Inverse Weibull (MIW) 

distributions to complement the works of Nassar (2016) and Shahbaz et al. (2016). These 

characterizations are presented in three directions: (𝑖) based on the ratio of two truncated 

moments; (𝑖𝑖) in terms of the reverse hazard function and (𝑖𝑖𝑖) based on the conditional 

expectation of certain functions of the random variable. Similar characterizations as well 

as (𝑖𝑣) in terms of the hazard function, will be established for several proposed New 

Generalized Exponential (NGE) distributions. It should be noted that characterization (𝑖) 
can be employed also when the 𝑐𝑑𝑓 (cumulative distribution function) does not have a 

closed form as is the case with MIW distribution.  

 

Nassar (2016) introduced KL distribution with 𝑐𝑑𝑓 and 𝑝𝑑𝑓 (probability density 

function) given, respectively, by  

𝐹(𝑥) = 𝐹(𝑥; 𝛼, 𝜇, 𝑎, 𝑏) = {
1−(1−(1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

)

𝑏

 ,      𝑥 ≥ 𝜇

1−(1−(
1

2
𝑒
𝑥−𝜇
𝛼 )

𝑎

)

𝑏

 ,           𝑥 < 𝜇

,                        (1) 

and 

𝑓(𝑥) = 𝑓(𝑥; 𝛼, 𝜇, 𝑎, 𝑏) =

{
 
 

 
 

𝑎𝑏𝑒
−
𝑥−𝜇
𝛼 (1−

1
2
𝑒
𝑥−𝜇
𝛼 )(1−(1−

1
2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

)

𝑏−1

2𝛼
  , 𝑥 ≥ 𝜇

2−𝑎𝑎𝑏(𝑒
𝑥−𝜇
𝛼 )

𝑎

(1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎

)

𝑏−1

𝛼
  ,         𝑥 < 𝜇     

  ,    (2) 

where 𝛼, 𝑎, 𝑏 all positive and 𝜇 ∈ ℝ are parameters.  
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Shahbaz et al. (2016) proposed MIW distribution with  𝑐𝑑𝑓  and  𝑝𝑑𝑓  given, 

respectively, by  

𝐹(𝑥) = 𝐹(𝑥; 𝛼, 𝛽, 𝑎, 𝑏, 𝑐) =
𝑐𝑒−𝑎𝛼𝑥

−𝛽

𝑎𝐵(𝑎𝑐−1, 𝑏)
  2𝐹1 [1 − 𝑏, 𝑎𝑐

−1; 1 + 𝑎𝑐−1; 𝑒−𝑎𝛼𝑥
−𝛽
] , 𝑥

≥ 0,                                                                                                           (3) 
and 

𝑓(𝑥) = 𝑓(𝑥; 𝛼, 𝛽, 𝑎, 𝑏, 𝑐) =
𝛼𝛽𝑐𝑥−(𝛽+1)

𝐵(𝑎𝑐−1, 𝑏)
𝑒−𝑎𝛼𝑥

−𝛽
[1 − 𝑒−𝑐𝛼𝑥

−𝛽
]
𝑏−1

 ,    𝑥

> 0,                                                                                            (4) 
where 𝛼, 𝛽, 𝑎, 𝑏, 𝑐 are all positive parameters.  

 

The 𝑐𝑑𝑓 and  𝑝𝑑𝑓  of our first NGE distribution (denoted by NGE1) are given, 

respectively, by  

𝐹(𝑥) = 𝐹(𝑥; 𝛼, 𝜆) = 1 − exp {−𝜆𝑥(1 − log [𝐾(𝑥)])−𝛼} ,   𝑥 > 0,            (5) 
and 

𝑓(𝑥) = 𝑓(𝑥; 𝛼, 𝜆) = 𝜆(1 − log [𝐾(𝑥)])−(𝛼+1){1 − log [𝐾(𝑥)] − 𝛼𝑥𝑘(𝑥)[𝐾(𝑥)]−1} × 

 exp {−𝜆𝑥(1 − log [𝐾(𝑥)])−𝛼} ,      𝑥 > 0,                                           (6) 

where 𝜆 > 0, 𝛼 > 1  are parameters, 𝐾(𝑥) (𝐾(𝑥) = 1 − 𝐾(𝑥)) is a baseline 𝑐𝑑𝑓  with 

corresponding 𝑝𝑑𝑓  𝑘(𝑥) such that lim
𝑥→−∞+

𝑘 (𝑥) > 0.  

 

Let 

𝑃(𝑥) =∑𝑎𝑗

𝑛

𝑗=1

𝑥𝑗 ,   𝑥 ≥ 0, 

be a polynomial of degree 𝑛 such that 𝑎𝑛 > 0  and  
𝑑

𝑑𝑥
𝑃(𝑥) > 0 for 𝑥 > 0.  

