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Abstract

In this research we will deal with the problem of Bayes estimation of the parameter that characterise the
superpopulation model, and Bayes prediction of finite population total, from a sample survey data selected
from a finite population using informative probability sampling design, that is, the sample first order
inclusion probabilities depend on the values of the model outcome variable (or the model outcome variable
is correlated with design variables not included in the model). In order to achieve this we will first define
the sample predictive distribution and the sample posterior distribution and then we use the sample
posterior likelihood function to obtain the sample Bayes estimate of the superpopulation model parameters,
and Bayes predictors of finite population total. These new predictors take into account informative
sampling design. Thus, provides new justification for the broad use of best linear unbiased predictors
(model-based school) in predicting finite population parameters in case of not accounting of complex
sampling design. Furthermore, we show that the behaviours of the present estimators and predictors
depends on the informativeness parameters. Also the use of the Bayes estimators and predictors that ignore
the informative sampling design yields biased Bayes estimators and predictors. One of the most important
feature of this paper is, specifying prior distribution for the parameters of the sample distribution makes life
easier than the population parameters.

Keywords: Bayes estimator, Finite Population Sampling, Informative Sampling, Sample
Distribution.

1. Introduction

Survey data may be viewed as the outcome of two processes: the process that generates
the values of units in the finite population, often referred as the superpopulation model,
(values of units in the finite population is a random sample from superpopulation model)
and the process of selecting the sample units from the finite population, known as the
sample selection mechanism. Analytic inference from sample survey data refers to the
superpopulation model, while descriptive inference deals with estimation of finite
population characteristics. When the sample selection probabilities depend on the values
of the model response (or the model outcome variable is correlated with design variables
not included in the model), even after conditioning on the auxiliary variables, the
sampling mechanism becomes informative, and the selection effects need to be accounted
for in the inference process. To overcome the difficulties associated with the use of
classical inference procedures for cross sectional survey data, Pfeffermann, Krieger and
Rinott (1998) proposed the use of the sample distribution induced by assumed population
models, under informative sampling, and developed expressions for its calculation.
Similarly, Eideh and Nathan (2006) fitted time series models for longitudinal survey data
under informative sampling. Furthermore, to see examples in the field of cross sectional
surveys and panel surveys that illustrating the effects of ignoring informative sampling
design, please review the books edited by: Skinner, Holt and Smith (1989), and
Chambers and Skinner (2003). In particular see the articles by Pfeffermann (2011),
Pfeffermann and Sverchkov (1999, 2003), Sverchkov and Pfeffermann (2004), Eideh and
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Nathan (2006a, 2006b, 2009), Eideh (2003, 2012a, 2012b). In these articles the authors
reviewed many examples reported in the literature that illustrate the effect of ignoring the
sampling process when fitting models to survey data based on complex sample and they
discussed methods to deal with this problem.

