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Abstract 

In this research we will deal with the problem of Bayes estimation of the parameter that characterise the 

superpopulation model, and Bayes prediction of finite population total, from a sample survey data selected 

from a finite population using informative probability sampling design, that is, the sample first order 

inclusion probabilities depend on the values of the model outcome variable (or the model outcome variable 

is correlated with design variables not included in the model). In order to achieve this we will first define 

the sample predictive distribution and the sample posterior distribution and then we use the sample 

posterior likelihood function to obtain the sample Bayes estimate of the superpopulation model parameters, 

and Bayes predictors of finite population total. These new predictors take into account informative 

sampling design. Thus, provides new justification for the broad use of best linear unbiased predictors 

(model-based school) in predicting finite population parameters in case of not accounting of complex 

sampling design. Furthermore, we show that the behaviours of the present estimators and predictors 

depends on the informativeness parameters. Also the use of the Bayes estimators and predictors that ignore 

the informative sampling design yields biased Bayes estimators and predictors. One of the most important 

feature of this paper is, specifying prior distribution for the parameters of the sample distribution makes life 

easier than the population parameters.  

Keywords:  Bayes estimator, Finite Population Sampling, Informative Sampling, Sample 

Distribution. 

1.   Introduction 

Survey data may be viewed as the outcome of two processes: the process that generates 

the values of units in the finite population, often referred as the superpopulation model, 

(values of units in the finite population is a random sample from superpopulation model) 

and the process of selecting the sample units from the finite population, known as the 

sample selection mechanism. Analytic inference from sample survey data refers to the 

superpopulation model, while descriptive inference deals with estimation of finite 

population characteristics. When the sample selection probabilities depend on the values 

of the model response (or the model outcome variable is correlated with design variables 

not included in the model), even after conditioning on the auxiliary variables, the 

sampling mechanism becomes informative, and the selection effects need to be accounted 

for in the inference process. To overcome the difficulties associated with the use of 

classical inference procedures for cross sectional survey data, Pfeffermann, Krieger and 

Rinott (1998) proposed the use of the sample distribution induced by assumed population 

models, under informative sampling, and developed expressions for its calculation. 

Similarly, Eideh and Nathan (2006) fitted time series models for longitudinal survey data 

under informative sampling. Furthermore, to see examples in the field of cross sectional 

surveys and panel surveys that illustrating the effects of ignoring informative sampling 

design, please review the books edited by: Skinner, Holt and Smith (1989), and 

Chambers and Skinner (2003). In particular see the articles by Pfeffermann (2011), 

Pfeffermann and Sverchkov (1999, 2003), Sverchkov and Pfeffermann (2004), Eideh and 
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Nathan (2006a, 2006b, 2009), Eideh (2003, 2012a, 2012b). In these articles the authors 

reviewed many examples reported in the literature that illustrate the effect of ignoring the 

sampling process when fitting models to survey data based on complex sample and they 

discussed methods to deal with this problem.  

 

Kim (2002) considers Bayesian and Empirical Bayesian approach to small area 

estimation under informative sampling. Sverchkov and Pfeffermann (2004) study the use 

of the sample distribution for the prediction of finite population totals under single-stage 

sampling. They propose predictors that employ the sample values of the target study 

variable, the sampling weights of the sample units and possibly known population values 

of auxiliary variables. They solve the prediction problem by estimating the expectation of 

the study values for units outside the sample as a function of the corresponding 

expectation under the sample distribution and the sampling weights. The prediction mean 

square error is estimated by a combination of an inverse sampling procedure and a re-

sampling method. An interesting outcome of the present analysis is that several familiar 

estimators in common use are shown to be special cases of the proposed approach, thus 

providing them a new interpretation. They study the performance of the new and some 

old predictors in common use is evaluated and compared by a Monte Carlo simulation 

study using a real data set. In their article they use the sample and sample-complement 

distributions for developing design consistent predictors of finite population totals. 

Known predictors in common use are shown to be special cases of the present theory. 

The mean square errors (MSEs) of the new predictors are estimated by a combination of 

an inverse sampling algorithm and a resampling method. As supported by theory and 

illustrated in the empirical study, predictors of finite population totals that only require 

the prediction of the outcome values for units outside the sample perform better than 

predictors in common use even under a design based framework, unless the sampling 

fractions are very small. The MSE estimators are shown to perform well both in terms of 

bias and when used for the computation of confidence intervals for the population totals. 

