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Abstract 

The quartic H-Bézier curve is used for the approximation of circular arcs. It has five control points and one 

positive real free parameter. The four control points are carried out by 𝐺1-approximation constraints and 

the remaining control point is dividing the line segment joining the second and fourth control points in the 

ratio 1:2. Optimized value of free parameter 𝛼 is obtained by minimizing the maximum value of absolute 

radius error of the recommended approximation scheme. The developed approximation scheme is found 

considerably better than the existing approximation schemes for these computed values of control points 

and optimized value of the free parameter.  

Keywords:   Quartic H-Bézier curve, Control points, Free parameter, 𝐺1-approximation 

constraints, Absolute radius error. 
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1.   Introduction 

Circles and circular arcs are widely applicable in the field of CAD for the designing of 

various objects. The most common applications can be seen in the designing of highway 

and railway routs and in the construction of suspension bridges (Lu, 2012). Since the 

designers can not directly use the parametric equations of circles in CAD rather they use 

the approximations of circles. So it is of keen interest of many authors to find the optimal 

approximations of circular arcs. Ahn and Kim (1997) used Bernstein-Bézier curves of 

degree four and five for 𝐺𝐶𝑘, 𝑘 = 2,3, approximation of circular arcs. Order of 

approximation of these schemes was eight and ten respectively. Fang (1998) discussed 

five circular arcs approximation methods by using polynomial curves of degree 5. The 

convergence rate of these methods was either 8 or 10. Floater (1995) approximated the 

conic sections by quadratic splines with continuous curvature. Hur and Kim (2011) used 
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cubic and quartic Bézier curves for the 𝐺𝑘, 𝑘 = 1,2, approximation of circular arcs. The 

Hausdorff distance between the approximating Bézier curves and circle was least for the 

proposed approximation schemes. Lee et al. (2006) presented the 𝐺0-approximation of 

circular arc by Bézier curve of degree 2. In (Piegl and Tiller, 2003), the integral B-spline 

curve of appropriate degree was used as an interpolant for the approximation of circular 

arcs. The approximation was carried out by interpolating the derivatives at terminal 

points and a few interior points. Riškus (2006) approximated circular arc by using cubic 

Bézier curve. The proposed scheme was valuable in CAD system as it supported Bézier 

curve to interchange data through any data formats.  

 

H-Bézier curves (Lee and Ahn, 2015) have hyperbolic basis functions. These basis 

functions are known as H-basis functions. H-Bézier curves preserve the favourable 

characteristics of ordinary Bézier curves like end points and end tangents interpolation 

property, partition of unity, invariance under affine transformation. H-Bézier curves give 

better smooth shape-preserving curves as compared to ordinary Bézier curves. In the 

proposed study, the circular arc approximation scheme by the quartic H-Bézier curve is 

presented. The existing approximation schemes of circular arcs use 𝐺2-constraints for 

computing the control points of quartic and quintic approximating polynomials (Fang, 

1998). Here the control points 𝑏𝑖 , 𝑖 = 0,1,3,4, are evaluated by 𝐺1-approximation 

constraints. The control point 𝑏2 is chosen as a point dividing the line segment 𝑏1𝑏3
̅̅ ̅̅ ̅̅  in 

the ratio 1:2. The value of free parameter 𝛼 is evaluated by minimizing the maximum 

value of absolute radius error of approximation. The absolute radius error of the 

cultivated circular arc approximation scheme is considerably smaller than the existing 

schemes (Fang 1998; Lu 2012). 

2.   Quartic H-Bézier Curve  

The quartic H-Bézier curve (Lee and Ahn, 2015)  

𝑞(𝑡) = ∑ 𝑍𝑖
4 (𝑡)𝑏𝑖

4
𝑖=0 , 𝑡 ∈ [0,1].      (1) 

 

It has five control points 𝑏𝑖, 𝑖 = 0,1,2,3,4, a free parameter 𝛼 (𝛼 > 0), 𝑡 is H-Bézier 

parameter, and 𝑍𝑖
4(𝑡), 𝑖 = 0,1,2,3,4,  are the quartic H-Basis functions given as: 

