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Abstract 

In this paper we use the Gibbs sampling algorithm to develop a Bayesian inference for multiplicative 

double seasonal moving average (DSMA) models. Assuming the model errors are normally distributed and 

using natural conjugate priors, we show that the conditional posterior distribution of the model parameters 

and variance are multivariate normal and inverse gamma respectively, and then we apply the Gibbs 

sampling to approximate empirically the marginal posterior distributions. The proposed Bayesian 

methodology is evaluated using simulation study. 
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1.   Introduction 

High frequency time series that are observed at small time units may be characterized by 

exhibiting multiple seasonal patterns. For example, hourly electricity load data can 

exhibit intraday and intraweek seasonal patterns. Other examples of high frequency time 

series contain multiple seasonal patterns include daily hospital admissions, daily usage of 

water and natural gas, hourly volumes of call center arrivals, hourly traffic on a road, 

hourly access to computer web sites, and half-hourly demand for public transportation. 

The notion of modelling multiple seasonalities is not new and it can be traced back to 

1971 when Thompson and Tiao (1971) showed that monthly disconnections of the 

Wisconsin telephone company have annual and quarterly (double) seasonal patterns. 

Accordingly, seasonal autoregressive moving average (SARMA) models being widely 

applied to analyze time series with single seasonal pattern need to be modified and 

extended to accommodate multiple seasonalities, see for example Box et al. (1994) and 

Taylor (2003). In addition to SARMA models, other techniques have been extended to fit 

multiple seasonal time series, which include neural networks, exponential smoothing 

methods and innovation state models. A quick review of these techniques can be found in 

Feinberg & Genethliou (2005). 

 

In particular, the multiplicative double SARMA (DSARMA) models have been the 

subject of interest of many researchers and extensively studied and employed in modeling 

and forecasting time series data exhibiting double seasonal patterns. Taylor (2003) 

showed that electricity load in England and Wales features daily (within day) and weekly 

(within week) seasonal patterns. Taylor et al. (2006) compared the forecast accuracy of 

some univariate models including double SARMA for electricity demand forecasting in 

Brazil and in England and Wales. Cruz et al. (2011) compared the forecasting accuracy of 

a set of methods for day-ahead spot price forecasting in the Spanish electricity market. 
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Other references may include Taylor (2008a&b), Caiado (2008), Baek (2010), Mohamed 

et al. (2010), Au et al. (2011), Mohamed et al. (2011) and Kim (2013). 

 

Bayesian analysis of SARMA model for single seasonality has been well established, and 

different approaches have been developed in literature. Analytical approximation is one 

of these approaches, which simply approximates the posterior and predictive densities to 

be standard closed-form distributions that are analytically tractable, see for example 

Shaarawy and Ismail (1987). However, this approach is conditioning on the initial values 

leading to waste observations, and treats SARMA model as an additive not a 

multiplicative model which can introduce new unnecessary coefficients in the model. To 

address the limitations of analytical approximation, in recent years MCMC methods, 

especially Gibbs sampling algorithm, have been proposed to ease the Bayesian time 

series analysis. Ismail (2003a&b) used Gibbs sampling algorithm to achieve Bayesian 

analysis for multiplicative seasonal moving average (SMA) and seasonal autoregressive 

(SAR) models. This work was extended by Ismail and Amin (2014) to multiplicative 

SARMA model. The literature in Bayesian analysis of DSARMA models is still 

immature. Amin and Ismail (2015) have used Gibbs sampling algorithm to develop a 

Bayesian analysis to multiplicative double SAR models. In the current paper, we extend 

this work to develop a Bayesian analysis to multiplicative DSMA models based on Gibbs 

sampling algorithm. The initial idea of this work was presented in the 60th ISI World 

Statistics Congress 2015, and the main advantages of the proposed methodology are that 

the Bayesian analysis is unconditional on the initial values of errors and it treats DSMA 

model as a multiplicative not an additive model to achieve parsimonious property. 

 

The remainder of this paper is organized as follows: Section 2 presents multiplicative 

DSMA models. Section 3 summarizes the posterior analysis and full conditional posterior 

distributions of the parameters. The implementation details of the proposed algorithm 

including convergence monitoring are presented in Section 4. The proposed methodology 

is illustrated in Section 5 using several simulated examples. Finally, the conclusions are 

given in Section 6. 

2.   Double Seasonal Moving Average (DSMA) Model  

A time series {𝑦𝑡} is said to be generated by a multiplicative seasonal moving average 

model of orders q, Q 1, and Q 2, denoted by DSMA(q)(Q 1) 𝑠1(Q 2) 𝑠2, if it satisfies 

𝑦𝑡 = 𝜃𝑞(𝐵)Θ𝑄1(𝐵
𝑠1)Ψ𝑄2(𝐵

𝑠2)𝜀𝑡       (1) 

where {𝜀𝑡} is a sequence of independent normal variates with zero mean and variance 𝜎2. 

The backshift operator B is defined as 𝐵𝑘𝑦𝑡 = 𝑦𝑡−𝑘, s 1 and s 2 are the seasonal periods. 