 

The  𝑐𝑑𝑓  and  𝑝𝑑𝑓  of our second NGE distribution (denoted by NGE2) are given, 

respectively, by  

𝐹(𝑥) = 1 − exp {−𝑃(𝑥)} ,    𝑥 ≥ 0,                                                         (7) 
and 

𝑓(𝑥) = (
𝑑

𝑑𝑥
𝑃(𝑥)) exp {−𝑃(𝑥)} ,   𝑥 > 0.                                                   (8) 

 

Let  𝑃(𝑥) = ∑ 𝑎𝑗
𝑛
𝑗=1 𝑥𝑗 ,  0 ≤ 𝑥 ≤ 1 such that  𝑃′(𝑥) =

𝑑

𝑑𝑥
𝑃(𝑥) > (𝑥 − 1)−1 for 0 < 𝑥 <

1.  
 

The  𝑐𝑑𝑓  and  𝑝𝑑𝑓  of our third NGE distribution (denoted by NGE3) are given, 

respectively, by  

𝐹(𝑥) = 1 − (1 − 𝑥) exp {−𝑃(𝑥)} ,    0 ≤ 𝑥 ≤ 1,                                          (9) 
and 

𝑓(𝑥) = [1 + (1 − 𝑥)𝑃′(𝑥)] exp {−𝑃(𝑥)} ,    0 < 𝑥 < 1.                                    (10) 
 

Let  𝑃(𝑥) = ∑ 𝑎𝑗
𝑛
𝑗=0 𝑥𝑗 ,  0 ≤ 𝑥 ≤ 1 such that  𝑃′(𝑥) < (1 − 𝑥)−1 𝑓𝑜𝑟  0 < 𝑥 < 1.  
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The 𝑐𝑑𝑓 and 𝑝𝑑𝑓 of our fourth NGE distribution (denoted by NGE4) are given, 

respectively, by  

𝐹(𝑥) = 1 − 𝑐(1 − 𝑥) exp {−𝑃(𝑥)} ,    0 ≤ 𝑥 ≤ 1,                                           (11) 
and  

𝑓(𝑥) = 𝑐[1 + (1 − 𝑥)𝑃′(𝑥)] exp {−𝑃(𝑥)} ,    0 < 𝑥 < 1,                                  (12) 
where 𝑐 = 𝑒−𝑎0 .  
 

Our fifth NGE distribution (denoted by NGE5), has  𝑐𝑑𝑓 

𝐹(𝑥) = 1 − 𝑄(𝑥) exp {−𝑃(𝑥)} ,     𝑥 ≥ 0,                                                   (13) 
with 

𝑄(𝑥) =∑𝑎𝑗

𝑛

𝑗=0

𝑥𝑗 ,   𝑃(𝑥) =∑𝑏𝑗

𝑚

𝑗=0

𝑥𝑗 ,  

where  

(𝑎)     𝑚 ≥ 𝑛, 𝑎0 = 1, 𝑏𝑚 > 0;  

(𝑏)     𝑄(𝑥) > 0 𝑓𝑜𝑟 𝑥 > 0;  

(𝑐)     𝑃(𝑥) > ln {𝑄(𝑥)} ;  

(𝑑)     𝑃′(𝑥) >
𝑄′(𝑥)

𝑄(𝑥)
.  

 

The corresponding 𝑝𝑑𝑓  is given by  

𝑓(𝑥) = {𝑄(𝑥)𝑃′(𝑥) − 𝑄′(𝑥)} exp {−𝑃(𝑥)} ,    𝑥 > 0.                                          (14) 

2.   Characterizations   

We present our characterizations (𝑖) − (𝑖𝑣) in four subsections.  

2.1   Characterizations based on two truncated moments  

This subsection deals with the characterizations of KL, MIW and NGE1-NGE5 

distributions based on the ratio of two truncated moments. Our first characterization 

employs a theorem of Glänzel (1987), see Theorem 1 of Appendix A .The result, 

however, holds also when the interval 𝐻  is not closed since the condition of Theorem 1 

is on the interior of 𝐻.  

Proposition 1.  Let 𝑋:Ω → ℝ be a continuous random variable and let 

ℎ(𝑥) = {
(1−(1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

)

1−𝑏

 ,    𝑥 ≥ 𝜇

(1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎

)

1−𝑏

    ,    𝑥 < 𝜇

, 

and 

𝑔(𝑥) = {
(1−(1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

)

1−𝑏

(1−
1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

 ,    𝑥 ≥ 𝜇

2−𝑎(1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎

)

1−𝑏

(𝑒
𝑥−𝜇
𝛼 )    ,         𝑥 < 𝜇
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Then, the random variable 𝑋 has 𝑝𝑑𝑓 (2) if and only if the function 𝜉 defined in 

Theorem 1 is of the form  

𝜉(𝑥) = {
1

2
{1+(1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

} ,    𝑥 ≥ 𝜇

1

2
{1+2−𝑎(𝑒

𝑥−𝜇
𝛼 )

𝑎

}    ,    𝑥 < 𝜇

. 