The author pointed that “Further experimentation with this kind of predictors and MSE 

estimation is therefore highly recommended”. Nandram et al. (2006) study the problem in 

which a biased sample is selected from a finite population (a random sample from a 

super-population), and inference is required for the finite population mean and the 

superpopulation mean. However, the measurements may not be normally distributed, a 

necessary condition for their method; a transformation, which can possibly provide a 

normal approximation, is needed. The authors use the Gibbs sampler and the sample 

importance resampling algorithm to fit the non-ignorable selection model to a simple 

example on natural gas production. Their non-ignorable selection model estimates the 

finite population mean production much closer to the true finite population mean than a 

model which ignores the selection probabilities, and there is improved precision of the 

non-ignorable selection model over this latter model. A naive 95% credible interval based 

on the Horvitz–Thompson estimator is too wide. Rao (2011) provides an account of both 

parametric and nonparametric Bayesian (and pseudo-Bayesian) approaches to inference 

from survey data, focusing on descriptive finite population parameters. Little (2012) 

characterize the prevailing philosophy of official statistics as a design/model compromise 

(DMC). It is design-based for descriptive inferences from large samples, and model-

based for small area estimation, nonsampling errors such as nonresponse or measurement 

error, and some other subfields like autoregressive integrated moving average (ARIMA) 

modeling of time series. Little suggests that DMC involves a form of “inferential 
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schizophrenia”, and offer examples of the problems this creates. He discuss an alternative 

philosophy for survey inference which is called calibrated Bayes (CB), where inferences 

for a particular data set are Bayesian, but models are chosen to yield inferences that have 

good design-based properties. Little argue that CB resolves DMC conflicts, and 

capitalizes on the strengths of both frequentist and Bayesian approaches. Features of the 

CB approach to surveys include the incorporation of survey design information into the 

model, and models with weak prior distributions that avoid strong parametric 

assumptions. Savitsky and Toth (2016) propose to construct a pseudo-posterior 

distribution that utilizes sampling weights based on the marginal inclusion probabilities 

to exponentiate the likelihood contribution of each sampled unit, which weights the 

information in the sample back to the population. They construct conditions on known 

marginal and pairwise inclusion probabilities that define a class of sampling designs 

where consistency of the pseudo posterior is guaranteed.  

 

In this paper we will account for informative probability sampling design in the Bayesian 

approach to sample survey inference, for example Bayes estimation of the parameters of 

superpopulation model and prediction of finite population total. 

 

The plan of the paper is as follows, Section 2 is devoted to the definitions of sample and 

sample-complement distributions. In Section 3 we define the sample posterior 

distribution. In Section 4, we develop the sample posterior likelihood and Bayesian 

inference for superpopulation parameter. The Bayesian approach are studied for normal 

and Bernoulli superpoulation models in Sections 5 and 6. In Section 7, we propose a new 

Bayes prediction of finite population total. Finally some conclusions are presented in 

Section 8.  

2.   Sample and Sample-Complement Distributions 

Let  NU ,...,1  denote a finite population consisting of N  units. Let y  be the study 

variable of interest and let iy  be the value of y  for the thi  population unit. We consider 

the population values Nyy ,...,1  as random variables, which are independent realizations 

from a distribution with probability density function (pdf)  |ip yf , indexed by a vector 

of parameters  , where   is the parameter space of  .  Let   ipii xx ,...,1x , Ui  

be the values of a vector of auxiliary variables, 
pxx ,...,1
, and  Nzz ,...,1z  be the values 

of known design variables, used for the sample selection process not included in the 

model under consideration. In what follows, we consider a sampling design with 

selection probabilities )Pr( sii  , and sampling weight iiw 1 ; Ni ,...,1 . In 

practice, the i ’s may depend on the population values  zyx ,, . We express this 

dependence by writing:   ),,|Pr( zyxsii   for all units Ui . Since 
N ,...,1

 are 

defined by the realizations   Niy iii ,...,1 ,,, zx , therefore they are random realizations 

defined on the space of possible populations. The sample s  consists of the subset of U  

selected at random by the sampling scheme with inclusion probabilities .,...,1 N  

Denote by   NII ,...,1I  the N  by 1 sample indicator (vector) variable, such that 1iI  
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if unit Ui  is selected to the sample and 0iI  if otherwise. The sample s  is defined 

accordingly as  1,|  iIUiis  and its complement by  0,|  iIUiisc . We 

assume probability sampling, so that 0)Pr(  sii  for all units .Ui  

 

Let
pf  and  pE  denote the pdf and the mathematical expectation of the population 

distribution, respectively; sf  and  sE denote the pdf and the mathematical expectation 

of the sample distribution, respectively; and cf  and  cE  denote the pdf and the 

mathematical expectation of the sample-complement distribution. Assume that the 

population pdf depends on known values of the auxiliary variables ix , so that 

 
piipi yfy ,|~ x . According to Pfeffermann, Krieger and Rinott, Y. (1998), the 

(marginal) sample pdf of iy  is given by: 

   

   

 





,,|

,|,,|
                        

  s,,,|,,|

iip

iipiiip

iipiis

E

yfyE

iyfyf

x

xx

xx





    

(1) 

where 

      iiipiiipiip dyyfyEE  ,|,,|,,| xxx  

and   is the informativeness parameter. 