The non seasonal moving average polynomial is 𝜃𝑞(𝐵) = (1 + 𝜃1𝐵 + 𝜃2𝐵
2 +⋯+

𝜃𝑞𝐵
𝑞) with order q. In addition, the seasonal moving average polynomials are 

Θ𝑄1(𝐵
𝑠1) = (1 + Θ1𝐵

𝑠1 + Θ2𝐵
2𝑠1 +⋯+ Θ𝑄1𝐵

𝑄1𝑠1) with order Q 1 and Ψ𝑄2(𝐵
𝑠2) =

(1 +Ψ1𝐵
𝑠2 +Ψ2𝐵

2𝑠2 +⋯+Ψ𝑄2𝐵
𝑄2𝑠2) with order Q 2. Finally, the non seasonal and 

seasonal moving average coefficients are 𝜃 = (𝜃1, 𝜃2, ⋯ , 𝜃𝑞)
𝑇

, Θ = (Θ1, Θ2, ⋯ , Θ𝑄1)
𝑇
 

and Ψ = (Ψ1, Ψ2, ⋯ ,Ψ𝑄2)
𝑇
. The time series {𝑦𝑡} is assumed to start at time t = 1 with 

unknown starting errors 𝜀0 = (𝜀0, 𝜀−1, ⋯ , 𝜀1−𝑞−𝑄𝑠). 
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It should be noted that the DSMA model (1) has an extra terms compared with the usual 

multiplicative single SMA model. The new term is Ψ𝑄2(𝐵
𝑠2) that accommodates the 

second seasonal pattern. Accordingly, the model (1) can be written as 

𝑦𝑡 =∑

𝑞

𝑖=1

𝜃𝑖𝜀𝑡−𝑖 +∑

𝑄1

𝑗=1

Θ𝑗𝜀𝑡−𝑗𝑠1 +∑

𝑄2

𝜏=1

Ψ𝜏𝜀𝑡−𝜏𝑠2 +∑

𝑞

𝑖=1

∑

𝑄1

𝑗=1

𝜃𝑖Θ𝑗𝜀𝑡−𝑖−𝑗𝑠1

+∑

𝑞

𝑖=1

∑

𝑄2

𝜏=1

𝜃𝑖Ψ𝜏𝜀𝑡−𝑖−𝜏𝑠2 + 

∑

𝑄1

𝑗=1

∑

𝑄2

𝜏=1

Θ𝑗Ψ𝜏𝜀𝑡−𝑗𝑠1−𝜏𝑠2 +∑

𝑞

𝑖=1

∑

𝑄1

𝑗=1

∑

𝑄2

𝜏=1

𝜃𝑖Θ𝑗Ψ𝜏𝜀𝑡−𝑖−𝑗𝑠1−𝜏𝑠2 + 𝜀𝑡 

= Λ𝑡𝛽 + 𝜀𝑡         (2) 

where  

Λ𝑡 = (𝜀𝑡−1, … , 𝜀𝑡−𝑞 , 𝜀𝑡−𝑠1 , 𝜀𝑡−𝑠1−1, … , 𝜀𝑡−𝑠1−𝑞 , …… , 𝜀𝑡−𝑄1𝑠1 , 𝜀𝑡−𝑄1𝑠1−1, … , 𝜀𝑡−𝑄1𝑠1−𝑞 , 𝜀𝑡−𝑠2 , 

𝜀𝑡−𝑠2−1, … , 𝜀𝑡−𝑠2−𝑞 , 𝜀𝑡−𝑠1−𝑠2 , 𝜀𝑡−𝑠1−𝑠2−1, … , 𝜀𝑡−𝑠1−𝑠2−𝑞 , …… , 𝜀𝑡−𝑄1𝑠1−𝑠2 , 𝜀𝑡−𝑄1𝑠1−𝑠2−1, 

… , 𝜀𝑡−𝑄1𝑠1−𝑠2−𝑞, ……… , 𝜀𝑡−𝑄2𝑠2 , 𝜀𝑡−𝑄2𝑠2−1, … , 𝜀𝑡−𝑄2𝑠2−𝑞, 𝜀𝑡−𝑠1−𝑄2𝑠2 , 𝜀𝑡−𝑠1−𝑄2𝑠2−1, …, 

𝜀𝑡−𝑠1−𝑄2𝑠2−𝑞, …… , 𝜀𝑡−𝑄1𝑠1−𝑄2𝑠2 , 𝜀𝑡−𝑄1𝑠1−𝑄2𝑠2−1, … , 𝜀𝑡−𝑄1𝑠1−𝑄2𝑠2−𝑞), 

 

𝛽 = (𝜃1, … , 𝜃𝑞 , Θ1, 𝜃1Θ1, … , 𝜃𝑞Θ1, …… , Θ𝑄1 , 𝜃1Θ𝑄1 , … , 𝜃𝑞Θ𝑄1 , Ψ1, 𝜃1Ψ1, … , 𝜃𝑞Ψ1, Θ1Ψ1, 

𝜃1Θ1Ψ1, … , 𝜃𝑞Θ1Ψ1, …… , Θ𝑄1Ψ1, 𝜃1Θ𝑄1Ψ1, … , 𝜃𝑞Θ𝑄1Ψ1, ……… ,Ψ𝑄2 , 𝜃1Ψ𝑄2 , …, 

𝜃𝑞Ψ𝑄2 , Θ1Ψ𝑄2 , 𝜃1Θ1Π𝑄2 , … , 𝜃𝑞Θ1Ψ𝑄2 , …… , Θ𝑄1Ψ𝑄2 , 𝜃1Θ𝑄1Ψ𝑄2 , … , 𝜃𝑞Θ𝑄1Ψ𝑄2)
𝑇
.    (3) 

 

Equation (2) shows that the multiplicative DSMA model can be written as a moving 

average model of order (1 + 𝑞)(1 + 𝑄1)(1 + 𝑄2) − 1 with some coefficients are 

products of nonseasonal and seasonal coefficients. Therefore, the DSMA model is 

nonlinear in the coefficients 𝜃, Θ, and Ψ which complicates its Bayesian analysis. In the 

following sections we explain how to apply the Gibbs sampling to facilitate the analysis. 