 

Proof.  First, we observe that the functions 𝑔, ℎ  defined above are in 𝐶1(𝐻)  and 𝜉 is in 

𝐶2(𝐻), as required by Theorem 1 (see Appendix B). Now, suppose the random variable 

𝑋  has  (2), then after some manipulations, we arrive at  

(1 − 𝐹(𝑥))𝐸[ℎ(𝑥) | 𝑋 ≥ 𝑥] = {
𝑏{1−(1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

} ,    𝑥 ≥ 𝜇

𝑏{1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎

}    ,    𝑥 < 𝜇

, 

and 

(1 − 𝐹(𝑥))𝐸[𝑔(𝑥) | 𝑋 ≥ 𝑥] = {
𝑏

2
{1−(1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

2𝑎

} ,    𝑥 ≥ 𝜇

𝑏

2
{1−2−2𝑎(𝑒

𝑥−𝜇
𝛼 )

2𝑎

}    ,    𝑥 < 𝜇

, 

and hence 𝜉(𝑥) has the above form. Further, 

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) = {
ℎ(𝑥)

2
{1−(1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

} ,    𝑥 ≥ 𝜇

ℎ(𝑥)

2
{1−2−𝑎(𝑒

𝑥−𝜇
𝛼 )

𝑎

}    ,    𝑥 < 𝜇

, 

which is clearly not equal to zero for any 𝑥 < 𝜇 or 𝑥 ≥ 𝜇.  
 

Conversely, if 𝜉 is of the above form, then 

𝑠′(𝑥) =
𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

{
  
 

  
 

𝑎
2𝛼
(𝑒
𝑥−𝜇
𝛼 )(1−

1
2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎−1

1−(1−
1
2𝑒
−
𝑥−𝜇
𝛼 )

𝑎 ,   𝑥 ≥ 𝜇

 

𝑎2−𝑎

𝛼
(𝑒
𝑥−𝜇
𝛼 )

𝑎

1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎 ,                  𝑥 < 𝜇

}
  
 

  
 

. 

 

Note that for = 𝜇, we have 𝑠′(𝜇) = 𝑠′(𝜇−) = 𝑠′(𝜇+) =
𝑎2−𝑎

𝛼(1−2−𝑎)
. Now, according to 

Theorem 1,  𝑋  has density (2).  
 

Corollary 1.  Let 𝑋:Ω → ℝ  be a continuous random variable and let ℎ(𝑥) be as in 

Proposition 1. The random variable  𝑋  has 𝑝𝑑𝑓 (2) if and only if there exist functions 𝑔 

and 𝜉 defined in Theorem 1 satisfying the following differential equation  

𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=

{
  
 

  
 

𝑎
2𝛼
(𝑒
𝑥−𝜇
𝛼 )(1−

1
2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎−1

1−(1−
1
2𝑒
−
𝑥−𝜇
𝛼 )

𝑎 ,   𝑥 ≥ 𝜇

 

𝑎2−𝑎

𝛼
(𝑒
𝑥−𝜇
𝛼 )

𝑎

1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎 ,                  𝑥 < 𝜇

}
  
 

  
 

. 
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The general solution of the above differential equation is  

𝜉(𝑥) = {
{1−(1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

}

−1

 [−∫
𝑎

2𝛼
𝑒
−
𝑥−𝜇
𝛼 (1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎−1

(ℎ(𝑥))
−1
𝑔(𝑥)𝑑𝑥+𝐷2], 𝑥 ≥ 𝜇 

{1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎

}

−1

 [−∫
𝑎2−𝑎

𝛼
(𝑒
𝑥−𝜇
𝛼 )

𝑎

(ℎ(𝑥))
−1
𝑔(𝑥)𝑑𝑥+𝐷1],                      𝑥 < 𝜇

}, 

where 𝐷1 and 𝐷2 are constants. We like to point out that one set of functions satisfying 

the above differential equation is given in Proposition 1 with 𝐷1 = 𝐷2 =
1

2
. Clearly, there 

are other triplets (ℎ, 𝑔, 𝜉) which satisfy conditions of Theorem1. 