 

Similarly, Sverchkov and Pfeffermann (2004) define the sample-complement pdf of iy  

as: 

 
   

 iip

iipiiip

iic
E

yfyE
yf

x

xx
x

|1
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

     

(2) 

 

For vector of random variables  iiy x, , the following relationships hold: 

     1
||


 iipiis yEywE          (3a) 

      iiisiisiip ywEwEyE xxx |||
1


     

(3b) 

     1
 ipis EwE 

        
(3c) 
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(3d) 

 

See Pfeffermann and Sverchkov (1999) and Sverchkov and Pfeffermann (2004). 

 

Having derived the sample distribution, Pfeffermann, Krieger and Rinott (1998) proved 

that if the population measurements iy  are independent, then as N  fixed  with  n  

the sample measurements are asymptotically independent, so we can apply standard 

inference procedures to complex survey data by using the marginal sample distribution 

for each unit.  Based on the sample data  siwy iii   ;,,x ,  Pfeffermann, Krieger and 

Rinott (1998) proposed a two-step estimation method: 
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Step-one: Estimate the informativeness parameters   using equation (3a). Denoting the 

resulting estimate of   by ~ . 

 

Step-two: Substitute ~  in the sample log-likelihood function, and then maximize the 

resulting sample log-likelihood function with respect to the population parameters,  : 

          ~,,|log~,,|log ~,
11

iis

n

i

srsiip

n

i

srsrs wElEll xx 


                    (4) 

where   ~,rsl  is the sample log-likelihood after substituting ~  in the sample log-

likelihood function and where     



n

i

iipsrs yfl
1

,|log  x  is the classical log-

likelihood. 

 

For more discussion on the use of sample and sample-complement distributions for 

analytic inference, see Pfeffermann and Sverchkov (1999, 2003), Sverchkov and 

Pfeffermann (2004), Eideh and Nathan (2009) and Eideh (2012a, 2012b). 

3.   Sample Posterior Distribution  

In this section we describe Bayesian approach to the problem of estimation. This 

approach takes into account any prior knowledge of the survey that the sampler has. Let 

 q  be the prior pdf of  , here we look upon   as a possible value of  .  Assume that 

the sample conditional pdf of iy  given   is  |is yf . 

 

The informativess parameter (or the parameter of sample selection process)    that index 

the selection model is a characteristic of the data collection but is not generally of 

scientific interestis and it is not identifiable (see Nandram et al. (2006)), therefore in this 

paper we treat   as fixed in repeated sampling. So that   ,,| iis yf x
 
can be written as 

 |is yf . For more information on estimation of  , see Eideh (2012a). 

 

We next define the sample joint pdf of iy  and  , Bayes sample marginal or Bayes 

sample predictive pdf of iy , and sample posterior distribution. 
 

(a) The sample joint pdf of  iy  and   denoted by,  ,is ym  is defined by: 

      |, isis yfqym 
       

(5) 

 

(b) An important quantity in Bayesian inferences and statistical decision theory is the 

marginal or Bayes predictive distribution of Y , which plays an important role in various 

scientific applications. The Bayes sample marginal or Bayes sample predictive or Bayes 

sample predictive pdf of iy ,  denoted by,  is ym  is given by: 

 
     
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(6)
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The Bayes sample predictive pdf of iy  presents the evidence for a particular model, 

defined by prior distribution  q  known as prior predictive as it represents the 

probability of observing  the data iy  that was observed before it was observed. 

 

(c) Now we introduce the sample posterior distribution, denoted by  is yq | , which is a 

way, after (posterior to) observing iy , for adjusting or updating the prior distribution 

 q  (the beliefs about   prior to experimentation or prior to survey) to  is yq | . 

Accordingly, all parametric statistical inferences about the parameters of interest, say 

 , are derived from the posterior sample distributions so it represents a complete 

solution to the inference problem.  

 

The sample posterior distribution can be viewed as a way of combining the prior 

information  q  and the sample information  |yf s , in other words,  xqs |  contains 

all of the information combining prior knowledge and observations. The sample posterior 

distribution of   given iy , denoted by  is yq   is defined by: 

 
 
 

   
 
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(7) 

Note that: 

(i)  If the sampling design is noninformative, that is,      |sPr,|sPr  iyi i  for 

all iy , then the sample joint pdf of iy  and 
 
is the same as the population joint 

pdf of  iy  and  , the Bayes sample predictive pdf of iy  posterior distribution is 

the same as the Bayes population predictive pdf of iy , and the sample posterior 

distribution of   given iy  is the same as the population posterior distribution 

of   given iy . So that data collection method (sampling design) does not 

influence Bayesian inference.  

 

(ii)  The Bayes sample predictive pdf of iy ,  is ym , represents the normalizing 

constant in Bayes theorem, so that  

 
   

 is

is

is
ym

yfq
yq




|
|          (8) 

is called normalized sample posterior distribution, while 

      || isis yfqyq          (9) 

is the unnormalized one.
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(iii)   The sample posterior distribution (the distribution of   after the sample is drawn) 

can be viewed as a way of combining the prior information  q  (which reflects 

the subjective belief of   before the sample is drawn), the sampling design, 

 ,|sPr iyi , and the population information  |ip yf . In other words, 

 is yq   contains all of the information combining prior knowledge, sampling 

design and observations. 

