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Abstract
The score test proposed by Rao (1947) has been widely used in the recent years for data
analysis and model building because of its simplicity. However, at the time of its computation, it
has been found that the value of the score test statistic becomes negative. Freedman (2007)
discussed some of the theoretical reasons for this inconsistency of the score test and observed
that the test was inconsistent when the observed Fisher information matrix was used rather than
the expected Fisher information matrix. The present paper is an attempt to demonstrate the
inconsistency of the score test in terms of the power function. The paper further dispels the doubt
regarding the use of score test.

Keywords: Model building, Consistency, Score test, Fisher information matrix,
Power function.

1. Introduction
The score test proposed by Rao (1947) has been widely used in the recent years
for data analysis and model building. This is because of the simplicity of the test
in checking the adequacy of a model when nested models are used. However, at
the time of computation, it has been found that the value of the score test statistic
becomes negative. For a long time, the reason for this phenomenon was not
known. A good discussion can be found in Morgan et al. (2007), Verbeke and
Molenberghs (2007) and Freedman (2007).

Morgan et al. (2007) provided an example where the score test statistic attains a
negative value. The example relates to the case of a zero-inflated Poisson
distribution. The score test statistic became negative when the model was a poor
fit to the data under the null hypothesis. Further investigations based on this were
done by Verbeke and Molenberghs (2007) and Freedman (2007).

Freedman (2007) discussed some of the theoretical reasons for the
inconsistency of the score test. He observed that the test was inconsistent when
the observed Fisher information matrix was used rather than the expected Fisher
information matrix and that the observed Fisher information matrix generated
negative variance estimates at the maximum likelihood estimate (MLE) of the
parameter of the distribution under the null hypothesis. He observed that the test
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statistic can also become inconsistent when the expected likelihood equation has
spurious roots.

Verbeke and Molenberghs (2007) mentioned that the problems associated with
the score test can be considered along the following four dimensions.
1. Unconstrained versus constrained parameter spaces.
2. Use of observed versus expected Fisher information.
3. Rejection probabilities carried out under the null hypothesis, a correctly

specified alternative, or a mis-specified alternative.
4. Asymptotic versus small sample behaviour.

The first and the second dimensions have been discussed by the authors.

When we were comparing the likelihood ratio, the Wald and the score tests for
testing the inflation parameter p=p0 of the inflated Poisson distribution, the graphs
of the power functions of the score test and its perturbed versions exhibited
fluctuations (decreasing or randomly decreasing and increasing after a certain
stage) rather than increasing on either sides of the specified value of the inflate
parameter. For details, see Sumathi and Rao (2010).

In the present paper, an attempt has been made to study the causes for the
fluctuations in connection with the small sample power computation of the score
test for a zero-inflated Poisson distribution. The numerical simulations show the
inconsistency of the score test in small sample power computations in the form of
fluctuations in the power curve. The inconsistency is because the test statistic
becomes negative. As the frequency of the test statistic attaining a negative
value increases, the power of the test decreases, which in turn causes
fluctuations in the power function.

It has been found that the usual score test statistic is more consistent than its
perturbed version obtained by using the unrestricted MLEs in the expected or the
observed Fisher information matrix. This finding contradicts the conclusion of
Freedman (2007) where the asymptotic properties were of major concern.

The remaining part of the paper is organized as follows. Section 2 describes the
score tests for testing the inflate parameter p=p0 of an inflated Poisson
distribution. Section 3 discusses the small sample performance of the power
functions. The paper concludes with a discussion in section 4.

2. Score tests
Rao (1947) proposed the score test. The advantage of this test is that the
computation of the MLEs is not required when the hypothesis is simple. Details of
the score test are available in Rao (1973), Cox and Hinkley (1974) and Severini
(2000). In this section, the score test statistic for testing the inflate parameter
p=p0 of an inflated Poisson distribution (inflated at zero) has been described.
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Consider a random variable Y which follows an inflated Poisson distribution
(inflated at zero) with parameters p and λ. The probability mass function of Y is
given by
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Let y1, y2, …, yn be a random sample of size n from the zero inflated Poisson
distribution given by (1). The likelihood function based on the n observations is

given by      
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where Y = (y1, y2, …, yn) and 0n is the number of observations that are zeroes.

The maximum likelihood (ML) equations for the estimation of p and  after
simplification are given by
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respectively. It may be noted that equation (4) is independent of the parameter p
and is the ML equation for  from a truncated Poisson distribution (truncated at
zero) based on 0nn  observations. Since there does not exist a closed form
solution to equation (4), the ML estimate of  can be obtained using a numerical
method. In the current paper, the method used for simulation discussed in
section 3, is the bisection method (Sastry (1994)).

Let the ML estimator of  be denoted by


 . The MLE of p is obtained by

substituting the value of


 for  in equation (3). For carrying out inference on p

when 0pp  (specified), the estimation of the restricted MLE of  denoted by




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 is the solution of the restricted ML equation given by
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The expected Fisher Information matrix for p and  is given by
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For details, see Bhattacharya, et.al. (2008).