 

Proposition 2.  Let 𝑋:Ω → (0,∞) be a continuous random variable and let ℎ(𝑥) =

[1 − 𝑒−𝑐𝛼𝑥
−𝛽
]
1−𝑏

 and 𝑔(𝑥) = ℎ(𝑥)𝑒−𝑎𝛼𝑥
−𝛽

 for  𝑥 > 0. Then, the random variable 𝑋 has 

𝑝𝑑𝑓 (4) if and only if the function 𝜉 defined in Theorem 1 is of the form  

𝜉(𝑥) =
1

2
{1 + 𝑒−𝑎𝛼𝑥

−𝛽
} ,    𝑥 > 0. 

 

Proof. Suppose the random variable 𝑋  has  (4), then  

(1 − 𝐹(𝑥))𝐸[ℎ(𝑋) | 𝑋 ≥ 𝑥] =
𝑐

𝑎𝐵(𝑎𝑐−1, 𝑏)
{1 − 𝑒−𝑎𝛼𝑥

−𝛽
} ,      𝑥 > 0, 

and 

(1 − 𝐹(𝑥))𝐸[𝑔(𝑋) | 𝑋 ≥ 𝑥] =
𝑐

2𝑎𝐵(𝑎𝑐−1, 𝑏)
{1 − 𝑒−2𝑎𝛼𝑥

−𝛽
} ,   𝑥 > 0. 

 

Further, 

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) =
ℎ(𝑥)

2
{1 − 𝑒−𝑎𝛼𝑥

−𝛽
} > 0  𝑓𝑜𝑟  𝑥 > 0. 

 

Conversely, if 𝜉 is of the above form, then 

𝑠′(𝑥) =
𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=
𝑎𝛼𝛽𝑥−(𝛽+1)𝑒−𝑎𝛼𝑥

−𝛽

1 − 𝑒−𝑎𝛼𝑥
−𝛽

,   𝑥 > 0, 

from which we have 

𝑠(𝑥) = − log {1 − 𝑒−𝑎𝛼𝑥
−𝛽
} ,   𝑥 > 0. 

 

Now, according to Theorem 1,  𝑋  has density (4).  
 

Corollary 2.  Let 𝑋:Ω → (0,∞)  be a continuous random variable and let ℎ(𝑥) be as in 

Proposition 2. The random variable  𝑋  has 𝑝𝑑𝑓 (4) if and only if there exist functions 𝑔 

and 𝜉 defined in Theorem 1 satisfying the following differential equation  

𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=
𝑎𝛼𝛽𝑥−(𝛽+1)𝑒−𝑎𝛼𝑥

−𝛽

1 − 𝑒−𝑎𝛼𝑥
−𝛽

,   𝑥 > 0. 

 

The general solution of the above differential equation is  

𝜉(𝑥) = {1 − 𝑒−𝑎𝛼𝑥
−𝛽
}
−1

[−∫𝑎 𝛼𝛽𝑥−(𝛽+1)𝑒−𝑎𝛼𝑥
−𝛽
(ℎ(𝑥))

−1
𝑔(𝑥)𝑑𝑥 + 𝐷], 
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where 𝐷 is a constant. One set of functions satisfying the above differential equation is 

given in Proposition 2 with 𝐷 = 0.  
 

Proposition 3.  Let 𝑋:Ω → (0,∞) be a continuous random variable and let  ℎ(𝑥) ≡ 1 

and 𝑔(𝑥) = exp {−𝜆𝑥(1 − log [𝐺(𝑥)])−𝛼} for 𝑥 > 0. The random variable 𝑋 belongs to 

the family (6) if and only if the function 𝜉 defined in Theorem1 has the form  

𝜉(𝑥) =
1

2
{1 + exp {−𝜆𝑥(1 − log [𝐾(𝑥)])−𝛼}},    𝑥 > 0. 

 

Proof.  Let  𝑋  be a random variable with  (6), then  

(1 − 𝐹(𝑥))𝐸[ℎ(𝑋) | 𝑋 ≥ 𝑥] = exp {−𝜆𝑥(1 − log [𝐾(𝑥)])−𝛼} ,    𝑥 > 0, 
and 

(1 − 𝐹(𝑥))𝐸[𝑔(𝑋) | 𝑋 ≥ 𝑥] =
1

2
exp {−𝜆𝑥(1 − log [𝐾(𝑥)])−𝛼} ,    𝑥 > 0, 

and finally 

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) = −
1

2
exp {−𝜆𝑥(1 − log [𝐾(𝑥)])−𝛼} < 0 𝑓𝑜𝑟  𝑥 > 0. 