The DSMA model (2) is invertible if the roots of the polynomials 𝜃𝑞(𝐵), Θ𝑄1(𝐵
𝑠1) and 

Ψ𝑄2(𝐵
𝑠2) lie outside the unit circle. For more details about the properties of SARMA 

models see Box et al. (1994). 

3.   Posterior Analysis 

3.1 Likelihood Function 

Suppose 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛) is a realization of the DSMA model (2), knowing that 𝜀𝑡 ~ 

N(0,𝜎2) and employing a straightforward random variable transformation from 𝜀𝑡 to 𝑦𝑡, 
the likelihood function is given by 

𝐿(𝜃, Θ, Ψ, 𝜎2, 𝜀0|𝑦) ∝ (𝜎
2)−

𝑛

2exp {−
1

2𝜎2
∑𝑛𝑡=1 𝜀𝑡

2}    (4) 



Ayman A Amin 

Pak.j.stat.oper.res.  Vol.XIII  No.3 2017  pp483-499 486 

where the errors 𝜀𝑡 is computed directly from the model (2). It is obvious that this 

likelihood function is a complicated function in 𝜃, Θ, Ψ and 𝜀0. However, the errors 𝜀𝑡 
can be estimated recursively as follows 

𝑒𝑡 = 𝑦𝑡 − ∑
𝑞
𝑖=1 𝜃𝑖𝑒𝑡−𝑖 −∑

𝑄1
𝑗=1 Θ̂𝑗𝑒𝑡−𝑗𝑠1 − ∑

𝑄2
𝜏=1 Ψ̂𝜏𝜀𝑡−𝜏𝑠2 − ∑

𝑞
𝑖=1 ∑

𝑄1
𝑗=1 𝜃𝑖Θ̂𝑗𝑒𝑡−𝑖−𝑗𝑠1 −

∑𝑞𝑖=1 ∑
𝑄2
𝜏=1 𝜃𝑖Ψ̂𝜏𝑒𝑡−𝑖−𝜏𝑠2 − ∑

𝑄1
𝑗=1 ∑

𝑄2
𝜏=1 Θ̂𝑗Ψ̂𝜏𝑒𝑡−𝑗𝑠1−𝜏𝑠2 −

∑𝑞𝑖=1 ∑
𝑄1
𝑗=1 ∑

𝑄2
𝜏=1 𝜃𝑖Θ̂𝑗Ψ̂𝜏𝑒𝑡−𝑖−𝑗𝑠1−𝜏𝑠2       (5) 

where 𝜃𝑖 ∈ 𝑅
𝑞, Θ̂𝑗 ∈ 𝑅

𝑄1, and Ψ̂𝜏 ∈ 𝑅
𝑄2 are consistent estimates obtained by the 

nonlinear least square (NLS) estimation method. Substituting the estimated errors in the 

likelihood function (3) results in an approximate likelihood function:  

𝐿∗(𝜃, Θ,Ψ, 𝜎2, 𝜀0|𝑦) ∝ (𝜎
2)−

𝑛

2exp {−
1

2𝜎2
∑

𝑛

𝑡=1

𝜀𝑡
∗2} 

         = (𝜎2)−
𝑛

2exp {−
1

2𝜎2
(𝑦 − Λ̂𝛽)

𝑇
(𝑦 − Λ̂𝛽)}.    (6) 

where, 𝛽 is defined in (3), and Λ̂ is a n × ((1 + 𝑞)(1 + 𝑄1)(1 + 𝑄2) − 1) matrix with the 

𝑡𝑡ℎ row:  

Λ̂𝑡 = (𝑒𝑡−1, … , 𝑒𝑡−𝑞 , 𝑒𝑡−𝑠1 , 𝑒𝑡−𝑠1−1, … , 𝑒𝑡−𝑠1−𝑞 , …… , 𝑒𝑡−𝑄1𝑠1 , 𝑒𝑡−𝑄1𝑠1−1, … , 𝑒𝑡−𝑄1𝑠1−𝑞 , 𝑒𝑡−𝑠2 , 

     𝑒𝑡−𝑠2−1, … , 𝑒𝑡−𝑠2−𝑞, 𝑒𝑡−𝑠1−𝑠2 , 𝑒𝑡−𝑠1−𝑠2−1, … , 𝑒𝑡−𝑠1−𝑠2−𝑞, …… , 𝑒𝑡−𝑄1𝑠1−𝑠2 , 𝑒𝑡−𝑄1𝑠1−𝑠2−1, 

     … , 𝑒𝑡−𝑄1𝑠1−𝑠2−𝑞, ……… , 𝑒𝑡−𝑄2𝑠2 , 𝑒𝑡−𝑄2𝑠2−1, … , 𝑒𝑡−𝑄2𝑠2−𝑞, 𝑒𝑡−𝑠1−𝑄2𝑠2 , 𝑒𝑡−𝑠1−𝑄2𝑠2−1, …, 

  𝑒𝑡−𝑠1−𝑄2𝑠2−𝑞, …… , 𝑒𝑡−𝑄1𝑠1−𝑄2𝑠2 , 𝑒𝑡−𝑄1𝑠1−𝑄2𝑠2−1, … , 𝑒𝑡−𝑄1𝑠1−𝑄2𝑠2−𝑞).          (7) 

3.2 Prior Specification 

Assuming that the parameters 𝜃, Θ, Ψ and 𝜀0 are independent apriori, given the error 

variance parameter 𝜎2, the joint prior distribution is 

𝜁(𝜃, Θ,Ψ, 𝜎2, 𝜀0) = 𝜁(𝜃|𝜎
2)×𝜁(Θ|𝜎2)×𝜁(Ψ|𝜎2)×𝜁(𝜀0|𝜎

2)×𝜁(𝜎2) 

