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Abstract 

For the first time, a new generalization of generalized gamma distribution called the modified generalized 

gamma distribution has been introduced to provide greater flexibility in modeling data from a practical 

viewpoint. The new distribution generalizes some recently introduced generalizations of the gamma and 

beta distributions . Various properties of the proposed distribution, including explicit expressions for the 

moments, quantiles, mode, moment generating function, mean deviation, mean residual lifetime and 

expression of the entropies are derived. The distribution is capable of monotonically increasing, decreasing, 

bathtub-shaped, and upside-down bathtub-shaped hazard rates. The maximum likelihood estimators of 

unknown parameters cannot be obtained in explicit forms, and they have to be obtained by solving non-

linear equations only. Two real data sets have been analyzed to show how the proposed models work in 

practice. 

Keywords: Generalized gamma distribution, Generalized gamma function, Generalized 

Beta II distribution, Maximum likelihood estimation. 

1. Introduction 

In recent years, it is a common practice in the statistical distribution theory to add an 

extra parameter to an existing family of distribution functions. Such a technique (adding 

an extra parameter) is adopted to bring in more flexibility to a class of distribution 

functions. Besides, it can be very useful for data analysis purposes. For instance, Azzalini 

(1985) created the skew normal distribution by the addition of an extra parameter to the 

normal distribution so as to add flexibility to the normal distribution. Eugene et al. (2002) 

put forward the beta generated method that uses the beta distribution with parameters 

and   as the generator to enhance the beta generated distributions. Alzaatreh et al. 

(2013) proposed a new method for generating families of continuous distributions called 

T-X family by replacing the beta PDF with a PDF, r(t), of a continuous random variable 

and applying a function W(F(x)) that satisfies some specific conditions. Of late, Aljarrah 

et al. (2014) employed quantile functions to generate T-X family of distributions. For 

assessment of methods for generating distributions see Lee et al. (2013) &Jones (2015). 

 

The gamma distribution is the most popular model for analyzing skewed data. In the last 

few years, many generalizations of gamma and Weibull distributions are proposed. These 

generalizations are mainly introduced in order to extend the scope of ordinary gamma 

and Weibull distributions and to develop a model for failure time to suit any given 
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particular situation. The generalized gamma distribution (GG) was first presented by 

Stacy (1962) and includes as special sub-models: the exponential, Weibull, gamma and 

Rayleigh distributions, among others. The GG distribution is suitable for modeling data 

with different types of hazard rate function: increasing, decreasing, bathtub and 

unimodal. The GG distribution has been used in several research areas such as 

engineering, hydrology and survival analysis. Agarwal and Kalla (1996) defined a new 

type of generalized gamma distribution by slightly modifying the form of Kobayashi's 

generalized gamma function (1991). Their proposed distribution may find applicability in 

reliability or queuing theory under the situation where the effect of all the parameters 

does not start in the beginning. Some of the parameters start playing their role after 

sometime i.e. "displaced parameter". For example, in a new machine system the 

corrosion problem will start after certain interval of time and similar is the case of the 

metal fatigue. 

 

This paper proposes a new six parameter generalization of GG distribution, called the 

modified generalized gamma (MGG) distribution. It includes as special sub models such 

as the generalizations of gamma distribution introduced by Stacy (1962), Hoq et al. 

(1974), Lee and Gross (1991), Agarwal and Kalla (1996), Agarwal and Al-Saleh (2001), 

Kalla et al. (2001) and also the generalized beta distribution of the second kind (GB2) 

(McDonald,(1984)), among others. We are motivated to introduce the MGG distribution 

because (i) it contains a number of known lifetime sub models such as gamma, Weibull, 

exponential, Rayleigh, Maxwell, Chi-square, folded normal, beta type-II, Burr XII, Burr 

III, log-logistic distributions and so on; (ii) it is capable of modeling monotonically 

increasing, decreasing, bathtub-shaped, and upside-down bathtub-shaped hazard rates; 

(iii) it can be viewed as a suitable model for fitting the skewed data which may not be 

properly fitted by other common distributions and can also be used in a variety of 

problems in different areas such as public health, biomedical studies, and industrial 

reliability and survival analysis; and (iv) two real data applications show that it compares 

well with other competing lifetime distributions in modeling lifetime data. 