 

Conversely, if 𝜉 is given as above, then 

𝑠′(𝑥) =
𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=
𝜆{1 − 𝑙𝑜𝑔 [𝐾(𝑥)] − 𝛼𝑥𝑘(𝑥)[𝐾(𝑥)]−1}

(1 − 𝑙𝑜𝑔 [𝐾(𝑥)])(𝛼+1)
,   𝑥 > 0, 

and hence  

𝑠(𝑥) = 𝜆𝑥({1 − log [𝐾(𝑥)]})
−𝛼
,    𝑥 > 0. 

 

Now, according to Theorem 1,  𝑋  has density (6).  
 

Corollary 3.  Let 𝑋:Ω → (0,∞)  be a continuous random variable and let ℎ(𝑥) be as in 

Proposition 3. Then, 𝑋 has 𝑝𝑑𝑓 (6) if and only if there exist functions 𝑔 and 𝜉 defined in 

Theorem 1 satisfying the differential equation  

𝜉′(𝑥)

𝜉(𝑥) − 𝑔(𝑥)
=
𝜆{1 − 𝑙𝑜𝑔 [𝐾(𝑥)] − 𝛼𝑥𝑘(𝑥)[𝐾(𝑥)]−1}

(1 − 𝑙𝑜𝑔 [𝐾(𝑥)])(𝛼+1)
,  𝑥 > 0. 

 

The general solution of the differential equation in Corollary 3 is  

𝜉(𝑥) = exp {𝜆𝑥(1 − log [𝐾(𝑥)])−𝛼} [
−∫

𝜆{1 − 𝑙𝑜𝑔 [𝐾(𝑥)] − 𝛼𝑥𝑘(𝑥)[𝐺(𝑥)]−1}

(1 − 𝑙𝑜𝑔 [𝐾(𝑥)])(𝛼+1)
×

exp {−𝜆𝑥(1 − log [𝐾(𝑥)])−𝛼} 𝑞2(𝑥)𝑑𝑥 + 𝐷

], 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 3 with 𝐷 =
1

2
.  

 

Remark 1.  A Proposition and a Corollary similar to Proposition 3 and Corollary 3 can 

be stated for NGE2-NGE4 distributions. The characterizations of NGE5 are more 

interesting which we take them up below.  
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Proposition 4.  Let 𝑋:Ω → (0,∞) be a continuous random variable and let  ℎ(𝑥) =
{𝑄(𝑥)𝑃′(𝑥) − 𝑄′(𝑥)}−1𝑃′(𝑥) and 𝑔(𝑥) = ℎ(𝑥) exp {−𝑃(𝑥)} for 𝑥 > 0. The random 

variable 𝑋 belongs to family (14) if and only if the function 𝜉 defined in Theorem1 has 

the form  

𝜉(𝑥) =
1

2
exp {−𝑃(𝑥)} ,    𝑥 > 0. 

 

Proof.  Let  𝑋  be a random variable with 𝑝𝑑𝑓  (14), then  

(1 − 𝐹(𝑥))𝐸[ℎ(𝑋) | 𝑋 ≥ 𝑥] = exp {−𝑃(𝑥)} ,    𝑥 > 0, 

 

and 

(1 − 𝐹(𝑥))𝐸[𝑔(𝑋) | 𝑋 ≥ 𝑥] =
1

2
exp {−2𝑃(𝑥)} ,    𝑥 > 0, 

and finally 

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥) = −
1

2
exp {−𝑃(𝑥)} < 0   𝑓𝑜𝑟  𝑥 > 0. 

 

Conversely, if 𝜉 is given as above, then  

𝑠′(𝑥) =
𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
= 𝑃′(𝑥),  𝑥 > 0, 

and hence 

𝑠(𝑥) = 𝑃(𝑥),    𝑥 > 0. 
 

Now, in view of Theorem 1, 𝑋  has density (14).  
 

Corollary 4.  Let 𝑋:Ω → (0,∞)  be a continuous random variable and let ℎ(𝑥) be as in 

Proposition 4. Then, 𝑋 has 𝑝𝑑𝑓  (14) if and only if there exist functions 𝑔 and 𝜉 defined 

in Theorem 1 satisfying the differential equation  

𝜉′(𝑥)ℎ(𝑥)

𝜉(𝑥)ℎ(𝑥) − 𝑔(𝑥)
= 𝑃′(𝑥),  𝑥 > 0. 

 

The general solution of the differential equation in Corollary 4 is  

𝜉(𝑥) = exp {𝑃(𝑥)} [−∫𝑃′ (𝑥) exp {−𝑃(𝑥)} (ℎ(𝑥))
−1
𝑔(𝑥)𝑑𝑥 + 𝐷], 

where 𝐷 is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 4 with 𝐷 = 0.  