= 𝑁𝑞(𝜇𝜃, 𝜎
2Σ𝜃)×𝑁𝑄1(𝜇Θ, 𝜎

2ΣΘ)×𝑁𝑄2(𝜇Ψ, 𝜎
2ΣΨ)×𝑁𝑞∗(𝜇𝜀0 , 𝜎

2Σ𝜀0)×𝐼𝐺(
𝜈

2
,
𝜆

2
),  

         (8) 

where 𝑞∗ = 𝑞 + 𝑄1𝑠1 + 𝑄2𝑠2, 𝑁𝑟(𝜇, Δ) is the r-variate normal distribution with mean 𝜇 

and variance Δ, and IG(a, b) is the inverse gamma distribution with parameters a and b. 

Therefore, the joint prior distribution can be written as follows 

𝜁(𝜃, Θ,Ψ, 𝜎2, 𝜀0) ∝ (𝜎
2)−(

𝜈∗

2
+1)exp {−

1

2𝜎2
[𝜆 + (𝜃 − 𝜇𝜃)

𝑇Σ𝜃
−1(𝜃 − 𝜇𝜃) 

      +(Θ − 𝜇Θ)
𝑇ΣΘ
−1(Θ − 𝜇Θ) + (Ψ − 𝜇Ψ)

𝑇ΣΨ
−1(Ψ − 𝜇Ψ)+(𝜀0 − 𝜇𝜀0)

𝑇
Σ𝜀0
−1(𝜀0 − 𝜇𝜀0)]}, (9) 

where  

𝜈∗ = 𝜈 + 2𝑞 + 𝑄1(1 + 𝑠1) + 𝑄2(1 + 𝑠2).     (10) 

 

The prior distribution (9) is chosen for several reasons, especially it is a conjugate prior 

and thus facilitates the mathematical calculations. Multiplying the joint prior distribution 
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(9) by the approximate likelihood function (6) results in the joint posterior 

𝜁(𝜃, Θ,Ψ, 𝜎2, 𝜀0|𝑦) which may be written as  

𝜁(𝜃, Θ,Ψ, 𝜎2, 𝜀0|𝑦) ∝ (𝜎
2)−(

𝑛+𝜈∗

2
+1)exp {−

1

2𝜎2
[𝜆 + (𝜃 − 𝜇𝜃)

𝑇Σ𝜃
−1(𝜃 − 𝜇𝜃) 

                   + (Θ − 𝜇Θ)
𝑇ΣΘ
−1(Θ − 𝜇Θ) + (Ψ − 𝜇Ψ)

𝑇ΣΨ
−1(Ψ − 𝜇Ψ) 

                   + (𝜀0 − 𝜇𝜀0)
𝑇
Σ𝜀0
−1(𝜀0 − 𝜇𝜀0) + (𝑦 − Λ̂𝛽)

𝑇
(𝑦 − Λ̂𝛽)]}  (11) 

3.3 Full Conditional Posterior Distributions 

The conditional posterior distribution for each one of the DSMA parameters is obtained 

from the joint posterior distribution (11) by first grouping together terms in the joint 

posterior that depend on this parameter, and then finding the appropriate normalizing 

constant to form a proper and closed-form density. In this study all the conditional 

posteriors obtained for the unknown parameters are normal and inverse gamma 

distributions for which sampling techniques exist. 

3.3.1 The conditional posterior of 𝜽 

We obtained the conditional posterior of 𝜃 by finding out 𝜁(𝜃|𝑦, Θ,Ψ, 𝜎2, 𝜀0) that we 

proved to be a multivariate normal 𝑁(𝜇𝜃
∗ , 𝑣𝜃

∗) with 

𝜇𝜃
∗ = [(𝐻𝜃

𝑇𝐻𝜃 + Σ𝜃
−1)

−1
(Σ𝜃
−1𝜇𝜃 + 𝐻𝜃

𝑇(𝑦 − 𝐿𝜃𝛽𝜃))] 

and  

𝑣𝜃
∗ = 𝜎2(𝐻𝜃

𝑇𝐻𝜃 + Σ𝜃
−1)

−1
. 

 

Where, H 𝜃 is a (n × q) matrix with the 𝑡𝑖𝑡ℎ element:  

𝐻𝜃𝑡𝑖 = (𝑒𝑡−𝑖 +∑

𝑄1

𝑗=1

Θ𝑗𝑒𝑡−𝑖−𝑗𝑠1 +∑

𝑄2

𝜏=1

Ψ𝜏𝑒𝑡−𝑖−𝜏𝑠2 +∑

𝑄1

𝑗=1

∑

𝑄2

𝜏=1

Θ𝑗Ψ𝜏𝑒𝑡−𝑖−𝑗𝑠1−𝜏𝑠2), 

L 𝜃 is a n × ((1 + 𝑄1)(1 + 𝑄2) − 1) matrix with the 𝑡𝑡ℎ row: 

𝐿𝜃𝑡 = (𝑒𝑡−𝑠1 , … , 𝑒𝑡−𝑄1𝑠1 , 𝑒𝑡−𝑠2 , 𝑒𝑡−𝑠1−𝑠2 , … , 𝑒𝑡−𝑄1𝑠1−𝑠2 , …… , 𝑒𝑡−𝑄2𝑠2 , 𝑒𝑡−𝑠1−𝑄2𝑠2 , … , 𝑒𝑡−𝑄1𝑠1−𝑄2𝑠2), 

and 𝛽𝜃 is a column vector of order (1 + 𝑄1)(1 + 𝑄2) − 1 written as: 

𝛽𝜃 = (Θ1, … , Θ𝑄1 , Ψ1, Θ1Ψ1, … , Θ𝑄1Ψ1, …… ,Ψ𝑄2 , Θ1Ψ𝑄2 , … , Θ𝑄1Ψ𝑄2)
𝑇
. 