The score test statistic for testing the hypothesis H0: p = p0 is given by
SW = UIU 1 (7)
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U  denotes the transpose of U and I is given by (6). The parameters p and λ in U

and I are replaced by p0 and



 .

Cox and Hinkley (1974) and Kale (1999) have suggested that the unrestricted
MLEs can be used in place of the restricted MLEs in the Fisher information
matrix. Details can also be found in Morgan et al. (2007), Verbeke and
Molenberghs (2007) and Freedman (2007). Thus using the suggestions of Cox
and Hinkley (1974) and Kale (1999), two perturbed versions of the score test
have been developed. The test statistics have been denoted as

1s
W and

2s
W and

have the same forms as SW but the parameters p and λ in I are replaced by p0

and ̂ for
1s

W and by p̂ and ̂ for
2s

W respectively.

It has been noted by several authors (Cox and Snell (1989), Davison (2003),
Morgan (2000), Pawitwan (2001), Morgan et al. (2007), Verbeke and
Molenberghs (2007) and Freedman (2007)) that observed Fisher information
matrix may be used in place of the expected Fisher information matrix in a score
test statistic. For the zero inflated Poisson distribution considered in the present
paper, the observed Fisher information matrix is
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3. Behaviour of the Power functions of the score tests
A simulation experiment was done to assess the behaviour of the power
functions of the three test statistics viz., SW ,

1s
W and

2s
W . The simulation

configurations used were as follows:

Level of significance α=0.05
Sample size n = 20, 40, 80, 100, 200, 400
p=0.1, 0.3, 0.5, 0.7, 0.9
λ =1, 3, 5, 7, 9

The number of simulations = 10000

The power functions of the score test and its perturbed versions were estimated
using simulations. For details regarding simulations, refer Sumathi and Rao
(2010). There were 25 configurations corresponding to each value of n.

From the simulations it was evident that for a sample of size n=20, the power
functions of all the three test statistics showed fluctuations on the left of p0 when
testing for p0=0.1, for all values of the mean parameter λ given above. When
testing for p0=0.3, the power function of the perturbed version of the score test
statistic viz.,

2s
W , where p̂ and ̂ were used in Fisher information matrix, showed

fluctuations on the left of p0 for all values of λ, while the power functions of the
score test statistic SW and one of its perturbed versions viz.,

1s
W exhibited

fluctuations on the left of p0 only when λ =1. The power function of all the three
tests were normal when testing for p0=0.5. When testing for p0=0.7, the power
function of the test statistic

2s
W exhibited fluctuations on either sides of p0 for λ=1,

7 and 9, while the behaviour of the power functions of SW and
1s

W was normal for
all values of λ. Finally, when testing for p0=0.9, the power functions of all the
three test statistics showed fluctuations on the right of p0 for all values of the
mean parameter λ given above.

When the sample size was increased to 40, the behaviour of the power functions
of the test statistics were the same as that when the sample size was 20. When
a sample of size 80 was considered, the power function of the usual score test
statistic SW did not show any fluctuations, while the power functions of the two
perturbed versions of the score test exhibited fluctuations on the left of p0 when
testing for p0=0.1 and on the right of p0 when testing for p0=0.9. The same
behaviour was observed when n=100, 200. Also, when a large sample of size
400 was considered, fluctuations were seen in the power functions of the two
perturbed versions of the score test while testing for p0=0.5, 0.7 and 0.9
corresponding to λ = 1 and 3. Similar type of fluctuations were seen in the power
functions of the three score tests when the observed Fisher information matrix O
given by (9) was used instead of the expected Fisher information matrix I.
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Tables 1 and 2 indicate the tests whose power functions exhibit fluctuations for
various combinations of p0 and λ when the sample sizes n=20 and 40 were
considered.

Table 1: The tests whose power functions showed fluctuations for
combinations of p0 and λ for sample sizes n=20 and 40 when
the expected Fisher information matrix was used.

Sample
size n p0

λ
1 3 5 7 9

20

0.1 SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W

0.3 SW ,
1s

W ,
2s

W
2s

W
2s

W
2s

W
2s

W
0.5 - - - - -
0.7 2s

W - - 2s
W

2s
W

0.9 SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W

40

0.1 SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W

0.3 SW ,
1s

W ,
2s

W - 2s
W

2s
W

2s
W

0.5 - 1s
W ,

2s
W

1s
W ,

2s
W

1s
W ,

2s
W

2s
W

0.7 - 2s
W

2s
W

2s
W

2s
W

0.9 SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W

Table 2: The tests whose power functions showed fluctuations for
combinations of p0 and λ for sample sizes n=20 and 40 when
the observed Fisher information matrix was used.

