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Abstract

Nassar (2016) considers an interesting univariate continuous distribution called Kumaraswamy-Laplace
which has different forms on two subintervals. He studies certain properties and applications of this
distribution. Shahbaz et al. (2016) consider another interesting distribution called McDonald Inverse
Weibull distribution. They present some basic properties of their distribution and study the estimations of
the parameters as well as discussing its application via an illustrative example. What is lacking in both
papers, in our opinion, is the characterizations of these two interesting distributions. The present work is
intended to complete, in some way, the works of Nassar and Shahbaz et al. via establishing certain
characterizations of these distributions in four directions. We also introduce several New Generalized
Exponential distributions and present their characterizations as well.

1. Introduction

The problem of characterizing a distribution is an important problem which can help the
investigator to see if their model is the correct one. This work deals with various
characterizations of Kumaraswamy-Laplace (KL) and McDonald Inverse Weibull (MIW)
distributions to complement the works of Nassar (2016) and Shahbaz et al. (2016). These
characterizations are presented in three directions: (i) based on the ratio of two truncated
moments; (ii) in terms of the reverse hazard function and (iii) based on the conditional
expectation of certain functions of the random variable. Similar characterizations as well
as (iv) in terms of the hazard function, will be established for several proposed New
Generalized Exponential (NGE) distributions. It should be noted that characterization (i)
can be employed also when the cdf (cumulative distribution function) does not have a
closed form as is the case with MIW distribution.

Nassar (2016) introduced KL distribution with cdf and pdf (probability density
function) given, respectively, by
x—py 0\ D
1—<1—(§eTu) > , x< u

b : (1)
1—<1—(1—%e %ﬂ)a> . xzu '

[ ol (aef )

f(x) = f(xl (Z,,Ll, a, b) = J * , b-1 ) (2)

F(x) =F(x;a,u,a,b) =

and

where a, a, b all positive and ¢ € R are parameters.
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Shahbaz et al. (2016) proposed MIW distribution with cdf and pdf given,
respectively, by

Ce—aax_ﬁ B
— . — _ -1. -1. ,—aax™
F(x) =F(x;a,B,a,b,c) = aB(ac—Lb) oF [1 b,ac %1+ ac e ],x
> 0, (3)
and
aﬁcx_(ﬁ-ﬂ) —aax~ P —cax~ P b-1
f(x)—f(x;a.ﬁ;a,b;c)—me [1—6 ] , X
> 0, (4)

where «, 8, a, b, c are all positive parameters.

The cdf and pdf of our first NGE distribution (denoted by NGE1) are given,
respectively, by

F(x) =F(x;a,1) =1 —exp {—Ax(1 —log [K(x)])7%}, x>0, (5)
and
fO) = flxa,2) =21 —log [K(x) )@ {1 — log [K(x)] — axk(x)[K(x)] 7} %
exp {—Ax(l —log [E(x)])_“}, x>0, (6)

where A > 0,a > 1 are parameters, K(x) (E(x) =1- K(x)) is a baseline cdf with
corresponding pdf k(x) such that lim Lk (x) > 0.
X——00

Let
n
P(x) = Zajxj, x >0,
j=1
be a polynomial of degree n such that a,, > 0 and ;—xP(x) > 0 forx > 0.

The cdf and pdf of our second NGE distribution (denoted by NGE2) are given,
respectively, by

F(x)=1—-exp{—-P(x)}, x=0, (7)
and

d
f&x) = (EP(X)> exp {—=P(x)}, x>0. €))

Let P(x) =7, a2/, 0 <x < 1suchthat P'(x) = =—P(x) > (x — 1) for 0 < x <
1.