2.2  Characterization in terms of the reverse hazard function  

The reverse hazard function, 𝑟𝐹, of a twice differentiable distribution function, 𝐹 , is 

defined as  

𝑟𝐹(𝑥) =
𝑓(𝑥)

𝐹(𝑥)
, 𝑥 ∈ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝐹. 
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Proposition 5.  Let 𝑋:Ω → ℝ be a continuous random variable. For 𝑏 = 1, the random 

variable 𝑋  has  𝑝𝑑𝑓  (2) if and only if its reverse hazard function 𝑟𝐹(𝑥) satisfies the 

following differential equation  

𝑟𝐹
′(𝑥) = {

−
1

𝛼
𝑟𝐹(𝑥)+

𝑎

4𝛼2
𝑒
−
2(𝑥−𝜇)

𝛼 (1−
1

2
𝑒
−
𝑥−𝜇
𝛼 )

−2

 ,    𝑥 ≥ 𝜇

0    ,                                                         𝑥 < 𝜇
, 

with boundary condition 𝑟𝐹(𝜇) =
𝑎

𝛼
.  

 

Proof.  Straightforward and hence omitted.  

 

Proposition 6.  Let 𝑋:Ω → (0,∞) be a continuous random variable. For 𝑏 = 1, the 

random variable 𝑋  has  𝑝𝑑𝑓  (4) if and only if its reverse hazard function 𝑟𝐹(𝑥) satisfies 

the following differential equation  

𝑟𝐹
′(𝑥) + (𝛽 + 1)𝑥−1𝑟𝐹(𝑥) = 0. 

2.3  Characterization based on the conditional expectation of certain functions of the 

random variable  

In this subsection we employ a single function 𝜓 of 𝑋 and characterize the distribution of 

𝑋 in terms of the truncated moment of 𝜓(𝑋). The following proposition has already 

appeared in Hamedani’s previous work (2013), so we will just state it as a proposition 

here, which can be used to characterize KL , NGE1 distributions.  

 

Proposition 7.   Let  𝑋:Ω → (𝑑, 𝑒)  be a continuous random variable with  𝑐𝑑𝑓  𝐹.  Let  

𝜓(𝑥)  be a differentiable function on  (𝑑, 𝑒)  with  lim
𝑥→𝑑+

𝜓 (𝑥) = 1.  Then for  𝛿 ≠ 1 ,  

𝐸[𝜓(𝑋) | 𝑋 ≥ 𝑥] = 𝛿𝜓(𝑥), 𝑥 ∈ (𝑑, 𝑒) 

if and only if 

𝜓(𝑥) = (1 − 𝐹(𝑥))
1

𝛿
−1
. 𝑥 ∈ (𝑑, 𝑒) 

 

Remark 2.   (𝐴) For (𝑑, 𝑒) = ℝ, 𝑏 = 1, 𝜓(𝑥) = {
1−2−1𝑒

−
𝑥−𝜇
𝛼  ,    𝑥≥𝜇

2−1𝑒
𝑥−𝜇
𝛼  ,         𝑥<𝜇

 and  𝛿 =
𝑎

𝑎+1
 , 

Proposition 7 provides a characterization of KL distribution.  (𝐵) For (𝑎, 𝑏) = (0,∞), 

𝜓(𝑥) = exp {−𝑥(1 − log [𝐾(𝑥)])
−𝛼
} and 𝛿 =

𝜆

𝜆+1
, Proposition 7 provides a 

characterization of NGE1.  

2.4   Characterization based on hazard function  

It is known that the hazard function, ℎ𝐹, of a twice differentiable distribution function, 𝐹, 

satisfies the first order differential equation  

𝑓′(𝑥)

𝑓(𝑥)
=
ℎ𝐹
′ (𝑥)

ℎ𝐹(𝑥)
− ℎ𝐹(𝑥). 
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For many univariate continuous distributions, this is the only characterization available in 

terms of the hazard function. The following characterizations establish a non-trivial 

characterizations for (6) and (14) in terms of the hazard function which is not of the 

trivial form given above.  Again, similar results hold for (8), (10) and (12).  
 

Proposition 8.  Let 𝑋:Ω → (0,∞) be a continuous random variable. Then, 𝑋  has  𝑝𝑑𝑓  

(6) if and only if its hazard function ℎ𝐹(𝑥) satisfies the differential equation  

ℎ𝐹
′ (𝑥) +

(𝛼 + 1)𝑘(𝑥)

𝐾(𝑥)(1 − 𝑙𝑜𝑔 [𝐾(𝑥)])
ℎ𝐹(𝑥) 

= 𝜆(1 − log [𝐾(𝑥)])
−(𝛼+1) 𝑑

𝑑𝑥
{1 − log [𝐾(𝑥)] −

𝛼𝑥𝑘(𝑥)

𝐾(𝑥)
}, 

with the initial condition  ℎ𝐹(0) = 𝜆.  
 