 

This paper is organized in the following way: In Section 2, the MGG is defined and some 

basic distributional properties of the new model are studied. In Section 3, some well-

known and new lifetime models as members of MGG are derived. Properties of the MGG 

distribution are studied in Section 4 including, quantile, mode, moments, moment 

generating function, mean deviation, mean residual life and entropy. The maximum 

likelihood estimates (MLEs) of the model parameters and the corresponding observed 

Fisher information matrix are obtained in section 5. The potentiality of the new model is 

illustrated by means of application to two real data sets in Section 5. Finally, some 

concluding remarks are addressed in Section 6. 

2. The Modified Generalized Gamma Distribution 

The generalized gamma function which is essentially a confluent hypergeometric 

function has been considered by Kobayashi (1991) in the form  

1

0

( , ) ( ) ,yk y y k e dy 

 


           (1) 
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where is a non-negative integer and , 0k  . It is obvious that this function reduces to 

the ordinary gamma function ( ) , when 0   that is 0 ( , ) ( )k    . This function is 

useful in many problems of diffraction theory and corrosion problems in new machines. 

Now we can define the following function so-called modified generalized gamma 

function (MGGF) with the form 

1

0

( , , ) ( ) , 0, 0,b yk b y y k e dy b 

  


      
   

(2) 

this function can be specialized to: 

i. If we take 1b  , equation (2) reduces to the exact form of Kobayashi's function 

given by (1). 

ii. When 1b  and 0  , equation (2) becomes the standard form of gamma function 

in the form 

1

0

( ) .yy e dy


   
      

(3) 

iii. For the case of 0b  , 1k  and ,h    equation (2) yields the standard form 

of beta function of the second type as 

1 ( )

0

( , ) (1 ) .hB h y y dy 


   
   

  (4) 

 

Based on equation (2), we can define the following probability density function (pdf) 

-1 -1
( ; , , , )  ( ) ,  0, , , 0, 0,

( , , )

b yf y k b y y k e y k b
k b

 



   


    


 

(5) 

applying the transformation 1x y   in (5), the pdf of the MGG distribution is given by 

 

 
1

-
( ; )  , 0,

( , , )

b xx x
f x k e x

k b




 







   


     

      
         

(6) 

where ( , , , , , )Tk b     , , , , 0, , 0k b     , ,   are the shape parameters, , b

are the scale parameters, k is the displacement parameter and is the parameter of 

intensity of the effect of the corresponding displacement parameter. The corresponding 

cumulative distribution function (cdf) is 

( , , , )
( ; ) ,

( , , )

k b c
F x

k b





 






 

where ( / )c x   and ( , , , )k b c   is the lower incomplete modified generalized gamma 

function defined as 

1

0

( , , , ) ( )

( , , ) ( , , , ) ,

c

b xk b c x x k e dx

k b k b c

 



 

 

 

   

  


 

where ( , , , )k b c   is the upper incomplete modified generalized gamma function and 

given by  
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1( , , , ) ( ) .b x

c

k b c x x k e dx 

 


      

The survival function and hazard rate function for MGG are, respectively, given by 

( , , , )
( )

( , , )

k b c
S x

k b













 

and 

 
1

( )  .
( , , , )

b xx x
h x k e

k b c




 






   





    

     
      

 

 

Plots of the density function (6) for selected parameter values are given in Figure 1. 

Figure 2 displays the MGG failure rate function which can be increasing, decreasing, 

bathtub and upside down bathtub shaped depending on the parameter values. 
 

(a) 

 

(b) 

 

(c) 
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Figure 1.Density plots of MGG for 1k b    , 5   and (a) 5   and various values 

of  , (b) 2   and various values of   and (c) various values of  and  . 

 

 

Figure 2. Hazard plots of MGG for 1b    and various parameter values of , ,   and k  

3. Special Distributions 

The MGG distribution has several distributions as special cases, which makes it 

distinguishable scientific importance from other distributions. In this section, we 

investigate the various special models of the MGG distribution. 