The cdf and pdf of our third NGE distribution (denoted by NGE3) are given,
respectively, by
Fx)=1-(1—-x)exp{—-P(x)}, 0<x<1, 9
and
f)=1+0-x)P'(x)]exp{—-P(x)}, 0<x<1. (10)

Let P(x) = X700y x/, 0 <x <1suchthat P'(x) < (1—x)""for 0 <x < 1.
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The cdf and pdf of our fourth NGE distribution (denoted by NGE4) are given,
respectively, by

Fix)=1—-c(Q—-x)exp{—-P(x)}, 0<x<1, (11)
and

f)=c[1+(A—-x)P'(x)]exp{—-P(x)}, 0<x<1, (12)
where ¢ = e~ %,

Our fifth NGE distribution (denoted by NGE5), has cdf

F(x)=1-Q(x)exp{—-P(x)}, x=0, (13)
with
Q)= ) a;x/, P(x)= ) b x/,
Z ’ 2.
where

(@) m=n,ay=1,b, >0;
() Q(x) >0 forx>0;
() P(x)>In{Q(x)};

@ P >%2.

The corresponding pdf is given by
fx) ={Q()P'(x) — Q"(x)}exp {—P(x)}, x>0. (14)

2. Characterizations

We present our characterizations (i) — (iv) in four subsections.

2.1 Characterizations based on two truncated moments

This subsection deals with the characterizations of KL, MIW and NGE1-NGE5
distributions based on the ratio of two truncated moments. Our first characterization
employs a theorem of Glanzel (1987), see Theorem 1 of Appendix A .The result,
however, holds also when the interval H is not closed since the condition of Theorem 1
is on the interior of H.

Proposition 1. Let X: Q — R be a continuous random variable and let

o) = (1_2—a(e’%)“2 s
<1—(1—%e‘x%) ) xzp
and e
g(x) _ 2‘“(1—2“1 e7>2b (eT> a x<u
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Then, the random variable X has pdf (2) if and only if the function ¢ defined in
Theorem 1 is of the form

l{1+2—‘l(e% a} , X< u
%{1+(1—%e_x%) } , o x=
Proof. First, we observe that the functions g, h defined above are in C1(H) and ¢ is in

C?(H), as required by Theorem 1 (see Appendix B). Now, suppose the random variable
X has (2), then after some manipulations, we arrive at

x=—p\ @
b{l—Z‘a<e a ) } , x<u
1 _X=i@
b{l—(l—;e a ) }, xzu

§(x) =

)

(1-FM)E[h(Xx) | X 2 x] =
and
(1-FW)Elgx) | X 2 x] =

and hence &(x) has the above form. Further,

I G N
- ,

@{1—(1—%«3_%) } , X=Z U

which is clearly not equal to zero for any x < u or x > p.

)

§(h(x) —g(x) =

Conversely, if & is of the above form, then

( az—a/ =B a A
L:_a ’ x<u
S'(x) — f'(x)h(x) _ 1-2—@a eT) >
R I N
A a xzu
K 1—(1—53 a ) )
a2~

Note that for = u, we have s'(u) =s'(u”) =s'(ut) =
Theorem 1, X has density (2).

EECET Now, according to

Corollary 1. Let X:Q —» R be a continuous random variable and let h(x) be as in
Proposition 1. The random variable X has pdf (2) if and only if there exist functions g
and ¢ defined in Theorem 1 satisfying the following differential equation

Sz,(x)h(x) _ ) 1-2—@a eT) >
FEME =96 | g
\ 1—(1—73_96?7”>a ) )
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The general solution of the above differential equation is

{1—2‘a(e%>a}_l [- faz_a(e%)a(h(x))_lg(x)dx+D1

a

, x<pu

§(x) =

—pa-1 4

{1—(1—%5_%;}_1 [— f%e_%@—%e_%) (h(x))_lg(x)dx+Dz L X2

where D; and D, are constants. We like to point out that one set of functions satisfying
the above differential equation is given in Proposition 1 with D; = D, = % Clearly, there
are other triplets (h, g, &) which satisfy conditions of Theorem1.

Proposition 2. Let X:Q — (0,00) be a continuous random variable and let h(x) =

_g1l-b _
[1 —eTcax B] and g(x) = h(x)e 2** " for x > 0. Then, the random variable X has
pdf (4) if and only if the function & defined in Theorem 1 is of the form

§x) = %{1 + e‘““x_ﬁ}, x> 0.