Kim (2002) considers Bayesian and Empirical Bayesian approach to small area
estimation under informative sampling. Sverchkov and Pfeffermann (2004) study the use
of the sample distribution for the prediction of finite population totals under single-stage
sampling. They propose predictors that employ the sample values of the target study
variable, the sampling weights of the sample units and possibly known population values
of auxiliary variables. They solve the prediction problem by estimating the expectation of
the study values for units outside the sample as a function of the corresponding
expectation under the sample distribution and the sampling weights. The prediction mean
square error is estimated by a combination of an inverse sampling procedure and a re-
sampling method. An interesting outcome of the present analysis is that several familiar
estimators in common use are shown to be special cases of the proposed approach, thus
providing them a new interpretation. They study the performance of the new and some
old predictors in common use is evaluated and compared by a Monte Carlo simulation
study using a real data set. In their article they use the sample and sample-complement
distributions for developing design consistent predictors of finite population totals.
Known predictors in common use are shown to be special cases of the present theory.
The mean square errors (MSEs) of the new predictors are estimated by a combination of
an inverse sampling algorithm and a resampling method. As supported by theory and
illustrated in the empirical study, predictors of finite population totals that only require
the prediction of the outcome values for units outside the sample perform better than
predictors in common use even under a design based framework, unless the sampling
fractions are very small. The MSE estimators are shown to perform well both in terms of
bias and when used for the computation of confidence intervals for the population totals.
The author pointed that “Further experimentation with this kind of predictors and MSE
estimation is therefore highly recommended”. Nandram et al. (2006) study the problem in
which a biased sample is selected from a finite population (a random sample from a
super-population), and inference is required for the finite population mean and the
superpopulation mean. However, the measurements may not be normally distributed, a
necessary condition for their method; a transformation, which can possibly provide a
normal approximation, is needed. The authors use the Gibbs sampler and the sample
importance resampling algorithm to fit the non-ignorable selection model to a simple
example on natural gas production. Their non-ignorable selection model estimates the
finite population mean production much closer to the true finite population mean than a
model which ignores the selection probabilities, and there is improved precision of the
non-ignorable selection model over this latter model. A naive 95% credible interval based
on the Horvitz—Thompson estimator is too wide. Rao (2011) provides an account of both
parametric and nonparametric Bayesian (and pseudo-Bayesian) approaches to inference
from survey data, focusing on descriptive finite population parameters. Little (2012)
characterize the prevailing philosophy of official statistics as a design/model compromise
(DMC). 1t is design-based for descriptive inferences from large samples, and model-
based for small area estimation, nonsampling errors such as nonresponse or measurement
error, and some other subfields like autoregressive integrated moving average (ARIMA)
modeling of time series. Little suggests that DMC involves a form of “inferential
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schizophrenia”, and offer examples of the problems this creates. He discuss an alternative
philosophy for survey inference which is called calibrated Bayes (CB), where inferences
for a particular data set are Bayesian, but models are chosen to yield inferences that have
good design-based properties. Little argue that CB resolves DMC conflicts, and
capitalizes on the strengths of both frequentist and Bayesian approaches. Features of the
CB approach to surveys include the incorporation of survey design information into the
model, and models with weak prior distributions that avoid strong parametric
assumptions. Savitsky and Toth (2016) propose to construct a pseudo-posterior
distribution that utilizes sampling weights based on the marginal inclusion probabilities
to exponentiate the likelihood contribution of each sampled unit, which weights the
information in the sample back to the population. They construct conditions on known
marginal and pairwise inclusion probabilities that define a class of sampling designs
where consistency of the pseudo posterior is guaranteed.

In this paper we will account for informative probability sampling design in the Bayesian
approach to sample survey inference, for example Bayes estimation of the parameters of
superpopulation model and prediction of finite population total.

The plan of the paper is as follows, Section 2 is devoted to the definitions of sample and
sample-complement distributions. In Section 3 we define the sample posterior
distribution. In Section 4, we develop the sample posterior likelihood and Bayesian
inference for superpopulation parameter. The Bayesian approach are studied for normal
and Bernoulli superpoulation models in Sections 5 and 6. In Section 7, we propose a new
Bayes prediction of finite population total. Finally some conclusions are presented in
Section 8.

2. Sample and Sample-Complement Distributions

Let U = {1N} denote a finite population consisting of N units. Let y be the study
variable of interest and let y, be the value of y for the ith population unit. We consider
the population values y;,,...,y, as random variables, which are independent realizations
from a distribution with probability density function (pdf) f(y, | @), indexed by a vector

of parameters 8 €2, where Q is the parameter space of €. Let X, = (xil,...,xip) , el

be the values of a vector of auxiliary variables, Xprees X s and z = {zl,...,zN } be the values
of known design variables, used for the sample selection process not included in the
model under consideration. In what follows, we consider a sampling design with

selection probabilities 7; =Pr(i€s), and sampling weight w, =1/7,; i=1..,N. In
practice, the 7,’s may depend on the population values (x,y,z). We express this
dependence by writing: 7; =Pr(ies|X,y,z) for all units ieU. Since x,,..., 7, are
defined by the realizations (x;,y;,z,)i=1...,N, therefore they are random realizations

defined on the space of possible populations. The sample s consists of the subset of U
selected at random by the sampling scheme with inclusion probabilities z,,..., 7.

Denote by | =(Il,...,IN)' the N by 1 sample indicator (vector) variable, such that I, =1
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if unit i eU is selected to the sample and |, =0 if otherwise. The sample s is defined
accordingly as s={i|ieU,1, =1} and its complement by c=5={i|ieU,I, =0}. We
assume probability sampling, so that 7, = Pr(i € s) > 0 for all units i € U.

Let f, and Ep(-) denote the pdf and the mathematical expectation of the population
distribution, respectively; f, and ES(~)denote the pdf and the mathematical expectation

of the sample distribution, respectively; and f, and E.(-) denote the pdf and the
mathematical expectation of the sample-complement distribution. Assume that the
population pdf depends on known values of the auxiliary variables X;, so that

y; ~ T, 1x,,6,). According to Pfeffermann, Krieger and Rinott, Y. (1998), the
(marginal) sample pdf of y; is given by:
£ (v 1%.0,7)= f,(y, 1%;,0,7 i €5)
_Ep(”i|Xi’yi17)fp(yilxi’9) 1)
Ep(ﬂ'i |Xi’0’7)

where
Ep(”i | Xi’017/):'[Ep(7Ti | XiaYiJ/)fp(yi | Xiig)dyi
and y is the informativeness parameter.