1) When 1b  and 0,  equation (6) reduces to the generalized gamma  distribution 

given by Stacy (1962) with pdf 

 

 
-1

-
( ; , , )  , 0, , , 0.

( )

yx
f x e x





     

  

 
   

     

(7) 

In this case various special models of the MGG distribution are listed in table 1. 

Table 1:Sub-models of the MGG Distribution (with 1b  and 0  ) 

      Reduced Model 

1 - - Gamma distribution 

- - 1 Weibull distribution 

2 - 1 Rayleigh distribution  

1 - 1 Exponential distribution 

2 - 3 2  Maxwell distribution 

1 2 2n  Chi-square distribution 

2 2  1 2  Folded normal distribution 

 

2) In case of 1, 0b   and q  , MGG corresponds to the generalized life 

testing model given by Hoq et al. (1974) with pdf 
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 --1( ; , , )  ( ) , 0, , , 0.
( )

xqf x q x e x q
q




    
 

  
                

(8) 

 

3) For 1,2,..., ,i n 0, ,i im b      and 1 ( )ia p  , we get the generalized 

gamma model defined by Lee and Gross (1991) as 

 - 1 ( )-1( )
( ; , , , )  ,

( )

i i mi
i ii i

b m
a p xb mi i

i i i i i
i

m a p
f x b m a p x e

b







(9) 

where 0,  , , , 0.i i i ix b m a p   

4) When 1,b   1  and k  , the density(6) becomes the generalized 

gamma model defined by Agarwal and Kalla (1996) as  

 1( ; , , , ) , 0, , , , 0.
( , )

xf x x x e x
 

 




        

  


    


     (10)                        

 

5)  Kalla et al. (2001) introduced a unified type of generalized gamma model. By 

Setting , 1 , 1k b      and 1m   , equation (6) yields their model 

with six parameters as the form 

  

1

1

1
( ; , , , , , ) ,

( 1, )

m x

m

x x e
f x m

m


   

  


   
    

    


  

 

 
 


 

 (11) 

 where 0, , , , , , 0.x m      From (11), the following special cases can be 

derived 

 

     (i) With 1   and 1m m   we get the pdf (10). 

     (ii) If 0  , the density (11) reduces to the general form of Weibull distribution with 

the following pdf 
1 1

( , , , ) , , , 0,
( 1)

m m xx e
f x m m

m

   
   



   

 
 

 

which leads to the Weibull distribution with 0m  , and the gamma distribution 

with 1  . 
 

6)  Agarwal and Al-Saleh (2001) used the exact function of Kobayashi (1991) to define 

the generalized gamma model with four parameters. The case of 1b    and 

1/d  corresponds to their model with the pdf 

 

 1( ; , , , ) ,
( , )

0, , , , 0.

d xd
f x k d x x k d e

k

x k d

 




 


 


  



 
  

(12) 

 

7)  If we take 0, 1b k  and h   the pdf in (6) becomes the generalized beta 

distribution of the second kind (GB2) which was introduced by McDonald (1984) 

with the following pdf 
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( )
1

( ; , , , )  1 , 
( , )

0, , , , 0,

h

x x
f x h

B h

x h


 


  

   

  

 
     

     
     

    (13) 

 where ,  and h  are the shape parameters and  is the scale parameter. The 

GB2 is most useful for unifying a substantial part of the size distributions 

literature.It contains a large number of income and loss distributions as special or 

limiting cases. Full details can be found in Brazauskas (2002), Kleiber and Kotz 

(2003).Table 2 lists various special models of the MGG distribution when 0,b 

1k  and h   . 