3.3.2  The conditional posterior of 𝚯 

We obtained the conditional posterior of Θ by finding out 𝜁(Θ|𝑦, 𝜃,Ψ, 𝜎2, 𝜀0) that we 

proved to be a multivariate normal 𝑁(𝜇Θ
∗ , 𝑣Θ

∗ ) with 

𝜇Θ
∗ = [(𝐻Θ

𝑇𝐻Θ + ΣΘ
−1)−1 (ΣΘ

−1𝜇Θ + 𝐻Θ
𝑇(𝑦 − 𝐿Θ𝛽Θ))] 

and  

𝑣Θ
∗ = 𝜎2(𝐻Θ

𝑇𝐻Θ + ΣΘ
−1)−1. 
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Where H Θ is a (n × Q 1) matrix with the 𝑡𝑗𝑡ℎ element:  

𝐻Θ𝑡𝑗 = (𝑒𝑡−𝑗𝑠1 +∑

𝑞

𝑖=1

𝜃𝑖𝑒𝑡−𝑖−𝑗𝑠1 +∑

𝑄2

𝜏=1

Ψ𝜏𝑒𝑡−𝑗𝑠1−𝜏𝑠2 +∑

𝑞

𝑖=1

∑

𝑄2

𝜏=1

𝜃𝑖Ψ𝜏𝑒𝑡−𝑖−𝑗𝑠1−𝜏𝑠2), 

L Θ is a n × ((1 + 𝑞)(1 + 𝑄2) − 1) matrix with the 𝑡𝑡ℎ row: 

𝐿Θ𝑡 = (𝑒𝑡−1, … , 𝑒𝑡−𝑞 , 𝑒𝑡−𝑠2 , 𝑒𝑡−1−𝑠2 , … , 𝑒𝑡−𝑞−𝑠2 , …… , 𝑒𝑡−𝑄2𝑠2 , 𝑒𝑡−1−𝑄2𝑠2 , … , 𝑒𝑡−𝑞−𝑄2𝑠2), 

and 𝛽Θ is a column vector of order (1 + 𝑞)(1 + 𝑄2) − 1 written as: 

𝛽Θ = (𝜃1, … , 𝜃𝑞 , Ψ1, 𝜃1Ψ1, … , 𝜃𝑞Ψ1, …… ,Ψ𝑄2 , 𝜃1Ψ𝑄2 , … , 𝜃𝑞Ψ𝑄2)
𝑇
. 

3.3.3 The conditional posterior of 𝚿 

We obtained the conditional posterior of Ψ by finding out 𝜁(Ψ|𝑦, 𝜃, Θ, 𝜎2, 𝜀0) that we 

proved to be a multivariate normal 𝑁(𝜇Ψ
∗ , 𝑣Ψ

∗ ) with 

𝜇Ψ
∗ = [(𝐻Ψ

𝑇𝐻Ψ + ΣΨ
−1)−1(ΣΨ

−1𝜇Ψ + 𝐻Ψ
𝑇 (𝑦 − 𝐿Ψ𝛽Ψ))] 

and  

𝑣Ψ
∗ = 𝜎2(𝐻Ψ

𝑇𝐻Ψ + ΣΨ
−1)−1. 

 

Where H Ψ is a (n × Q 2) matrix with the 𝑡𝜏𝑡ℎ element:  

𝐻Ψ𝑡𝜏 = (𝑒𝑡−𝜏𝑠2 +∑

𝑞

𝑖=1

𝜃𝑖𝑒𝑡−𝑖−𝜏𝑠2 +∑

𝑄1

𝑗=1

Θ𝑗𝑒𝑡−𝑗𝑠1−𝜏𝑠2 +∑

𝑞

𝑖=1

∑

𝑄1

𝑗=1

𝜃𝑖Θ𝑗𝑒𝑡−𝑖−𝑗𝑠1−𝜏𝑠2), 

L Ψ is a n × ((1 + 𝑞)(1 + 𝑄1) − 1) matrix with the 𝑡𝑡ℎ row: 

𝐿Ψ𝑡 = (𝑒𝑡−1, … , 𝑒𝑡−𝑞 , 𝑒𝑡−𝑠1 , 𝑒𝑡−1−𝑠1 , … , 𝑒𝑡−𝑞−𝑠1 , …… , 𝑒𝑡−𝑄1𝑠1 , 𝑒𝑡−1−𝑄1𝑠1 , … , 𝑒𝑡−𝑞−𝑄1𝑠1), 

and 𝛽Ψ is a column vector of order (1 + 𝑞)(1 + 𝑄1) − 1 written as:  

𝛽Ψ = (𝜃1, … , 𝜃𝑞 , Θ1, 𝜃1Θ1, … , 𝜃𝑞Θ1, …… , Θ𝑄1 , 𝜃1Θ𝑄1 , … , 𝜃𝑞Θ𝑄1)
𝑇
. 