 

(iv)  With fixed  |ip yf  and  q , the sample posterior distribution is completely 

determined by   ,| iip yE . For more information on this issue, see Pfeffermann, 

Krieger and Rinott (1998), and Eideh (2010). Hence, sample posterior distribution 

combine: population distribution  |ip yf , prior distribution  q  and 

  ,| iip yE . 

 

(v)  Furthermore, 

 
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 

   
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yq

yq
        (10) 

 

That is, the sample posterior odds are equal to prior odds,    21  qq , multiplied 

by the sample likelihood ratio, 

 
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|


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         (11) 

4.   Sample Posterior Likelihood and Bayesian Inference for Superpopulation 

Parameter  

Data collected by sample surveys, are used extensively to make inferences on assumed 

population models. Often, survey design features (clustering, stratification, unequal 

probability selection, etc.) are ignored and the sample data are then analyzed using 

classical methods based on simple random sampling. In this section we account for 

informative sampling design in the analysis of survey data using Bayesian inference.  

 

If   ns yy ,1y
 
are independent and identical random variables from  |is yf , 

 
then 

we can write the sample  joint conditional pdf of   ns yy ,1y  given  , as:   

     



n

i

isssss yfLf
1

||  yy        (12) 

Thus sample joint pdf of    ns yy ,1y  and   is: 

      ssss Lqm yy ,         (13) 
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If  
 
is a continuous random variable, then Bayes sample predictive pdf of 

  ns yy ,1y
 is:  

        
 

     ,  dLqdmm ssssss yyy      (14) 

 

Hence the conditional sample pdf of  ss y  or the sample posterior likelihood:  

   

   
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||
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Now we are in a position to deal with Bayesian inference, via the sample posterior 

distribution and the sample posterior likelihood. This provides the following 

representation of the sample posterior pdf of sy| : 

 

          Sample Posterior information = Prior information + Sampling design information +  

  Sampling information 

 

And in terms of pdfs: 

Sample Posterior pdf = Prior pdf+ Sample Likelihood function 

                                           = Prior pdf+ sampling design+ population pdf 

 

Therefore the sample posterior pdf of sy|  summarizes the total information, after 

viewing the sample data, collected under informative sampling design, and provides a 

basis for sample posterior or Bayesian inferences concerning the population parameters 

of interest. 

 

The generalized maximum likelihood estimator (MLE) g̂  of    is the value of 

   that maximizes the sample posterior likelihood function,  ssL y| . That is, g̂  is 

the most likely value of  , given the prior and the sample data   ns yy ,1y . 

Obviously g̂   has the interpretation of being the "most likely" value of    given the 

prior and the sample data   ns yy ,1y . 

 

From Bayesian viewpoint, estimating the population parameter   is obtained by 

choosing a decision function  sy , which depends on a loss function    ,sL y , whose 

conditional expectation under the sample posterior distribution is minimum. That is, 

     

    

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(16) 
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If       2,   ssL yy  (squared error loss function), then it is easy to show that, the 

sample Bayes estimate of   is given by: 

   ssBs E yy  ˆ         (17) 

and the sample Bayes estimate of      is given by: 

  ssB E y ̂
        

(18) 

 

Moreover, the  %1100   highest sample posterior density (HSPD) credible set for 

 , is the subset C  of   of  the form:   

     kqC ss  y|:
      

(19) 

where   ns yy ,1y  , and  k  is the largest constant such that: 

  1sCP y
        

(20)
 

5.   Application 1 – Normal Superpopulation Model 

According to the definition of sample posterior distribution, to consider the Bayesian 

inference, we need to specify:  |ip yf  and  q , and   ,| iip yE . 

 

From now on, we denote the parameter index the population distribution by 
p , and the 

parameter index the sample distribution by s . Consider the following population model:  

 2,~|  pppi Ny          (21) 

be independent random variables, Ni ,...,1  , where 02   is known, Ni ,...,1 . Let 

  ns yy ,1y
 
be the sample data. Suppose that  

   iiip yayE 1exp
        

(22) 

 

Using equation (1), it is easy to verify that the sample model is: 

 2,~|  sssi Ny          (23) 

where  2

1

2

1 ,,  aa psps   is a linear function of
p . So in order to find the 

Bayes estimator of 
p , we (for simplicity and to makes life easy) choose a prior 

distribution for s  and then derive the Bayes estimator for 
p , via the relationship 

between 
p  and s . We consider different cases based on prior distribution.  