Table 2:Sub-models of the MGG Distribution (with 0,b   1k  and h   ). 

      h  Reduced Model 

1 - - - Singh–Maddala (Burr XII) distribution 

- - - 1 Dagum (Burr III) distribution 

- - 1 - Beta type II distribution 

1 1 - - Standard Burr XII distribution 

- 1 - 1 Standard Burr III distribution 

- 1 1 - Standard Beta type II distribution 

1 - - 1 Fisk (or log-logistic) distribution 

1 - 1 - Lomax (or Pareto type II) distribution 

1 - h  - Paralogistic distribution 

- - 1 1 Inverse Lomax distribution 

- -   - Inverse paralogistic distribution 

4.   Properties of the MGGD 

In this section, we provide some general properties of the MGG distribution including 

quantile function, mode, moments, mean deviation, mean residual life and mean waiting 

time, Rényi entropy and order statistics. 

4.1 Mode and quantile 

The p- thquantile function of the MGG distribution is the solution of 

( , , , ( ) )
,

( , , )

pk b x
P

k b







  





       (14) 

particularly, the median, denoted by 
* , can be obtained from (14) by substituting 

0.5p  by solving the following 
*( , , , ( ) )

0.5
( , , )

k b

k b







   





 

From (6) the mode, denoted by mx , for the MGG distribution is given by the solution of 
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 
1

.
( / ) ( / )m m

b
x x k

 

 


 


 


      (15)  

It is noted that, when 0k  , the mode becomes 
1/

( 1)
.mx

b


 




  
  

   
Also, when 0b   the mode reduces to  

1/

1
.

( 1) 1
m

k
x




  

 
  

  
 

 

Equations (14) and (15) are used to obtain the median and the mode for the MGG 

distribution. Median and mode values are reported in Table 3 for 1b k    , 2   and 

various values of and   . 

Table 3:Median and mode of the MGG distribution 

    Median Mode 

0.5 0.5 0.0081 0.0000 

- 3 2.3929 0.1716 

- 5 10.2378 3.0000 

3 0.5 0.4478 0.3863 

- 3 1.1565 1.1383 

- 5 1.4736 1.4657 

5 0.5 0.6175 0.6394 

- 3 1.0912 1.0953 

- 5 1.2619 1.2673 

 

From Table 3, it is to be noted that for fixed , , ,b k  and  , the median and the mode of 

MGG distribution are increasing functions of . 

4.2 Moments, generating function and mean deviation 

From (6) it is easy to obtain the r -th moment about zero of MGG distribution as 

 ( ) , ,
( ) .

( , , )

r

r
r k b

E x
k b





  



 



      (16)

  

Also, the central moments of MGG distribution can be obtained as follows 

 
0

( 1)
1

( ) (( ) ) , , . (17)
( , , )

r
r r j

j

r j j

j
E x r j k b

k b



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






      

  


 
where   is the mean of the MGG distribution and can be obtained from (16) as follows
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 (1 ) , ,
.

( , , )

k b

k b





  




 




 using equation (17) the variance 
2 can be obtained as 

     2 2

2

2

(2 ) , , (1 ) , , (1 ) , ,
.

( , , )

k b k b k b

k b

  



      




       


 

 

The moment generating function ( )xM t of MGG is  

 
0

0

( ) ( )

( ) ( ) , ,
.

! ( , , )

t x

x

j

j

M t e f x dx

t j k b

j k b




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









 








 

 

The mean deviation (MD)can be derived as 

 

0

0

MD ( ).

2 ( ) ( ).

2 ( , , , ( / ) ) (1/ , , , ( / ) )
.

( , , )

E x x f x dx

F xf x dx

k b k b
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
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 



 

 

          





   

  
  

  

 






  

 

Equations (16) and (17) are used to obtain the mean, variance, skewness and kurtosis for 

the MGG distribution. The results are shown in Table (4) using the parameters values 

proposed in the previous subsection. 