Proof. Suppose the random variable X has (4), then

¢ —aax~
(1-F@))ERK) | X = x] =m{1—e ﬁ}, x>0,
and
¢ —2aax~
(1—F(X))E[g(X)|XZX]:m{1—€ ﬁ}, x> 0.
Further,

FOMC) — 900 = 21— e} 5.0 for x>0,

Conversely, if & is of the above form, then
Lo Ehx)  aapx~BrDe-an”
’ (X) - f(x)h(x) - g(x) B 1-— e—aax—ﬁ
from which we have
sG0) = —log {1—e7e=™}, x>0,

, x>0,

Now, according to Theorem 1, X has density (4).

Corollary 2. Let X:Q — (0,00) be a continuous random variable and let h(x) be as in
Proposition 2. The random variable X has pdf (4) if and only if there exist functions g
and ¢ defined in Theorem 1 satisfying the following differential equation

&' (x)h(x) aaﬁx‘w“)e‘a“’fﬁ

TR —g®) . 1—e-eax?

, x> 0.

The general solution of the above differential equation is
_p—1 _ -
E(x) = {1 — g~ aax B} [—J a afx~(B+De-aax B(h(x)) 1g(x)dx + D,
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where D is a constant. One set of functions satisfying the above differential equation is
given in Proposition 2 with D = 0.

Proposition 3. Let X:Q — (0,) be a continuous random variable and let h(x) =1
and g(x) = exp {—Ax(1 — log [G(x)])~*} for x > 0. The random variable X belongs to
the family (6) if and only if the function & defined in Theorem1 has the form

1 _
E(x) = 5{1 + exp {—/’lx(l —log [K(x)])_“}}, x> 0.

Proof. Let X be arandom variable with (6), then
(1 — F(x))E[h(X) | X = x] = exp {—Ax(l — log [E(x)])‘“}, x>0,
d
o 1 _
(1-F@)E[gX) | X =x] = 5 €xp {-Ax(1 —log [K()])™*}, x>0,
and finally

EX)h(x) —g(x) = —%exp {—2x(1 —log [K(x)])™*} < 0 for x> 0.

Conversely, if & is given as above, then B B
&' (x)h(x) _ M1 —log [K(x)] — axk(x)[K(x)] ™}
§()h(x) — g(x) (1 —log [K(x)])(e+D

SI(.X) = y X > OI

and hence

s(x) = x({1 - log [K(x)]})

x > 0.

—-a
’

Now, according to Theorem 1, X has density (6).

Corollary 3. Let X:Q — (0,00) be a continuous random variable and let h(x) be as in
Proposition 3. Then, X has pdf (6) if and only if there exist functions g and ¢ defined in
Theorem 1 satisfying the differential equation

F) M1 —log [K(x)] — axk(x)[K(x)]71}
§(x) —g(x) (1 - log [K)])(@+D

, x>0.

The general solution of the differential equation in Corollary 3 is
M1 —log [K(x)] — axk(x)[G(x)] "}
£(x) = exp {Ax(1 — log [K(x)])~*} f (1—log [K(x)])(@+D )
exp {—Ax(l — log [E(x)])‘“} q,(x)dx + D
where D is a constant. Note that a set of functions satisfying the above differential
equation is given in Proposition 3 with D = %

Remark 1. A Proposition and a Corollary similar to Proposition 3 and Corollary 3 can
be stated for NGE2-NGE4 distributions. The characterizations of NGE5 are more
interesting which we take them up below.
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Proposition 4. Let X:Q — (0,0) be a continuous random variable and let h(x) =
{QX)P'(x) —Q'(x)} tP'(x) and g(x) = h(x)exp {—P(x)} for x > 0. The random
variable X belongs to family (14) if and only if the function & defined in Theorem1 has
the form

1
((x) = S exp {-P(x)}, x>0.

Proof. Let X be arandom variable with pdf (14), then
(1 — F(x))E[h(X) | X > x]=exp{—-P(x)}, x>0,

and
(1 — F(x))E[g(X) | X > x] = %exp {—2P(x)}, x>0,
and finally

EO)h(x) —gx) = —%exp {-P(x)} <0 for x>0.

Conversely, if & is given as above, then

&' (0)h(x)
§()h(x) — g(x)

s'(x) =
and hence
s(x) =P(x), x>0.