 

Case 1: Assume that the prior distribution for  2,~ Ns  with known  2, . Hence 

in this case and the subsequent cases,   ,,, 22

1a  is know, and the only unknown 

parameter is 
p . Using the formulas in the previous sections, and doing some algebra we 

have:  
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(a) The sample posterior distribution of  ss y  is given by:  




















22

22

22

22

,~








nn

yn
N s

ss y

     

(24)

 

where  


n

i is yny
1

1 . 

so that              

 
22

22





n

yn
E s

sss



 y         (25) 

and  

   
 

2

22

2

22

22














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n

n

n
V sss y       (26)

  

Now, for given   ,,, 22

1a  and using  
2

1aps  , we have 

   

2

122

22

2

1

                






a
n

yn

aEE

s

ssssps







 yy

      

(27)

 

and 

   

 
22

22

2

1

                






n
V

aVV

sss

ssssps






y

yy

       (28)

 
 

Furthermore, the sample posterior distribution of  sp y  is given by:  
















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




22
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122

22

,~
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
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n
a

n

yn
N s

sp y

    

(29)

 
 

Hence the sample and population posterior pdfs of sp y  belong to the same family of 

normal distributions, but the mean under the sample posterior pdf is different from the 

mean under the population posterior pdf of sp y . Furthermore if 01 a , that is the 

sampling design is ignorable, then the sample and population posterior pdfs are similar.   

 

(b) For given   ,,, 22

1a , the Bayes estimate of  p  under the sample posterior 

pdf is: 

 

   

  2

1

2

11

2

122

22

ˆ      

11      

ˆ
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
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
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     (30) 
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where 

 
  22

2









n

n
         (31) 

and  

    spB ysrs   1ˆ
       

(32) 

is the Bayes estimate of  
pp   under noninformative sampling design.   

Note that: 

 

(1)  If 01 a (that is, sampling design is noninformative), then the Bayes estimate of  

p  
based on the population model and sample model are coincide. 

(2)  If 01 a  and 0iy , then   iya

iip eyE 1|   is an increasing function of iy , so 

that larger values are more likely to be in the sample than smaller values. In this 

case,  srspB̂  overestimate p . The Bayes estimate   2

1
ˆˆ  asrspBpB   

adjusts  srspB̂  by the positive quantity
2

1a . 

(3)  If 01 a  and 0iy , then   iya

iip eyE 1|   is a decreasing function of iy , so 

that smaller values are more likely to be in the sample than larger values. In this 

case,  srspB̂  underestimate
pp  . The Bayes estimate   2

1
ˆˆ  asrspBpB   

adjusts  srspB̂  by the negative quantity 
2

1a . 

(4)  sBpB a  ˆˆ 2

1   is a weighted average of   (prior mean)  and sy  (the maximum 

likelihood estimator of s ), with weights   and 1 , respectively. 

(5)  pB̂  can be written as: 

 
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n
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so that, 
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
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


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(34) 

 

Hence, for large sample size n , the Bayes estimate of
pp  , shrinkage to 2

1ays  . 

That is, as the sample size n increases, the influence of the prior distribution on posterior 

inferences decreases.  

 

This idea, sometimes referred to as asymptotic theory, because it refers to properties that 

hold in the limit as n becomes large. The large-sample results are not actually necessary 

for performing Bayesian data analysis but are often useful as approximations and as tools 

for understanding. See Gelman et al.  2009. 
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(c) It is easy to verify that for given   ,,, 22

1a ,  the generalized MLE of p  is 

given by: 

 

  2

1

2

1

1      

ˆ





ay

ayy

s

sspg





       

(35)
 

 

which is the sample Bayes estimate of 
pp  . 

 

(d)  Furthermore, the  %1100   highest sample posterior density (HSPD) credible set 

for 
p , is given by: 

  

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
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
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


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n
zayC s

    

(36)

 

where is the   %21100 
 
percentile of the standard normal distribution.  

 

Note that if 01 a  (that sampling design is noninformative), then the  %1100   

highest sample posterior density (HSPD) credible set for  , is given by: 

  
















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n
zyC s

     

(37) 

which is the classical  %1100   highest posterior density (HPD) credible set for 
p . 

 

Not that   ssq   ;
 

is a conjugate family for   sss yf   ;|i , because 

 iss yq |  is in the class of   ssq   ; .   

 

Case 2: Assume that the prior distribution for  22

1

2

1 ,~  aNaps   with 

known  1

2 ,, a . Under this case we have: 

 

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(38) 
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(39) 

   sppsss V
n

V yy 



22

22





      
(40) 

      2

1

2

1 1  ayaEE sssssps  yy
   

(41)
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For given   ,,, 22

1a , the Bayes estimator of  s  under the sample posterior pdf 

is: 

     2

11ˆ  ayE sssssB  y
     

(42) 

where 
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Hence, the Bayes estimator of  p  is: 

 
  2

1

2

1

1     

ˆ





ay

nayy

s

ssp





       

(43)
 

 

It is easy to verify that for given   ,,, 22

1a ,  the generalized MLE of ss   is given 

by: 

   2

11ˆ  ayssg 
       

(44) 

 

So that: 
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(45) 

 

The  %1100   highest sample posterior density (HSPD) credible set for s , is 

given by: 

  
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(46) 

 

So that for  2

1 asp  is:
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(47)

 
 

Not that   ssq   ;  is a conjugate family for   sss yf   ;|i , because  iss yq |  

is in the class of   ssq   ; .   