Table 4:Mean, variance, skewness and kurtosis of MGG distribution 

    Mean Variance Skewness Kurtosis 

0.5 0.5 0.1696 0.5180 17.1458 690.6574 

- 3 4.8269 51.7191 4.4978 41.7516 

- 5 15.5417 283.4986 3.0308 19.7127 

3 0.5 0.4755 0.0714 0.5739 3.0558 

- 3 1.1651 0.0692 0.1872 2.9401 

- 5 1.4775 0.0647 0.0950 2.9220 

5 0.5 0.6132 0.0497 -0.0171 2.6090 

- 3 1.0892 0.0224 -0.1025 2.8599 

- 5 1.2594 0.0172 0.0070 3.3573 

 

From Table 4, it is to be noted that for fixed , , ,b k  and  , the variance and the 

skewness are decreasing functions of  , while for fixed , , ,b k   and  ,the mean is 
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increasing function of  . Also, it can be seen that the MGG distribution can be 

positively skewed, negatively skewed, platykurtic or leptokurtic. 

4.3 Mean Residual Life and Mean Waiting Time 

If the random variable X follows the MGG distribution with pdf given in (6), then the 

mean residual life function, say ( )t , is given by 

( ) ( | )
1

( ) ,
( ) t

t E T t T t x f x dx t
S t




    
    

(18) 

where ( ) 1 ( )S t F t  is the survival function and 

 -1( )  ( / ) ( / )
( , , )

b x

t t
x f x dx x x x k e dx

k b

  




 

 

  
      , 

using the transformation ( / )y x  ,  we can obtain 

( 1/ , , , ( / ) )
( ) ,

( , , )t

k b t
x f x dx

k b







   



  



     

(19) 

substituting (19) in (18), the mean residual function can be written as 

( 1/ , , , ( / ) )
( ) .

( , , , ( / ) )

k b t
t t

k b t









   


 

 
 


 

 

The mean waiting time of X , say ( )t , is defined  by 

 
( )

( )
,

( )
t t

m t

F t
  

        

(20) 

where ( )m t  is the first incomplete moment and given by 

0

( 1/ , , , ( / ) )
( ) ( )

( , , )

t k b t
m t x f x dx

k b







    




 

  

now, from (20) ( )t can be written as 

( )
( 1/ , , ,( / ) )

( , , ,( / ) )
t t

k b t

k b t










   


  

 


 

4.4 Entropy 

The entropy of a random variable X  measures the variation of the uncertainty. The 

Rényi entropy, say ( )XRE  , is defined as 

1
( ) ln ( ) . , 0, 1,

1
XRE f x dx  







 
   

  


     

(21) 

for the MGG distribution with PDF given by (6), we have 

 

1

10

((( 1) 1) / , , )
( )  

( , , )

k b
f x dx

k b


 





    

 






  



  

now, ( )XRE   can be obtained in the following form 
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 

 

( ) ln( ) ln( ) ln ( , , )
1

1
ln ((( 1) 1 ) / , , ) .

1

X

v

v
RE k b

v

v k vb
v





   

  

   


    


 

It is to be noted that when 1  , the Rényi entropy converges to the Shannon entropy. 

4.5 Order statistics 

Suppose that 1 2, ,..., nX X X  be a random sample of size n, then the PDF of the i-th order 

statistic :i nX , say : ( )i nf x is given by 

1

:

1
( ) ( ) [1 ( )] ( ),

( , 1)

i n i

i nf x F x F x f x
B i n i

  
 

    (22) 

Substituting the pdf of MGG distribution given by (6) and the corresponding cdf in 

equation (22), we can write : ( )i nf x  as 

 
11

-

:

[ ( , , , )] [ ( , , , )]
( )  

( , 1) [ ( , , )]

i n i
b x

i n n

k b c k b c x x
f x k e

B i n i k b



 

 



   

   


       

     
        

(23) 

 

The pdf of the minimum and the maximum order statistics of MGG distribution can be 

obtained, respectively, from (23) as follows 

 
11

-

1:

[ ( , , , )]
( )  

[ ( , , )]

n
b x

n n

n k b c x x
f x k e

k b



 





 

   


      

     
      

 

and 

 
11

-

:

[ ( , , , )]
( )  

[ ( , , )]

n
b x

n n n

n k b c x x
f x k e

k b



 





  

   


     

     
      

. 