3.3.4 The conditional posterior of 𝝈𝟐 

We obtained the conditional posterior of 𝜎2 by finding out 𝜁(𝜎2|𝑦, 𝜃, Θ,Ψ, 𝜀0) that we 

proved to be an inverse gamma 𝐼𝐺(
𝑛+𝜈å

2
,
𝜆+𝑛(𝑆2)

2
), where 𝜈∗ is defined in (10) and 

𝑛(𝑆2) = [(𝜃 − 𝜇𝜃)
𝑇Σ𝜃
−1(𝜃 − 𝜇𝜃) + (Θ − 𝜇Θ)

𝑇ΣΘ
−1(Θ − 𝜇Θ) + (Ψ − 𝜇Ψ)

𝑇ΣΨ
−1(Ψ − 𝜇Ψ) + 

 (𝜀0 − 𝜇𝜀0)
𝑇
Σ𝜀0
−1(𝜀0 − 𝜇𝜀0) + (𝑦 − Λ̂𝛽)

𝑇
(𝑦 − Λ̂𝛽)]. 

 

To ease the Gibbs sampling algorithm process, the parameter 𝜎2 can be sampled from the 

Chi square distribution using the transformation 
𝜆+𝑛(𝑆2)

(𝜎2)
~𝜒(𝑛+𝜈∗)

2 . 

3.3.5 The conditional posterior of 𝜺𝟎 

In the beginning, we write explicitly the elements of 𝜀0 using the model (2) as follows:  

𝑦𝑞∗ = 𝑀𝜀0 + 𝑁𝜀𝑞∗ ,        (12) 

where 
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𝑀 =

(

 
 
 
 
 

𝛼1 𝛼2 𝛼3 ⋯ ⋯ 𝛼𝑞∗−1 𝛼𝑞∗

𝛼2 𝛼3 𝛼4 ⋯ ⋯ 𝛼𝑞∗ 0

𝛼3 𝛼4 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
𝛼𝑝∗−1 𝛼𝑝∗ 0 ⋯ ⋯ 0 0

𝛼𝑝∗ 0 0 ⋯ ⋯ 0 0
)

 
 
 
 
 

(𝑞∗)×(𝑞∗)

, 

𝑁 =

(

 
 
 

1 0 0 ⋯ ⋯ 0 0
𝛼1 1 0 ⋯ ⋯ 0 0
𝛼2 𝛼1 1 ⋯ ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋯ ⋮ ⋮
𝛼𝑝∗−1 𝛼𝑝∗−2 ⋯ ⋯ 𝛼2 𝛼1 1

)

 
 
 

(𝑞∗)×(𝑞∗)

, 

𝑞∗ = 𝑞 + 𝑄1𝑠1 + 𝑄2𝑠2 and 𝜀𝑝∗ = (𝜀1, 𝜀2, … 𝜀𝑞∗)
𝑇
 that has the 𝑞∗ multivariate normal 

distribution with zero mean and variance (𝜎2𝐼𝑞∗), where 𝐼𝑞∗ is the unit matrix of order 𝑞∗. 
 

Using the above defined matrices and the standard Bayesian techniques, we obtained the 

conditional posterior of 𝜀0 by finding out 𝜁(𝜀0|𝑦, 𝜃, Θ,Ψ, 𝜎
2) that we proved to be a 

multivariate normal 𝑁(𝜇𝜀0
∗ , 𝑣𝜀0

∗ ) with 

𝜇𝜀0
∗ = [𝐻𝜀0𝑀+ Σ𝜀0

−1]
−1
[Σ𝜀0
−1𝜇𝜀0 + 𝐻𝜀0𝑦𝑞∗] 

and  

𝑣𝜀0
∗ = 𝜎2[𝐻𝜀0𝑀+ Σ𝜀0

−1]
−1
, 

where, 𝐻𝜀0 = 𝑀
𝑇(𝑁𝑁𝑇)−1. 

4.   The Proposed Gibbs Sampler 

The proposed Gibbs sampling algorithm for DSMA model can be implemented as 

follows:   

1. Specify starting values 𝜃0, Θ0, Ψ0, (𝜎2)0 and 𝜀0
0 and set j=0. A set of initial estimates of 

the model parameters can be obtained using the NLS method.  

2. Calculate the residuals recursively using (5) and the NLS estimates.  

3. Simulate   

• 𝜃𝑗~𝜁(𝜃𝑗|𝑦, (𝜎2)𝑗−1, Θ𝑗−1, Ψ𝑗−1, 𝜀0
𝑗−1),  

• Θ𝑗~𝜁(𝜃𝑗|𝑦, (𝜎2)𝑗−1, 𝜙𝑗, Ψ𝑗−1, 𝜀0
𝑗−1),  

• Ψ𝑗~𝜁(Ψ𝑗|𝑦, (𝜎2)𝑗−1, 𝜃𝑗, Θ𝑗, 𝜀0
𝑗−1),  

• (𝜎2)𝑗~𝜁((𝜎2)𝑗|𝑦, 𝜃𝑗, Θ𝑗 , Ψ𝑗, 𝜀0
𝑗−1),  

• 𝜀0
𝑗~𝜁(𝜀0

𝑗|𝑦, (𝜎2)𝑗, 𝜃𝑗, Θ𝑗 , Ψ𝑗),  

4. set j=j+1 and go to 3.  
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This algorithm gives the next value of the Markov chain 