 

Case 3: Assume that the prior distribution for  2,~ Np  with known  2, . 

Similar to Cases 1 and 2, we have: 
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so that  
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and  
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which is similar to Case 2 (a). 

 

(b) For given   ,,, 22

1a , the Bayes estimator of p  under the sample posterior 

pdf is: 
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where 
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which is similar to Case 2 (b). 

 

Note that, here, pB̂  is a weighted average of  (prior mean) and  2

1ays   (the 

maximum likelihood estimator of 
pp  ), with weights  and , respectively. 

 

(c) It is easy to verify that for given   ,,, 22

1a ,  the generalized MLE of p  is 

given by: 
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1
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(52)

 
 

which is the sample Bayes estimate of p  - similar to Case 2 (c). 

 

(d) The  %1100   highest sample posterior density (HSPD) credible set for 
p , is 

given by: 
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which is similar to Case 2 (d). 

 



 1
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Note that if 01 a (that sampling design is noninformative), then the  %1100   highest 

sample posterior density (HSPD) credible set for p , is given by 
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(54)

 
which is the  %1100   highest posterior density (HPD) credible set for p . 

 

Hence, the prior distribution for  2,~ Np  with known  2,  is equivalent to the 

prior distribution  22

1

2

1 ,~  aNaps   with known  1

2 ,, a , in the sense 

that, they give the same predictor of p  .    

 

Not that   ppq   ;
 

is a conjugate family for   sss yf   ;|i , because 

 ips yq |  is in the class of   ppq   ; . 

 

It should be noted that, the similarity between Case 2 and Case 3 is interpreted as 

follows: since under Case 3,  2,~ Np , therefore 

 22

1

2

1 ,~  aNaps  , which is the prior distribution under Case 2. The 

situation is different under Case 1, where  22

1 ,~  Naps  .   

 

Case 4: Suppose that the prior distribution of s  is noninformative or improper: 

   ssq  - ,1
       

(55) 

 

(a) Since sy  is a sufficient statistics for 
2

1 aps  , therefore, the conditional sample 

pdf of ns yy ,...,1  or the sample posterior likelihood is: 
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(56) 

 

Hence the posterior distribution of  ss y  is given by: 





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




n
yN sss
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,~


y          (57) 

so that  

  ssss yE  y
        

(58) 

and  

 
n

V sss

2
 y

        
(59) 
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We are interested in sample posterior distribution of  sp y .  

Since 
2

1 asp  , therefore, sample posterior distribution of  sp y  is given by:  









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n
ayN ssp
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1 ,~
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(60) 

so that  

 
  2
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
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y
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(61) 

and  

   sppsps V
n

V yy 
2

       
(62)

 
 

Note that the sample and population posterior pdfs of sp y  belong to the same family 

of normal distributions, but the mean under the sample posterior pdf is different from the 

mean under the population posterior pdf of sp y . Furthermore if 01 a , that is the 

sampling design is ignorable, then the sample and population pdfs are similar.   

 

(b) For given  2

1,a , the Bayes estimator of  p  under the sample posterior pdf is 

  2

1
ˆ  ayE sspspB  y

       
(63)

 
which is the same as the maximum likelihood estimator of  p  under the sample 

model:  2,~|  sssi Ny 
 
where

2

1 asp  .
 

 

(c) It is easy to verify that for given  2

1,a ,  the generalized MLE of p  is given 

by: 
2

1
ˆ  ayssg 

        
(64)

 
 

(d) The  %1100   highest sample posterior density (HSPD) credible set for 
p , is 

given by: 
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(65)

 
 

Note that if 01 a (that sampling design is noninformative), then the  %1100   highest 

sample posterior density (HSPD) credible set for 
p , is given by: 

 


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


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n
zyC s
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(66)

 
which is the  %1100   highest posterior density (HPD) credible set for  . Also it is 

the  %1100   confidence interval for 
p . 
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Not that   ssq   ;
 

is a conjugate family for   sss yf   ;|i . Because 

 iss yq |  is in the class of   ssq   ; .   

6.   Application 2 – Bernoulli Superpopulation Model 

Let  pppi Bery  ~|   are independent random variables, where  1,0p , 

Ni ,...,1 .  Suppose that the sample inclusion probabilities have expectations: 
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(67) 

 

So that, 00 ln a  and  011 ln a . In this case 10  and   are known before sampling. 

We can show that the sample distribution of iy  is: 
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(68) 

 

Thus the distribution of siyi  ,  is the same as the distribution of Uiyi  , , except that 

the population parameter 
p  changes to: 
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(69) 

which is not a linear function of 
p . 

 

Notice that if 01 a , or equivalently 10   , that is, the sampling design is ignorable 

then the sample and population distributions are the same. 