 

The s -th moment of :i nX  can be obtained as 

1

:

[ ( , , , )] [ ( , , , )] ( / , , )
( )

( , 1) [ ( , , )]

s i n i
s

i n n

k b c k b c s k b
E X

B i n i k b

  



     



   


  
 

 

The joint pdf of the i-th and the l-th order statistics can be written as 
1 1

, : , ,( ) ( ) [1 ( )] [ ( ) ( )] ( ) ( ),i n l l i

i l n i l nf x C F x F y F y F x f x f y     
  

(24) 

where x y  and 
, ,

!

( 1)!( 1)!( )!
i l n

n
C

i l i n l


   
. From (24), the joint pdf of the i-th and 

the l-th order statistics of MGG distribution can be obtained as 
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 

   

2 1
1

, : , , 2
0

1 1

1

-

1[ ( , , , ( / ) )]
( ) (-1) [ ( , , , ( / ) )]

[ ( , , )]

 [ ( , , , ( / ) )]

n l l i
j l i j

i l n i l n n
j

i j

b x y

l i

j

k b y
f x C k b y

k b

x y x y
k b x k k

e
 








    





 

  
  

 

  
   

  
  



 
 

 



 




          
            

             





 
  

 

 

5. Estimation of Parameters 

 
Here, we consider the estimation of the unknown parameters of the MGG distribution by 

the method of maximum likelihood. Let 1 2, ,....., nx x x  be a random sample from the 

MGG distribution. The total log-likelihood ( ) is given 

1 1 1

 ln ( ) ln ( ) ln( ) ( 1) ln( ) ln( ) ,
n n n

i i i

i i i

n n n x u b z     
  

         (25) 

where ( , , )k b   , ( / )i iz x  and ( )i iu z k  . The score vector 

, , , , ,
k b   

      
   

      
 

has the components 

 1

ln( ) ln( ),
n

i

i

n n x  
  


   


 1

1

,
 

n
k

i

i

n
u

k











  


  

 1

,
 

n
b

i
i

n
z

b



 


  




1

ln ( ),
 

n

i

i

n
u

  


  


  

 

1

1 1

( / ) ( / )
 

n n

i i i
i i

n
u z b z 

   
 



 


   


   

and 

 

1

1 1 1

ln( ) ln( ) ln( ) ln( ).
 

n n n

i i i ii i
i i i

n
n x u z z b z z    

 



  


    


    

 

From Gradshteyn and Ryzhik (2007), we can write 

 

1

0

( , , ) ( ) , 0, 0,b yk b y y k e dy b 

  


        

 

1

0

( ) ln( ) ,b xx x k e x dx 








  

  
   

 

1 ( 1)
( 1)

0

( ) ( , , ),b x
k x x k e dx k b

k

 



   


   




      
   

0

( ) b x
b x x k e dx

b

 



 

   
   and 1

0

( ) ln( )b xx x k e x k dx 








  

    
   

 

The MLEs of the parameters are the solutions of the nonlinear equations 0  .The 

observed information matrix is given by 
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( )

k b

kk kb k k k

bb b b b

J J J J J J

J J J J J

J J J J
J

J J J

J J

J

     

  

  

  

 





 
 
 
 

  
 
 
 
  

 

whose elements are listed in Appendix. 

6. Applications 

Here, we use two real data sets to compare the fits of the MGG distribution with several 

other com-petitive models namely: McDonald modified Weibull (McMW) (Merovci and 

Elbatal (2013)), McDonald generalized Failure rate (MGLFR) (Elbatal et al. (2014)) 

McDonald Dagum (McDagum) (Oluyede et al. (2013)), Transmuted Weibull Lomax 

(TWL) (Afify et al.(2015)), Beta exponentiated Weibull (BEW) (Cordeiro et al. (2013)) 

and gamma exponentiated Weibull models (GEW) (Gustavo et al.(2012)) with 

corresponding densities(for 0x  ) 

   
11 1( )

McMW: ( ) 1 1 1 ,
( , )

b
k k

x x x x x xk x
f x e e e

B b

  
 

      



 
       

   
  

 

2 2 2

1
1

( ) ( ) ( )
2 2 2

( )
McGLFR: ( ) 1 1 1 ,

( , )

b
k k

x x x x x xk x
f x e e e

B b

 
  