{𝜃𝑗+1, Θ𝑗+1, Ψ𝑗+1, (𝜎2)𝑗+1, 𝜀0
𝑗+1
} by simulating each of the full conditionals where the 

conditioning elements are revised during the cycle. This iterative process is repeated for a 

large number of iterations and continuously the convergence is monitored. After the 

chain has converged, say at 𝑛0 iterations, the simulated values 

{𝜃𝑗+1, Θ𝑗+1, Ψ𝑗+1, (𝜎2)𝑗+1, 𝜀0
𝑗+1
} are used as a sample from the joint posterior. Posterior 

estimates of the parameters are computed directly via sample averages of the simulation 

outputs. The convergence of the Gibbs sampler’s Markov chain can be monitored by 

three groups of diagnostics, which include autocorrelation coefficients estimates, Raftery 

and Lewis diagnostics, and Geweke diagnostics. First, autocorrelation coefficients 

estimates indicate how much independence exists in the sequence of each parameter 

draws. High values of autocorrelation coefficients indicate more draws needed to get 

accurate posterior estimates. Second, diagnostics proposed by Raftery and Lewis 

(1992,1995) include (1) Burn: number of draws used as initial draws before starting to 

sample the draws for posterior inference, (2) Nmin: number of draws that would be 

needed if the draws represented an iid chain, (3) Total: total number of draws needed to 

achieve desired level of accuracy, and (4) I-stat: the ratio of the (Total) to (Nmin). 

Raftery and Lewis suggested that a convergence problem is indicated when values of I-

stat exceed 5. Third, diagnostics proosed by Geweke (1992), which includes two groups:   

1. The first group includes the relative numerical efficiency (RNE) and numerical 

standard errors (NSE). The RNE estimates indicate the required number of draws 

to produce the same numerical accuracy when iid sample is drawn directly from 

the posterior distribution. The NSE estimates reflect the variation that can be 

expected if the simulation were to be repeated. 

2. The second group of diagnostics includes a test of whether the Gibbs sampler has 

attained an equilibrium state. This can be achieved by testing the equality of the 

two means of the first and last parts of draws and the Chi squared marginal 

probability is obtained. Usually, the first and last parts are the first 20% and the 

last 50% of the draws.  

LeSage (1999) implemented these convergence using Matlab package, and we use them 

in the following section to monitor the convergence of our proposed Gibbs sampling 

algorithm for DSMA model. 

5.   Simulation Study 

In this section we show the efficiency of the proposed estimation method using 

simulation study for five examples of DSMA models. Table 0 shows these selected 

DSMA models and their true parameters values used in the simulation. By these five 

examples we try to represent different pairs of the season periods that are chosen to cover 

different seasonality patterns with different data types. 
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Table 1:   Simulated examples design. 

Model 𝜃1 𝜃2 Θ1 Θ2 Ψ1 Ψ2 𝜎2 

I. DSMA(1)(1) 3(1) 12 0.6 - 0.2 - -0.3 - 1.0 

II. DSMA(1)(1) 3(1) 21 0.5 - -0.4 - 0.1 - 2.0 

III. DSMA(1)(1) 13(1) 52 0.2 - -0.3 - 0.4 - 0.5 

IV. DSMA(2)(1) 3(1) 12 0.6 -0.1 0.5 - -0.2 - 1.0 

V. DSMA(2)(2) 3(2) 12 0.5 0.2 -0.4 0.3 0.2 0.3 1.0 

 

Once the time series datasets of size 𝑛 = 1,000 are generated from these selected DSMA 

models, the Bayesian analysis is performed by assuming a non informative prior for the 

parameters 𝜃, Θ, Ψ and 𝜎2 and a normal prior with zero mean for initial errors 𝜀0 with 

variance 𝜎2𝐼𝑞∗. To apply the proposed Gibbs sampler, the starting values for the 

parameters 𝜃, Θ, Ψ and 𝜎2 are obtained using NLS method, and the starting values for 𝜀0 

are assumed to be zeros. For each dataset, the Gibbs sampler was run 11,000 iterations 

where the first 1,000 draws are ignored and every tenth value in the sequence of the last 

10,000 draws is recorded to have an approximately independent sample of 1,000 draws. 

Accordingly, all posterior estimates of the parameters are computed directly as sample 

averages of the 1,000 Gibbs sampler draws. In the following, we discuss the results of the 

proposed algorithm and investigate its convergence. 

 

Table 1 presents the true values and the Bayesian estimates of the parameters for example 

I. In addition, a 95% confidence interval using the 0.025 and 0.975 percentiles of the 

simulated draws is constructed for every parameter. From Table 1, it is clear that the 

Bayesian estimates are close to the true values and the 95% confidence interval includes 

the true value for each parameter. Sequential plots of the parameters generated sequences 

together with marginal densities are displayed in Figure 1. The marginal densities are 

computed using non parametric technique with Gaussian kernel. Figure 1 shows that the 

proposed algorithm is stable and fluctuates in the neighborhood of the true values. In 

addition, the marginal densities show that the true value of each parameter (which is 

indicated by the vertical line) falls in the constructed 95% confidence interval. 

Table 2:   Bayesian results for example I. 

Parameter 
True 

Values 
Mean 

Std. 

Dev. 

Lower 

95 % limit 
Median 

Upper 

95 % limit 

𝜃 0.60 0.61 0.03 0.55 0.61 0.67 

Θ 0.20 0.20 0.03 0.15 0.20 0.25 

Ψ -0.30 -0.28 0.03 -0.33 -0.28 -0.23 

𝜎2 1.00 1.06 0.05 0.98 1.06 1.15 
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Figure  1:   Sequential plots and marginal posterior distributions of example I 

 
 

 

The convergence of the proposed algorithm is monitored using the diagnostic measures 

explained in Section 4. The autocorrelations and Raftery and Lewis diagnostics are 

displayed in Table 2 whereas Table 3 presents the diagnostic measures of Geweke 

(1992). Table 2 shows that the draws for each of the parameter have small 

autocorrelations at lags 1, 5, 10 and 50 which indicates that there is no convergence 

problem. This conclusion was confirmed by the the diagnostic measures of Raftery and 

Lewis where the reported (Nmin) is 994 which is close to the 1,000 draws we used and I-

stat value is about 1 which is less than 5. Geweke diagnostics in Table 3 confirm the 

convergence of the proposed algorithm where Chi squared probabilities show that the 
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equal means hypothesis can not be rejected and no dramatic differences between the NSE 

estimates are found. In addition, the RNE estimates are close to 1 which indicates the iid 

nature of the output sample. 