Proof.  If  𝑋  has 𝑝𝑑𝑓  (6), then clearly the above differential equation holds.  Now, if the 

differential equation holds, then  
𝑑

𝑑𝑥
{(1 − log [𝐾(𝑥)])

𝛼+1
ℎ𝐹(𝑥)} = 𝜆 {1 − log [𝐾(𝑥)] − 𝛼𝑥𝑘(𝑥)[𝐾(𝑥)]

−1
}, 

or 

ℎ𝐹(𝑥) =
𝜆 {1 − 𝑙𝑜𝑔 [𝐾(𝑥)] − 𝛼𝑥𝑘(𝑥)[𝐾(𝑥)]

−1
}

(1 − 𝑙𝑜𝑔 [𝐾(𝑥)])
𝛼+1 ,    𝑥 > 0, 

which is the hazard function of (6).  
 

Proposition 9.  Let 𝑋:Ω → (0,∞) be a continuous random variable. Then 𝑋  has  𝑝𝑑𝑓  
(14) if and only if its hazard function ℎ𝐹(𝑥) satisfies the differential equation  

ℎ𝐹
′ (𝑥) −

𝑄"(𝑥)

𝑄′(𝑥)
ℎ𝐹(𝑥) = 𝑃

"(𝑥) −
𝑄"(𝑥)

𝑄′(𝑥)
𝑃′(𝑥) + (

𝑄′(𝑥)

𝑄(𝑥)
)

2

, 

with the initial condition  ℎ𝐹(0) = 𝑏1 − 𝑎1.  
 

Proof.  If  𝑋  has 𝑝𝑑𝑓  (14), then clearly the above differential equation holds.  Now, if 

the differential equation holds, then  
𝑑

𝑑𝑥
{(𝑄′(𝑥))

−1
ℎ𝐹(𝑥)} =

𝑑

𝑑𝑥
{𝑃′(𝑥)(𝑄′(𝑥))

−1
− (𝑄(𝑥))

−1
}, 

or 

ℎ𝐹(𝑥) = 𝑃′(𝑥) −
𝑄′(𝑥)

𝑄(𝑥)
,    𝑥 > 0, 

which is the hazard function of (14).  
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Appendix A  

Theorem 1.  Let (Ω, ℱ, 𝑷) be a given probability space and let  𝐻 = [𝑑, 𝑒] be an interval 

for some  𝑑 < 𝑒  (𝑑 = −∞,  𝑒 = ∞  might as well be allowed). Let 𝑋:Ω → 𝐻  be a 

continuous random variable with the distribution function 𝐹 and let 𝑔 and ℎ be two real 

functions defined on 𝐻 such that  

𝑬[𝑔(𝑋) | 𝑋 ≥ 𝑥] = 𝑬[ℎ(𝑋) | 𝑋 ≥ 𝑥]𝜉(𝑥),  𝑥 ∈ 𝐻, 
is defined with some real function 𝜂. Assume that 𝑔, ℎ ∈ 𝐶1(𝐻), 𝜉 ∈ 𝐶2(𝐻) and 𝐹 is 

twice continuously differentiable and strictly monotone function on the set 𝐻. Finally, 

assume that the equation 𝜉ℎ = 𝑔 has no real solution in the interior of 𝐻. Then 𝐹 is 

uniquely determined by the functions 𝑔, ℎ and 𝜉 , particularly  

𝐹(𝑥) = ∫ 𝐶
𝑥

𝑎

|
𝜉′(𝑢)

𝜉(𝑢)ℎ(𝑢) − 𝑔(𝑢)
| exp (−𝑠(𝑢))  𝑑𝑢 , 

where the function  𝑠  is  a solution of the differential equation 𝑠′ =
𝜉′ ℎ

𝜉 ℎ − 𝑔
 and 𝐶 is the 

normalization constant, such that ∫ 𝑑
𝐻

𝐹 = 1. 

 

We like to mention that this kind of characterization based on the ratio of truncated 

moments is stable in the sense of weak convergence (see, Glänzel 1990), in particular, let 

us assume that there is a sequence  {𝑋𝑛}  of random variables with distribution functions  
{𝐹𝑛}  such that the functions  ℎ𝑛 , 𝑔𝑛  and  𝜉𝑛  (𝑛 ∈ ℕ)  satisfy the conditions of Theorem 

1 and let  ℎ𝑛  → ℎ , 𝑔𝑛  → 𝑔  for some continuously differentiable real functions  ℎ and 

 𝑔 .  Let, finally,  𝑋  be a random variable with distribution  𝐹 .  Under the condition that  

ℎ𝑛 (𝑋)  and 𝑔𝑛 (𝑋)  are uniformly integrable and the family  {𝐹𝑛} is relatively compact, 

the sequence  𝑋𝑛  converges to  𝑋  in distribution if and only if  𝜉𝑛  converges to  𝜉 , 

where  

𝜉(𝑥) =
𝐸[𝑔(𝑋) | 𝑋 ≥ 𝑥]

𝐸[ℎ(𝑋) | 𝑋 ≥ 𝑥]
. 