Sample
size n p0

λ
1 3 5 7 9

20

0.1 SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W

0.3 SW ,
1s

W ,
2s

W
2s

W
2s

W
2s

W
2s

W

0.5 - - 2s
W

2s
W

2s
W

0.7 SW ,
1s

W ,
2s

W
2s

W
2s

W
2s

W
2s

W

0.9 SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W

40

0.1 SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W

0.3 1s
W ,

2s
W - 2s

W
2s

W
2s

W

0.5 SW ,
1s

W ,
2s

W SW 2s
W

2s
W

2s
W

0.7 - 2s
W

2s
W

2s
W

2s
W

0.9 SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W SW ,
1s

W ,
2s

W
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Below are the graphs showing the power functions of the score test statistics for
a sample of size 40 while testing for p0=0.1 and p0=0.3 when λ=3 and 5. Figures
1, 2, 3 and 4 correspond to the case when the expected Fisher information matrix
was used while figures 5, 6, 7 and 8 correspond to that when observed Fisher
information matrix was used. The points on the x-axis of the graphs correspond
to that in the neighborhood of p0.
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Figure 1: Power functions of the three tests using expected Fisher
information when n=40, p0=0.1, λ=3
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Figure 2: Power functions of the three tests using expected Fisher
information when n=40, p0=0.1, λ=5
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Figure 3: Power functions of the three tests using expected Fisher
information when n=40, p0=0.3, λ=3
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Figure 4: Power functions of the three tests using expected Fisher
information when n=40, p0=0.3, λ=5
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Figure 5: Power functions of the three tests using observed Fisher
information when n=40, p0=0.1, λ=3
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Figure 6: Power functions of the three tests using observed Fisher
information when n=40, p0=0.1, λ=5
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Figure 7: Power functions of the three tests using observed Fisher
information when n=40, p0=0.3, λ=3
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Figure 8: Power functions of the three tests using observed Fisher
information when n=40, p0=0.3, λ=5

The following table 3 summarises the number of times the three versions of the
score test statistics exhibit fluctuations in the power functions for the twenty five
configurations of the parameters p0 and λ, for various sample sizes, when the
expected and the observed Fisher information matrices were used.
Table 3

Sample
size n

Information
Matrix

Test Statistics
SW 1s

W
2s

W
20 Expected 11 11 18

Observed 12 12 23
40 Expected 11 13 21

Observed 12 12 22
80 Expected 00 06 18

Observed 02 08 18
100 Expected 01 09 19

Observed 03 11 19
200 Expected 01 08 17

Observed 02 07 18
400 Expected 01 04 07

Observed 02 05 08
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From the tables and graphs of the power functions of the test statistics, the
following conclusions emerge.
1. The fluctuations either on the right or on the left of p0 are seen in the

powers of all the three test statistics for sample sizes n = 20 and n = 40
irrespective of whether the expected Fisher information matrix I or the
observed Fisher information matrix O has been used.

2. The powers of the test statistics are very low (<0.1) in the neighbourhood
of p0. This is because the test statistics attain negative value at these
points.

3. When the unrestricted ML estimators p̂ and ̂ are used in the Fisher
information matrix, may it be expected or observed, the power function of
the perturbed version of the score test statistic viz.,

2s
W , exhibits

fluctuations even in situations where the usual score test statistic SW and
its other perturbed version

1s
W are normal.

4. The fluctuations generally occur for small samples when testing for small
or large values of the inflate parameter p, especially when the power is
estimated at the values of p nearer to the boundary of the parameter
space for p viz., (0, 1).

5. The use of the unrestricted ML estimators p̂ and ̂ in the observed
Fisher information matrix does not improve the situation of inconsistency
of the score test. This conclusion differs from that of Freedman (2007).

6. From table 3, it follows that the usual score test is the best compared to its
perturbed versions, irrespective of whether the expected Fisher
information matrix or the observed Fisher information matrix is used.

7. Also, it is evident from table 3, that the fluctuations are seen when either
expected or observed Fisher information matrices are used, but it is more
when observed information is used. Hence, the performance of the tests
are better when expected Fisher information matrix is used.

4. Discussion and conclusion:
In this paper, the effect of inconsistency of the score test in estimating the power
function of the test and its perturbed versions for small samples has been
demonstrated. We observed that the power functions show fluctuations when the
test statistics become negative and lead to the acceptance of the null hypothesis.
This inconsistency occurs for small sample sizes and also when testing for small
or large values of the inflate parameter p. However, if we look into the overall
pattern of the power functions, the usual score test SW and its perturbed version

1s
W do not exhibit fluctuations when the alternative hypothesis is at a moderate
distance from the null hypothesis in either directions. This is an indication that
one can safely use the score test for the analysis of count data. Also, it is
advisable to use the expected Fisher information matrix rather than the observed
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information matrix. Moreover, if one encounters a negative value of the score test
statistic, then the score test should not be used for any inferential aspect.
Instead, the user can think of either using the likelihood ratio test or the Wald
test.

The usual score test does not have this inconsistent behaviour when the sample
size is 80 or above except for p0=0.1 and λ=1, while the two perturbed versions
of the score test exhibit inconsistency even for large samples of size 200 and
400. Fluctuations are seen in the power functions of the test statistics when using
either expected or observed Fisher information matrix. The inconsistency of the
score test is a problem only when the null hypothesis is very much mis-specified
and our analysis strengthens the conclusions of Morgan, et. al. (2007). Thus,
from the present study, we recommend the conventional score test SW for
inference involving inflated distributions when the sample size n is at least 80.
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