Table 3:   Autocorrelations and Raftery-Lewis diagnostics for example I. 

Parameter 
Autocorrelations Raftery-Lewis Diagnostics 

Lag 1 Lag 5 Lag 10 Lag 50 Burn Total(N) (Nmin) I-stat 

𝜃 0.03 0.04 0.01 -0.01 3 1117 994 1.12 

Θ 0.01 0.03 0.01 -0.04 2 1028 994 1.03 

Ψ 0.00 0.00 -0.01 0.01 2 1028 994 1.03 

𝜎2 -0.02 -0.00 -0.02 -0.00 2 948 994 0.95 

Table 4:   Geweke diagnostics for example I. 

Parameter 
NSE 

iid 

RNE 

iid 

NSE 

4% 

RNE 

4% 

NSE 

8% 

RNE 

8% 

NSE 

15% 

RNE 

15% 
𝜒2 

𝜃 0.0009 1 0.0010 0.93 0.0009 1.07 0.0009 1.17 0.98 

Θ 0.0008 1 0.0006 1.78 0.0005 2.31 0.0005 2.99 0.96 

Ψ 0.0008 1 0.0008 1.05 0.0008 1.15 0.0007 1.27 0.83 

𝜎2 0.0015 1 0.0014 1.11 0.0012 1.50 0.0011 2.00 0.63 

 

Similarly to example I, Tables 4-7 present the true values and Bayesian estimates of the 

parameters for examples II - V. In addition, sequential plots with marginal densities of 

these examples are displayed in Figures 2 - 5. Similar conclusions to those of example I 

are obtained. We have applied the proposed Gibbs sampler to several simulated datasets 

from other DSMA models; and we found their results are similar to those of presented 

examples, and therefore they are not presented here. 

Table 5:   Bayesian results for example II 

Parameter 
True 

Values 
Mean 

Std. 

Dev. 

Lower 

95 % limit 
Median 

Upper 

95 % limit 

𝜃 0.50 0.50 0.03 0.45 0.50 0.56 

Θ -0.40 -0.39 0.03 -0.45 -0.39 -0.34 

Ψ 0.10 0.08 0.03 0.03 0.08 0.13 

𝜎2 2.00 2.05 0.09 1.88 2.05 2.23 
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Figure  2:   Sequential plots and marginal posterior distributions of example II 

    

Table 6:   Bayesian results for example III 

Parameter 
True 

Values 
Mean 

Std. 

Dev. 

Lower 

95 % limit 
Median 

Upper 

95 % limit 

𝜃 0.20 0.22 0.03 0.17 0.22 0.28 

Θ -0.30 -0.27 0.03 -0.32 -0.27 -0.21 

Ψ 0.40 0.36 0.03 0.30 0.36 0.42 

𝜎2 0.50 0.46 0.02 0.42 0.46 0.50 
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Figure  3:   Sequential plots and marginal posterior distributions of example III 

 

Table 7:   Bayesian results for example IV. 

Parameter 
True 

Values 
Mean 

Std. 

Dev. 

Lower 

95 % limit 
Median 

Upper 

95 % limit 

𝜃1 0.60 0.57 0.03 0.52 0.57 0.64 

𝜃2 -0.10 -0.14 0.03 -0.19 -0.14 -0.08 

Θ 0.50 0.48 0.03 0.42 0.48 0.53 

Ψ -0.20 -0.20 0.02 -0.25 -0.20 -0.15 

𝜎2 1.00 1.06 0.05 0.97 1.06 1.15 
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Figure  4: Sequential plots and marginal posterior distributions of example IV 

    

 

Table 8:   Bayesian results for example V 

Parameter 
True 

Values 
Mean 

Std. 

Dev. 

Lower 

95 % limit 
Median 

Upper 

95 % limit 

𝜃1 0.50 0.52 0.03 0.47 0.52 0.57 

𝜃2 0.20 0.24 0.03 0.19 0.24 0.29 

Θ1 -0.40 -0.40 0.02 -0.45 -0.40 -0.35 

Θ2 0.30 0.30 0.03 0.25 0.30 0.35 

Ψ1 0.20 0.20 0.02 0.15 0.20 0.25 

Ψ2 0.30 0.35 0.03 0.30 0.35 0.40 

𝜎2 1.00 1.06 0.05 0.97 1.06 1.15 
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Figure  5:   Sequential plots and marginal posterior distributions of example V 

 

6.   Conclusion 

In this paper we showed that the conditional posterior distribution of the DSMA model 

parameters and the variance are multivariate normal and inverse gamma, respectively. 

Exploiting that the conditional posterior densities are standard distributions, we used the 

Gibbs sampling algorithm to develop a Bayesian method for estimating the parameters of 

the multiplicative DSMA model. Simply, we applied the Gibbs sampling algorithm to 
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approximate empirically the marginal posterior distributions along with using several 

diagnostics that showed the convergence of the proposed algorithm was achieved. 

Accordingly, we computed directly the posterior estimates of the parameters via sample 

averages of the simulation outputs. The simulation results confirmed the accuracy of the 

proposed methodology. Future work may investigate model identification using 

stochastic search variable selection, outliers detection, and extension to multivariate 

double seasonal models. 
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