 

Case 1: Now suppose that the prior distribution of 
p  is  ,~ Bp , where   ,  are 

known. The conditional sample pdf of sp y  or the sample posterior likelihood is given 

by: 
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where 
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(71) 
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which cannot be written in the form of  beta distribution. 

 

Not that   ppq   ;  is not a conjugate family for   ppis yf   ;| , because 

 
ips yq |  is not in the class   ppq   ; .   Recall that 

     
011 1  ppps   is not a linear function of 

p .   

 

Case 2: To makes life easy, assume that the prior distribution of s  is   ,~ Bs . It is 

easy to verify that, the conditional sample pdf of ss y  or the sample posterior likelihood 

is given by: 

       ssssssss Lqq   ,| yy
      

(72) 

where 
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Hence, 
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(74)
 

 

After some algebra, we can show that the sample posterior distribution of  ss y  is given 

by:  
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and  
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(77)

 
 

Not that   ssq   ;  is a conjugate family for   sss yf   ;|i . Because 

 iss yq |  is in the class    ssq   ; .  

 

Hence, for given  10 ,,,  , the Bayes estimate of  s  under the sample posterior 

pdf is given by: 
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But we are interested in the Bayes estimate of p . For this, using the relationship 

between s  and 
p , we get: 
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Notice that if 10   , that is, the sampling design is ignorable,  then  
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(80) 

which is the classical Bayes estimate of  
p under simple random sample. 

 

The Bayes estimate pB̂  can be written as: 
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which is a linear combination of sy - maximum likelihood estimator of 
p , under the 

population model   
pppi Bery  ~|  , and     - mean of   ,: Bs . 

 

Furthermore, we have: 

   

 
   

 ss

s

ss

s

ss

n
pB

n

yy

y

ynnyn

y
ynnyn

n



























































1
             

limˆlim

10

0

10

0

10

0



















   

(82) 

 

Hence, for large sample size n , the Bayes estimate of
pp  , shrinkage to:  
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(83) 

where  infˆ
p  denotes  the maximum likelihood estimate of 

p  under informative 

sampling design, treating  
p  as fixed unknown constant. 

 

Notice that if 10   , that is, the sampling design is ignorable,  then spB
n

y

̂lim . 

 

The important feature of this formula is that, if  
p , (consequently s ) is treated as fixed 

unknown constant (classical or frequentist statistics), that is, 0  , and the sampling 
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design is informative, then  for large sample size n , the Bayes estimate of 
p  becomes 

     sss yyy  1100  .  

 

It is easy to verify that for given   , ,  the generalized MLE of ss   is given by: 
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(84)

 

which is the sample Bayes estimate of s . Hence using the relationship between s  

and 
p , we have 
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Notice that if 10   , that is, the sampling design is ignorable then, then 
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which the Bayes estimate of 

pp   under noninformative sampling design. 

 

The important feature of this formula is that, if  
p  is treated as fixed unknown constant 

(classical or frequentist statistics), that is, 0  , and the sampling design is 

noninformative, then for large sample size the Bayes estimate of 
p  becomes sy  which 

is the MLE of 
p . 

7.   Bayes Prediction of Finite Population Total  

Sverchkov and Pfeffermann (2004) use sample and sample complement distributions for 

the prediction of finite population totals under informative sampling for single-stage 

sampling designs. Later Eideh and Nathan (2009) extend the theory to general linear 

functions of the population values and to two-stage informative cluster sampling. None of 

the above studies consider prediction of finite population total from Bayesian perspective. 

In this section we use sample posterior and sample complement posterior distributions, to 

predict the finite population total under single-stage informative sampling design.  Let 
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(87) 

 

The available information for the prediction process is 

     nNUiIsiyO iii  , , , , ,   , where siIsiI ii  for   0  and  for    1 . 

 

Now, following the notations in Sections 2 and 3, the sample complement posterior 

distribution of pp   given iy , denoted by  ipc yq   is defined by: 



Bayes Estimation and Prediction under Informative Sampling Design 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp327-353 347 

 
   

 ic

picp

ipc
ym

yfq
yq




|
| 

       

(88) 

where,  |ic yf  is the sample complement distribution of iy  given pp  , which is 

given by: 
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Also, we have: 
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and 
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Hence,  ipc yq |  can be written as: 
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Let    


  csNnnp yyyy yyy ,,,,, 11  , where
 

  ns yy ,,1 y  and 

   Nnc yy ,,1 y . Let  pTT y  be the finite population quantity to be predicted. For 

example: the finite population total  


N

i iyT
1

. Let    sn TyyT yˆ,,ˆ
1   define the 

predictor of  pT y  based on O . The loss involved in predicting  pT y  by  sT yˆ  is 

    sp yTTL ˆ,y . For given pp   and sy , and squared error loss function, the Bayes 

predictor of  pT y  is: 

    
spps TET yyy ˆ

        
(93) 

 

Now we consider the following: 
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(94) 

 

Thus, the estimate of the population total, for a fully Bayesian method under squared 

error loss, requires the posterior predictive expectation  sic yE y  for prediction of 
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sciyi  ,  given sy . This posterior expectation, under informative sampling design, 

can be obtained by the iterated expectations: 

    spsicssic yEEyE yyy ,
      

(95) 

where sE  is the expectation with respect to the sample posterior distribution of 
p  given 

sy , and cE  is the expectation with respect to the sample complement of the posterior 

predictive distribution of ciyi  ,  given sy . 