𝑍0
4(𝑡) =

𝐿

𝐴
,  𝑍1

4(𝑡) =
𝑅

𝐴
−

𝑀1−𝑀2

𝐵𝐶
, 𝑍2

4(𝑡) =
𝑀1−𝑀2

𝐵𝐶
−

𝑁1−𝑁2

𝐵𝐶
,   

𝑍3
4(𝑡) =

𝑁1−𝑁2

𝐵𝐶
−

𝑄

𝐴
,  𝑍4

4(𝑡) =
𝑄

𝐴
, 

where 

𝐿 = 𝛼2(1 + 𝑡2 ) + 2(1 − 𝑐𝑜𝑠ℎ 𝛼(1 − 𝑡) − 2𝛼2𝑡), 𝐴 = 𝛼2 + 2 − 2 cosh 𝛼, 

𝑅 =  2𝛼2𝑡 − 𝛼2𝑡2 + 2 cosh 𝛼(1 − 𝑡) − 2 cosh 𝛼, 

𝑀1 = (𝛼2𝑡2 − 2 cosh 𝛼(1 − 𝑡) − 2𝛼𝑡𝑠𝑖𝑛ℎ 𝛼 + 2 cosh 𝛼)(𝛼𝑐𝑜𝑠ℎ 𝛼 + 𝛼 − 2 sinh 𝛼), 

𝑀2 = (𝛼 − sinh 𝛼)(−2 cosh 𝛼(1 − 𝑡) + 𝛼2𝑡2 cosh 𝛼  + 𝛼2𝑡2 − 2 cosh 𝛼𝑡
+ 2 cosh 𝛼 −2𝛼𝑡sinh 𝛼 +  2), 

𝑁1 = −2 cosh 𝛼(1 − 𝑡) + 𝛼2𝑡2 cosh 𝛼 + 𝛼2𝑡2 − 2 cosh 𝛼𝑡 − 2𝛼𝑡𝑠𝑖𝑛ℎ 𝛼 + 2, 

𝑁2 = (𝛼2𝑡2 − 2 cosh 𝛼𝑡 + 2)(𝛼 cosh 𝛼 + 𝛼 − 2 sinh 𝛼), 𝑄 =  𝛼2𝑡2 − 2 cosh 𝛼𝑡 + 2, 
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𝐵 = 𝛼 cosh 𝛼 + 𝛼 − 2 sinh 𝛼, 𝐶 = 2 cosh 𝛼 − 2 − 𝛼 sinh 𝛼. 

Numerical experiments suggest that the basis functions are either positive or negative 

depending upon the value of 𝛼.  

3.   Approximation of Circular Arc by Quartic H-Bézier Curve 

In this section, the numerical approximation scheme of circular arc by quartic H-Bézier 

curve is computed. The circular arc is considered in standard position i.e. center at origin 

𝑂(0,0), radius 𝑟, the initial point of the arc is along the positive horizontal axis and the 

final point is making a counter clockwise angle 𝜃 with the same axis. Any circular arc 

with arbitrary center can be transformed to this position by affine transformations.  

 

The following 𝐺1-approximation constraints are used for the approximation: 

𝑞(𝑡)|𝑡=0 = 𝑐0,  𝑞(𝑡)|𝑡=1 = 𝑐1,       (2) 

𝑇0 = 𝑡0,  𝑇1 = 𝑡1.         (3) 

 

Here, 𝑐𝑖′𝑠 are the end points and 𝑡𝑖′𝑠 are the end unit tangent vectors of the circular arc. 

By using (1), we have 𝑞(0) = 𝑏0 and  𝑞(1) = 𝑏4. The end unit tangents of quartic H-

Bézier curves are denoted by 𝑇0 and 𝑇1 and are computed by the relation 𝑇𝑖 =
𝑞′(𝑖)

‖𝑞′(𝑖)‖
,  for 

𝑖 = 0, 1, which implies 𝑇0 =
𝑏1−𝑏0

𝛾1
 and 𝑇1 =

𝑏3−𝑏2

𝛾2
. Now by using these values of end 

points and end unit tangents of the quartic H-Bézier curve into (2) and (3) respectively, 

the following equations are obtained 

𝑏0 = 𝑐0, 𝑏4 = 𝑐1,         (4) 