    






         
       
     

 

   
( 1) 1

( 1)

McDagum : ( ) 1 1 1 ,
( , )

b
k kk x

f x x x
B b


 

  
 



  
  

     
  

 

1 1 [(1 ( / ) ) 1]

[(1 ( / ) ) 1]

TWL : ( ) [1 ( / )] [1 (1 ( / )) ]

[1 2 ],

b

b

b b x

x

b
f x x x e

e





   

 

 
 



 

     

  

   

  

 

1
1

BEW: ( ) 1 ,
( , )

x x
bx

f x e e
B b

  


 
  

  


    

    
   

 
     

  
 

 

11
1

GEW: ( ) 1 ln 1 ,
( )

k
x x x

k x
f x e e e

  



  

  


      

       
     

    
         

      
    

 

where , , , , , 0,b k      and 
1

1 1

0
( , ) (1 )a bB a b w w dw    is the beta function  

6.1 Application 1: Carbon Data 

The first data set is taken from Nichols and Padgett (2006) consisting of 100 observations 

on breaking stress of carbon fibers (in Gba). The data are: 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 

3.27, 2.87, 1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 

2.95, 2.97, 3.39, 2.96, 2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 

2.56, 3.56, 3.15, 2.35, 2.55, 2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 

0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 



Mohamed Mead, MazenNassar, SankuDey 

Pak.j.stat.oper.res.  Vol.XIV  No.1 2018  pp121-138 134 

2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 

2.79, 4.7, 2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82, 2.05, 3.65. 

6.2 Application 2: Repair Times Data 

The second data corresponds to 46 observations reported on active repair times (hours) 

for an airborne communication transceiver discussed by Alven (1964). The data are: 0.2, 

0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 1.0, 1.0, 1.0, 1.0, 1.1, 1.3, 1.5, 1.5, 

1.5, 1.5, 2.0, 2.0, 2.2, 2.5, 2.7, 3.0, 3.0, 3.3, 3.3, 4.0, 4.0, 4.5, 4.7, 5.0, 5.4, 5.4, 7.0, 7.5, 

8.8, 9.0, 10.3, 22.0 , 24.5. 

 

For each model, we estimate the unknown parameters by maximum likelihood method. 

Tables 5 and 7 lists the MLEs (and the corresponding standard errors in parentheses) of 

the parameters of all the above models for both the carbon data and repair times data, 

respectively. We apply formal goodness- of fit tests in order to verify which distribution 

fits better for both data sets. The statistics we use are: ˆ2 ( )  (where ˆ( ) denotes the log-

likelihood function evaluated at the maximum likelihood estimates), Kolmogorov-

Smirnov (K-S) and p-values are presented in tables 6 and 8. In general, the smaller the 

values of these statistics, the better the fit to the data. From these tables we observe that 

the MGG distribution has the lowest ˆ2 ( ), and K-S and largest p-value among all the 

other models, and so it could be chosen as the best model. The histogram for both carbon 

data and repair times data sets and their estimated pdfs for the fitted models are displayed 

in Figures 3(a) and 4(a)respectively. Also, the plots of the fitted MGG survival and the 

empirical survival functions for both carbon data and repair times data sets displayed in 

Figure 3(b) and Figure4(b), respectively. Therefore, the proposed model provides a better 

fit to these data. 

Table 5: MLEs and their standard errors (in parentheses) for carbon fibers data 

Model Estimates 

        b  k  

McMW 13.5396 

(31.241) 

1.0064 

(0.00665) 

0.0002 

(0.011) 

0.4557 

(0.236) 

3.1981 

(2.189) 

0.4999 

(1.080) 

McGLFR 6.48633 

(12.665) 

0.05391 

(0.00002) 

0.18458 

(0.279) 

0.04528 

(0.0943) 

6.56874 

(1.222) 

2.7366 

(0.0031) 

MGG 1.37506 

(0.558) 

2.31925 

(0.0883) 

0.00101 

(3.414) 

3.3107 

(8.084) 

1.92355 

(8.841) 

(6.2735) 