 

This stability theorem makes sure that the convergence of distribution functions is 

reflected by corresponding convergence of the functions  ℎ , 𝑔  and  𝜉 , respectively.  It 

guarantees, for instance, the ’convergence’ of characterization of the Wald distribution to 

that of the Lévy-Smirnov distribution if  𝛼 → ∞ , as was pointed out in Glänzel and 

Hamedani (2001).  
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A further consequence of the stability property of Theorem 1 is the application of this 

theorem to special tasks in statistical practice such as the estimation of the parameters of 

discrete distributions.  For such purpose, the functions  ℎ, 𝑔  and, specially,  𝜉  should be 

as simple as possible. Since the function triplet is not uniquely determined it is often 

possible to choose  𝜉  as a linear function.  Therefore, it is worth analyzing some special 

cases which helps to find new characterizations reflecting the relationship between 

individual continuous univariate distributions and appropriate in other areas of statistics.  

 

In some cases, one can take ℎ(𝑥) ≡ 1, as we did in this paper, which reduces the 

condition of Theorem 1 to 𝑬[𝑔(𝑋) | 𝑋 ≥ 𝑥] = 𝜉(𝑥),  𝑥 ∈ 𝐻. We, however, believe that 

employing three functions ℎ, 𝑔  and  𝜉 will enhance the domain of applicability of 

Theorem 1.  

Appendix B  

Here we compute the derivatives of ℎ(𝑥) and 𝑔(𝑥) given in Proposition 1 to confirm that 

ℎ, 𝑔 ∈ 𝐶1(ℝ).  Similarly for that of 𝜉 ∈ 𝐶2(ℝ).  

ℎ′(𝑥) = {
−
𝑎(1−𝑏)

2𝛼
𝑒
−
𝑥−𝜇
𝛼 (1−

1

2
𝑒
𝑥−𝜇
𝛼 )

𝑎−1

(1−(1−
1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

)

−𝑏

 ,    𝑥 ≥ 𝜇

−
𝑎(1−𝑏)2−𝑎

𝛼
(𝑒
𝑥−𝜇
𝛼 )

𝑎

(1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎

)

−𝑏

    ,                   𝑥 < 𝜇

. 

 

It is easy to show that the left and right derivatives of ℎ(𝑥) are equal at 𝑥 = 𝜇. We also 

have  

𝑔′(𝑥) =

{
 

 

−
𝑎(1−𝑏)

𝛼
𝑒
𝑥−𝜇
𝛼 (1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎−1

(1−(1−
1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

)

−𝑏

{(1−
1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

−(1−(1−
1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎

)} , 𝑥 ≥ 𝜇

−
2−𝑎

𝛼
𝑒
𝑥−𝜇
𝛼 {𝑎(1−𝑏)2−𝑎(𝑒

𝑥−𝜇
𝛼 )

𝑎

(1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎

)

−𝑏

−(1−2−𝑎(𝑒
𝑥−𝜇
𝛼 )

𝑎

)

1−𝑏

},                          𝑥 < 𝜇

, 

and can easily check that the left and right derivatives of 𝑔(𝑥) are equal at 𝑥 = 𝜇.   

 

For  𝜉(𝑥) , observe that  

𝜉′(𝑥) = {
𝑎

4𝛼
𝑒
𝑥−𝜇
𝛼 (1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎−1

 ,    𝑥 ≥ 𝜇

𝑎2−𝑎−1

𝛼
(𝑒
𝑥−𝜇
𝛼 )

𝑎

    ,              𝑥 < 𝜇
, 

and clearly the left and right derivatives of 𝜉(𝑥) are equal at 𝑥 = 𝜇.  Also, note that  

𝜉"(𝑥) = {
𝑎

4𝛼2
𝑒
𝑥−𝜇
𝛼 (1−

1

2
𝑒
−
𝑥−𝜇
𝛼 )

𝑎−2

{(1−
1

2
𝑒
−
𝑥−𝜇
𝛼 )+

𝑎−1

2
} ,    𝑥 ≥ 𝜇

𝑎22−𝑎−1

𝛼2
(𝑒
𝑥−𝜇
𝛼 )

𝑎

    ,                                                 𝑥 < 𝜇
, 

and hence the left and right derivatives of 𝜉′(𝑥) are equal at 𝑥 = 𝜇.  