𝑏1−𝑏0

𝛾1
= 𝑡0,   

𝑏4−𝑏3

𝛾2
= 𝑡1.        (5) 

 

The values of  𝛾1 = ‖𝑏1 − 𝑏0‖ and 𝛾2 = ‖𝑏4 − 𝑏3‖ are positive real numbers. The end 

points and the end unit tangents of the concerned circular arc 𝑐0𝑐1 are 𝑐0(𝑟, 0), 
𝑐1 (𝑟𝑐𝑜𝑠𝜃 , 𝑟𝑠𝑖𝑛𝜃), 𝑡0(0,1), 𝑡1(−𝑠𝑖𝑛 𝜃, 𝑐𝑜𝑠 𝜃). Substituting these values in (4) and (5), 

the control points of quartic H-Bézier curve are given by 

𝑏0 = (𝑟, 0), 𝑏1 = (𝑟, 𝛾1), 𝑏2 = (𝑏20, 𝑏21),

𝑏3 = (𝑏30 = 𝑟𝑐𝑜𝑠𝜃 + 𝛾2𝑠𝑖𝑛𝜃, 𝑟𝑠𝑖𝑛𝜃 − 𝛾2𝑐𝑜𝑠𝜃), 𝑏4 = (𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃) 
}  (6) 

 

The values of parameters 𝛾1 and 𝛾2 are assumed as: 

𝛾1 = ‖𝑏1 − 𝑏0‖ =
‖𝑏4−𝑏0‖

4
, 𝛾2 = ‖𝑏4 − 𝑏3‖ =

‖𝑏4−𝑏0‖

4
. 

It gives, 𝛾1 = 𝛾2 =
√(𝑟𝑐𝑜𝑠𝜃−𝑟)2+(𝑟𝑠𝑖𝑛𝜃)2

4
.      (7) 

 

In (6), the control point 𝑏2 can be evaluated by various methods. In this study, 𝑏2  is 

chosen as a point which divides the line segment 𝑏1𝑏3
̅̅ ̅̅ ̅̅  in the ration 1:2. The coordinates 

of 𝑏2 are 𝑏20 =
𝑟𝑐𝑜𝑠𝜃+𝛾2𝑠𝑖𝑛𝜃+2𝑟

3
, 𝑏21 =

𝑟𝑠𝑖𝑛𝜃−𝛾2𝑐𝑜𝑠𝜃+2𝛾1

3
.   
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In (1) by substituting the values of control points from (6), the following parametric 

equations of quartic H-Bézier curve are obtained: 

𝑥(𝑡) = 𝑍0
4(𝑡)𝑥0 +  𝑍1

4(𝑡)𝑥1 + 𝑍2
4(𝑡)𝑥2 +  𝑍3

4(𝑡)𝑥3 + 𝑍4
4(𝑡)𝑥4,   (8) 

𝑦(𝑡) =  𝑍0
4(𝑡)𝑦0 + 𝑍1

4( 𝑡)𝑦1 + 𝑍2
4(𝑡)𝑦2 + 𝑍3

4(𝑡)𝑦3 + 𝑍4
4(𝑡)𝑦4,   (9) 

where 

 𝑥0 = 𝑟, 𝑥1 = 𝑟, 𝑥2 =
𝑟𝑐𝑜𝑠𝜃+𝛾2𝑠𝑖𝑛𝜃+2𝑟

3
, 𝑥3 = 𝑟𝑐𝑜𝑠𝜃 + 𝛾2𝑠𝑖𝑛𝜃, 𝑥4 = 𝑟𝑐𝑜𝑠𝜃, 

𝑦0 = 0, 𝑦1 = 𝛾1, 𝑦2 =
𝑟𝑠𝑖𝑛𝜃 − 𝛾2𝑐𝑜𝑠𝜃 + 2𝛾1

3
, 𝑦3 = 𝑟𝑠𝑖𝑛𝜃 − 𝛾2𝑐𝑜𝑠𝜃, 𝑦4 = 𝑟𝑠𝑖𝑛𝜃. 