(6.2735) 

McDagum 19.1107 

(15.862) 

0.46468 

(0.00027) 

31.81212 

(30.815) 

1.3289 

(0.549) 

23.3537 

(23.961) 

0.72825 

(0.00042) 

TWL 1.60093 

(7.48) 

0.36045 

(1.434) 

0.8577 

(1.681) 

0.72681 

(5.099) 

4.38901 

(11.15) 

- 

BEW 0.99999 

(0.0012) 

2.79288 

(0.214) 

10.9209 

(6.556) 

2.0646 

(5.483) 

0.03400 

(1.051) 

- 

GEW 2.5151 

(70.828) 

2.6679 

(18.651) 

- 4.16461 

63.239 

- 1.52672 

(3.1520) 
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Table 6: The statistics ˆ2 ( ) , K - S  and p-value for carbon fibers data 

Statistics Model 

McMW McGLFR MGG McDagum TWL BEW GEW 

ˆ2 ( )  287.841 282.999 282.692 288.735 282.974 283.059 282.831 

K - S  0.08703 0.06395 0.05788 0.09079 0.06187 0.06048 0.05948 

p-value 0.43501 0.80801 0.89101 0.38186 0.83861 0.85783 0.87104 

Table 7: MLEs and their standard errors (in parentheses) for repair times data 

Model Estimates 

        b  k  

McMW 0.883407 

(0.19300) 

0.756391 

(0.24400) 

0.000053 

(0.00333) 

0.000053 

(0.08900) 

1.508001 

(0.70900) 

1.054294 

(0.17500) 

McGLFR 0.26848 

(0.2678) 

0.02109 

(0.0001) 

0.59599 

(0.36299) 

0.01873 

(0.0135) 

1.01245 

(0.0525) 

2.39584 

(0.8438) 

MGG 13.64844 

(26.324) 

0.28026 

(0.2641) 

8.07662 

(3.1350) 

0.05747 

(0.3870) 

3.00102 

(3.3430) 

1.45252 

(0.0066) 

McDagum 0.93961 

(0.5040) 

0.92421 

(0.2063) 

4.42377 

(3.5050) 

1.4204 

(0.8290) 

1.3938 

(1.7180) 

1.11675 

(0.2493) 

TWL 1.6816 

(1.9310) 

0.32074 

(0.1540) 

0.61911 

(0.4840) 

1.09837 

(1.6610) 

1.45592 

(0.4030) 

- 

BEW 3.2037 

(1.7947) 

0.88319 

(0.0950) 

25.9070 

(7.0650) 

3.65541 

(2.3540) 

0.0444 

(0.0160) 

- 

GEW 3.20714 

(2.5710) 

0.52429 

(0.3697) 

- 4.53973 

(9.4820) 

- 4.03723 

(6.1010) 

Table 8:   The statistics ˆ2 ( ) , K - S  and p-value for repair times data 

Statistics Model 

McMW McGLFR MGG McDagum TWL BEW GEW 

ˆ2 ( )  209.99 230.523 201.243 203.087 203.363 203.363 202.48 

K - S  0.14718 0.19587 0.10294 0.11351 0.11914 0.13447 0.10556 

p-value 0.27191 0.05864 0.71429 0.59381 0. 0.5312 0.37635 0.68452 

 

 

  

Figure 3: (a) Histogram and estimated pdfs. (b) Fitted MGG survival  

and empirical survival functions for repair times data 
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Figure 4: (a) Histogram and estimated pdfs. (b) Fitted MGG survival  

and empirical survival functions for carbon fibers data 
 

7.   Conclusion 

The six-parameter MGG distribution, whose hazard function can be monotonically 

increasing, decreasing, bathtub and upside down bathtub-shaped depending on the 

parameter values, is introduced and studied. Some mathematical and statistical properties 

of the new model are investigated. We estimate the model parameters using maximum 

likelihood and determine the observed information matrix. The potentiality of the new 

model is illustrated by means of application to two real data sets. We hope that this model 

may attract wider applications, since the formulae derived are manageable using modern 

computer facilities. 
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