=P'(x), x>0,

Now, in view of Theorem 1, X has density (14).

Corollary 4. Let X:Q — (0,00) be a continuous random variable and let h(x) be as in
Proposition 4. Then, X has pdf (14) if and only if there exist functions g and ¢ defined
in Theorem 1 satisfying the differential equation

&'(x)h(x) L
O —g() ¢ (x), x>0.

The general solution of the differential equation in Corollary 4 is

£() = exp (PO [ [ P () exp (—P () (hG) g + D)

where D is a constant. Note that a set of functions satisfying the above differential
equation is given in Proposition 4 with D = 0.

2.2 Characterization in terms of the reverse hazard function

The reverse hazard function, rz, of a twice differentiable distribution function, F , is
defined as

re(x) = %, X € support of F.
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Proposition 5. Let X:Q — R be a continuous random variable. For b = 1, the random
variable X has pdf (2) if and only if its reverse hazard function rz(x) satisfies the
following differential equation

! —_ )
TF(X) - 1 q 2= p _X—pyT? ’
—ETF(X)'FTG a (1_53 a ) ’ xzu

with boundary condition 75 () = %

Proof. Straightforward and hence omitted.

Proposition 6. Let X:Q — (0,00) be a continuous random variable. For b =1, the
random variable X has pdf (4) if and only if its reverse hazard function r(x) satisfies
the following differential equation

re(x) + (B + Dx"1re(x) = 0.

2.3 Characterization based on the conditional expectation of certain functions of the
random variable

In this subsection we employ a single function ¥ of X and characterize the distribution of
X in terms of the truncated moment of ¥ (X). The following proposition has already
appeared in Hamedani’s previous work (2013), so we will just state it as a proposition
here, which can be used to characterize KL , NGEL1 distributions.

Proposition 7. Let X:Q — (d,e) be a continuous random variable with cdf F. Let
Y(x) be adifferentiable function on (d,e) with lir£1+z/) (x)=1. Thenfor § # 1,
X—

E[Y(X) | X = x] = 6y(x),x € (d,e)
if and only if

Y(x) =(1- F(x))%_l.x € (d,e)

L x—u
Remark 2. (4) For (d,e) =R, b =1, P(x) ={ 27e @, . *Hoand §=-%
1-27"1e @ , «x2p a+l
Proposition 7 provides a characterization of KL distribution. (B) For (a,b) = (0, ),
P(x) = exp {—x(l—log [K(x)]) a} and § =ﬁ, Proposition 7 provides a

characterization of NGE1.

2.4 Characterization based on hazard function

It is known that the hazard function, hg, of a twice differentiable distribution function, F,
satisfies the first order differential equation

) _hi()
F&) ~ he(o)

hr(x).
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For many univariate continuous distributions, this is the only characterization available in
terms of the hazard function. The following characterizations establish a non-trivial
characterizations for (6) and (14) in terms of the hazard function which is not of the
trivial form given above. Again, similar results hold for (8), (10) and (12).

Proposition 8. Let X:Q — (0,0) be a continuous random variable. Then, X has pdf
(6) if and only if its hazard function hg(x) satisfies the differential equation

, (a+ Dk(x)
he () + E(x)(l —log [E(x)]) hr (%)

— —(a+1) d
=2(1-log [K(x)]) ( 1)@

with the initial condition hz(0) = A.

{1 —log [K(x)] - a%l;(;)},

Proof. If X haspdf (6), then clearly the above differential equation holds. Now, if the
differential equation holds, then

d — a+ _ _ _
—{(1-10g KON he ()} = 2{1 — 10g [K(0)] - axk@[K (0]},
or

_ — -1
() — /’l{l —log [K(x)] — axk(x)[K(x)] }, 0

(1-1log [R@])™"
which is the hazard function of (6).

Proposition 9. Let X:Q — (0, ) be a continuous random variable. Then X has pdf
(14) if and only if its hazard function hy(x) satisfies the differential equation
Q'(x) SN C)) <Q’(X)>2
hr(x) — hpe(x) =P (x) ————=P'(x) + ,

with the initial condition hz(0) = b; — a;.