 

The H-basis functions 𝑍𝑖
4(𝑡), 𝑖 = 0,1,2,3,4,  have been already defined in Section 2. The 

free parameter 𝛼 of quartic H-Bézier curve can assume different values and produces 

different H-Bézier curves for the approximation of circular arc. Therefore to find optimal 

approximation the value of 𝛼 must be optimized. Here, the optimized value of 𝛼 is 

obtained by the following optimization problem-I. 

Optimization problem-І: 

min
𝛼>0

( max
0≤𝑡≤1

�̃� (𝛼, 𝑡)),        (10) 

subject to 

𝛼 ≥ 𝑢,  

where, 𝑢 = 2.2204 × 10−16, �̃�(𝛼, 𝑡) = |𝑥2(𝑡) + 𝑦2(𝑡) − 𝑟2|. �̃�(𝛼, 𝑡) is the absolute 

radius error of the developed approximation scheme for circular arc 𝑐0𝑐1 by quartic H-

Bézier curve (1). 𝑟 is the radius of the concerned circular arc, 𝑥(𝑡) and 𝑦(𝑡) are defined 

in (8) and (9).  

The optimization problem-I is solved by the MATLAB 7 built in function fminimax of 

the MATLAB optimization toolbox. The fminimax is based on the sequential quadratic 

programming technique (Brayton et al., 1979). Sequential quadratic programming 

technique is not suitable for discontinuous functions. But the objective function of 

optimization problem-I is continuous, so the problem is solvable. 

4.   Numerical Example 

In this section, the numerical approximation scheme introduced in Section 3 is 

implemented on the unit circular arc given in Table 1. 

Table 1:   Unit circular arc 

𝜽 𝒓 𝒄𝟎 𝒄𝟏 𝒕𝟎 𝒕𝟏 

𝜋/4 1 (1,0) (0.7071 , 0.7071) (0,1) (−0.7071 , 0.7071) 
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Control points of the quartic H-Bézier curve corresponding to the unit circular arc of 

Table 1 are calculated by Theorem 1. These computed values of control points and free 

parameter 𝛼 are given in Table 2. 

Table 2:   Control points of the quartic H-Bézier curve  

𝒃𝟎 𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒 𝜶 

(1,0) (1, 0.1913) (0.9475,0.3182) (0.8424,0.5718) (0.7071,0.7071) 9.2149 

 

Graph of quartic H-Bézier curve approximating the circular arc of Table 1 is plotted in 

Figure 1. The reflection of this circular arc about the line 𝑦 = 𝑥 is given in Figure 2. By 

combining the graphs of Figures 1 and 2, a quarter circle of unit radius is obtained ( 

Figure 3). A semi-circle is obtained in Figure 4 by the reflection of the quarter circle of 

Figure 3 about y-axis. Complete circle is obtained in Figure 5 by the reflection of semi-

circle of Figure 4 about x-axis. The maximum value of the absolute radius error of the 

developed approximation scheme is 8.7 × 10−3. The plot of absolute radius error of the 

developed quartic H-Bézier approximation scheme is given in Figure 6. 

5.   Conclusion 

In the proposed study, a circular arc quartic H-Bézier curve approximation scheme is 

introduced. The values of control points are evaluated by 𝐺1-approximation constraints 

and the value of free parameter is obtained by minimizing the maximum value of 

absolute radius error of proposed approximation scheme. Absolute radius error of 

approximation for the proposed scheme is compared to the prevailing schemes (Table 3). 

It is noted that the absolute radius error of approximation in the proposed scheme is less 

than (Fang, 1998; Lu 2012).  

Table 3:   Absolute radius errors 

References Methods Absolute radius error 

Fang, 1998 Fang method ІV 1.1788 × 10−2 

Lu, 2012 Lu 1.5213 × 10−2 

 Section 4  Quartic H-Bézier approximation scheme 

for circular arc 
8.7 × 10−3 
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Figure 1: Unit circular arc making angle  
𝜋

4
    

                 with x-axis 

Figure 2: Reflection of Fig. 1 about the line     

                 𝑦 = 𝑥 

 
Figure 3: Combination of Figures 1 and 2 

 

Figure 4: Reflection of Figure 3 about y-axis 
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Figure 5: Reflection of  Figure 4 about x-axis  (circle approximation) 

 
Figure 6: Absolute radius error  
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