 

Illustration 1: Case 4 in Section 5. Superpopulation model: Let 

 2,~|  pppi Ny   be independent random variables, Ni ,...,1  , where 02   is 

known, Ni ,...,1 . Suppose that    iiip yayE 1exp . Then the sample model is: 

 2,~|  sssi Ny  , where 
2

1 aps  . Suppose that the prior distribution of s  

is    ssq  - ,1 . Then 









n
ayN ssp

2
2

1 ,~


y . 

 

Computation of     spsicsic yEEyE
p

yyy  , : 

Since ciyi  , is independent of sy , therefore 
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
y

    

(96) 

 

After some algebra, and noting that    
piiipppiip yyEEyE  ,||   we can show that: 
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(97) 

where    22

111 5.0exp  aaaM pp   is the moment generating function of 

 2,~|  pppi Ny  .  

so that, 
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Now, 

  2

1 ayE ssps y
       

(99) 

and 
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Using Taylor series expansion of    11 1 aMaM pp   around 2

1 aysp  , we can 

show that, approximately: 
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(101) 

 

Hence, 
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(102) 

 

Thus, for given  2

1,a  the Bayes predictor of   


N

i iyT
1

 is: 
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(103) 

 

Note that if 01 a , that is, the sampling design is noninformative, then the Bayes 

predictor of  


N

i iyT
1

 is the classical one obtained under design-based and frequentist 

model-based schools. Furthermore, the Bayes predictor of  


N

i iyT
1

 under informative 

sampling adjust the classical predictor by the term 

 
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s . This adjusted term depends on the 

informativeness parameter 1a . 

 

Bayes prediction of finite population total of the other (Cases1,2,3) considered in 

Sections 5 can be treated similarly. 

 

Illustration 2: Case 2 in Section 6. Let   pppi Bery  ~|   be independent random 

variables, where  1,0p , Ni ,...,1 .  Suppose that the sample inclusion probabilities 

have expectations:  
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Recall that the sample distribution of iy  is 
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where 
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(106) 

 

As in Illustration 1, the Bayes predictor of  


N

i iyT
1

 depends on the computation of:

    spsicssic yEEyE yyy , . After some algebra, we can show that: 
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so that, 
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We know that, approximately 
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Expand 
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that, approximately: 
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Hence, approximately: 
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Thus, given  10 ,,,  the Bayes predictor of   


N

i iyT
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 is: 
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Note that if 01   , that is, the sampling design is noninformative, then the Bayes 

predictor of  


N

i iyT
1

 becomes: 

    
n

yn
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(113) 

which is the classical Bayes predictor obtained under model-based school.  

9.   Conclusion 

In this paper we introduced the posterior sample and complement-sample distributions 

under informative sampling, and use them in the analysis of survey data - developing 

Bayes predictors of finite population totals and estimating the parameters that 

characterize the superpoulation normal and binomial models. We have seen that several 

familiar estimators and predictors in common use are shown to be special cases of the 

present theory, thus providing them a new interpretation. Also, we have shown that many 

simple Bayesian analyses based on noninformative prior under informative sampling 

distributions give similar results to standard non-Bayesian approaches under informative 

sampling. Furthermore, for large sample size n , for example, the Bayes estimate of 

pp   , shrinkage to 2

1ays   which is the MLE (or Bayes estimator)  under the 

sample distribution. That is, as the sample size n increases, the influence of the prior 

distribution on sample posterior inferences under informative sampling decreases. 

 

The main features of the present estimators and predictors are their behaviours in terms of 

the informativeness parameters. Also the use of the Bayes estimators and predictors that 

ignore the informative sampling design yields biased Bayes estimators and predictors. 

That is, ignoring the sampling design by not using the weights in the Bayesian statistical 

inference of survey data can seriously bias the results of the analysis, leading to 

erroneous conclusions. So, we should incorporate survey design when making survey 

analytic inferences. 

 

Finally, for simplicity (mathematically handle), and to makes life easy, choose a prior 

distribution for s  - the parameters that characterize the sample distribution, and then 

derive the Bayes estimator for 
p - the parameters that characterize the superpoulation 

model, via the relationship between 
p  and s  is more convenient than choose a prior 

distribution for 
p .  

 

I hope that the present theory and the posed approach in this paper, will encourage survey 

statisticians for further investigations for this vital topic of Bayesian statistical inference 

from sample survey data. 
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