Proof. If X has pdf (14), then clearly the above differential equation holds. Now, if
the differential equation holds, then

d -1 d -1 -1

—HO®) @} ={P@EQ®) - ()},
or

he() = P'(x) —%(—(f)).

which is the hazard function of (14).

x>0,
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Appendix A

Theorem 1. Let (Q, F, P) be a given probability space and let H = [d, e] be an interval
for some d <e (d= —o, e =co0 might as well be allowed). Let X:Q0 - H be a
continuous random variable with the distribution function F and let g and h be two real
functions defined on H such that
E[g(X) | X =z x] = E[h(X) | X =2 x]§(x), x€H,

is defined with some real function n. Assume that g, h € C*(H), £ € C?(H) and F is
twice continuously differentiable and strictly monotone function on the set H. Finally,
assume that the equation ¢h = g has no real solution in the interior of H. Then F is
uniquely determined by the functions g, h and & , particularly

AR
P00 = | e —gt| 2 (500) v,
f’

where the function s is a solution of the differential equation s’ = Th

hg and C is the

normalization constant, such that [, d F = 1.

We like to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence (see, Glanzel 1990), in particular, let
us assume that there is a sequence {X,,} of random variables with distribution functions
{E,} such that the functions h,,, g, and &, (n € N) satisfy the conditions of Theorem
landlet h, = h, g, — g for some continuously differentiable real functions h and
g - Let, finally, X be arandom variable with distribution F . Under the condition that
h, (X) and g, (X) are uniformly integrable and the family {F,} is relatively compact,
the sequence X,, converges to X in distribution if and only if &, converges to ¢,
where

e = L0 1 X 2 x]

E[h(X) | X = x]

This stability theorem makes sure that the convergence of distribution functions is
reflected by corresponding convergence of the functions h, g and &, respectively. It
guarantees, for instance, the convergence’ of characterization of the Wald distribution to
that of the Lévy-Smirnov distribution if a — oo , as was pointed out in Glanzel and
Hamedani (2001).
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A further consequence of the stability property of Theorem 1 is the application of this
theorem to special tasks in statistical practice such as the estimation of the parameters of
discrete distributions. For such purpose, the functions h, g and, specially, ¢ should be
as simple as possible. Since the function triplet is not uniquely determined it is often
possible to choose ¢ as a linear function. Therefore, it is worth analyzing some special
cases which helps to find new characterizations reflecting the relationship between
individual continuous univariate distributions and appropriate in other areas of statistics.

In some cases, one can take h(x) =1, as we did in this paper, which reduces the
condition of Theorem 1to E[g(X) | X = x] = &é(x), x € H. We, however, believe that
employing three functions h, g and ¢ will enhance the domain of applicability of
Theorem 1.

Appendix B

Here we compute the derivatives of h(x) and g(x) given in Proposition 1 to confirm that
h, g € C*(R). Similarly for that of & € C?(R).

X—pn @ x—pa\~P
——a(l_b)z_a(eTu) (1—2_(1(87#) > , x<pu

a

— —pua—-1 —u.a
a(1-b _X-H 1 X—u 1 _X-u
—TE a (1—56‘ a ) 1—(1—56 a ) , Xz U

h'(x) =

It is easy to show that the left and right derivatives of h(x) are equal at x = u. We also

have
b

_¥e%ia(1—b)z‘a(e%)a(l_z_a(e%)ay _<1_2_a(e%)“>1_b} e

_ _poa—-1 _poa\—b _ua —ua
a(i=p) X=H/ 4 _X=in© P Pl Pl
~em 521 2o (1 (157 ) ) (127 F) (- (127 F) )] x 2

and can easily check that the left and right derivatives of g(x) are equal at x = u.

g'(x) =

For &(x) , observe that

=] o)

and clearly the left and right derivatives of £(x) are equal at x = u. Also, note that

a22—a—1( x_#)a

o= <

x—p\a—2 X—U
a 1 2=F 1 22BN g-1
—_— —= —= = - >
a2¢ @ (1 Je « ) {(1 ;e « )+ > }, xzu

x<pu

)

and hence the left and right derivatives of £'(x) are equal at x = p.
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