Similarly, Sverchkov and Pfeffermann (2004) define the sample-complement pdf of v,
as:

Ep(l_”i |Xi’yi)fp(yi |Xi)

fc(yi |Xi) = Ep(l_ﬂ'i |Xi) (2)
For vector of random variables(y;,; ), the following relationships hold:
Es(Wi | Yi): {Ep(ﬂi |y, )}_l (33)
Ep(yi | Xi): {Es (Wi | X; )}_l E, (Wi Yi | Xi) (3b)
Es (Wi ) = {E p (ﬂi )}_l (3C)
( Ep{(l_”i )Yi | Xi} Es{(wi _1)Yi | Xi} (3d)

Ec yi |Xi = =
e eix) T E o -Dix)
See Pfeffermann and Sverchkov (1999) and Sverchkov and Pfeffermann (2004).

Having derived the sample distribution, Pfeffermann, Krieger and Rinott (1998) proved
that if the population measurements Y, are independent, then as N — oo (with n fixed)

the sample measurements are asymptotically independent, so we can apply standard
inference procedures to complex survey data by using the marginal sample distribution

for each unit. Based on the sample data {y,,x;,w,; i €s}, Pfeffermann, Krieger and
Rinott (1998) proposed a two-step estimation method:
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Step-one: Estimate the informativeness parameters » using equation (3a). Denoting the
resulting estimate of » by .

Step-two: Substitute » in the sample log-likelihood function, and then maximize the
resulting sample Iog likelihood function with respect to the population parameters, &:
I (9 V)= Isrs ZIOgE !07}7): Isrs(0)+zlogEs(Wi |Xi797}7) (4)
i=1
where 1.(6,7) is the sample log-likelihood after substituting » in the sample log-

likelihood function and where Zlog{ (y, |x,,49)} is the classical log-

SI’S

likelihood.

For more discussion on the use of sample and sample-complement distributions for
analytic inference, see Pfeffermann and Sverchkov (1999, 2003), Sverchkov and
Pfeffermann (2004), Eideh and Nathan (2009) and Eideh (2012a, 2012b).

3. Sample Posterior Distribution

In this section we describe Bayesian approach to the problem of estimation. This
approach takes into account any prior knowledge of the survey that the sampler has. Let
q(8) be the prior pdf of ®, here we look upon @ as a possible value of ®. Assume that

the sample conditional pdf of y, given ® =4 is f_(y, |9).

The informativess parameter (or the parameter of sample selection process) y that index

the selection model is a characteristic of the data collection but is not generally of
scientific interestis and it is not identifiable (see Nandram et al. (2006)), therefore in this

paper we treat y as fixed in repeated sampling. So that fs(yi | X;,0, ;/) can be written as
fs(yi |0). For more information on estimation of y, see Eideh (2012a).

We next define the sample joint pdf of y, and ® =&, Bayes sample marginal or Bayes
sample predictive pdf of y;, and sample posterior distribution.

(a) The sample joint pdf of y, and © denoted by, m_(y,,8) is defined by:
ms(yi’e) = q(e) fs(yi | 0) (5)

(b) An important quantity in Bayesian inferences and statistical decision theory is the
marginal or Bayes predictive distribution of Y , which plays an important role in various
scientific applications. The Bayes sample marginal or Bayes sample predictive or Bayes

sample predictive pdf of y,, denoted by, m,(y,) is given by:
_[m Y., 0 d6’ J.q y, |0)d0 if ® is continuous

ms (yl) (6)
st(y,, Zq v, 16) if @ is discrete
®
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The Bayes sample predictive pdf of Yy, presents the evidence for a particular model,
defined by prior distribution q(@) known as prior predictive as it represents the
probability of observing the data y, that was observed before it was observed.

(c) Now we introduce the sample posterior distribution, denoted by g, (6’| yi), which is a
way, after (posterior to) observing Y, for adjusting or updating the prior distribution

q(H) (the beliefs about 8 € QO prior to experimentation or prior to survey) to g (6?| yi).

Accordingly, all parametric statistical inferences about the parameters of interest, say
0 € Q, are derived from the posterior sample distributions so it represents a complete
solution to the inference problem.

The sample posterior distribution can be viewed as a way of combining the prior
information (@) and the sample information f_(y|#), in other words, g, (€] x) contains
all of the information combining prior knowledge and observations. The sample posterior
distribution of ® =@ given Y, , denoted by qs(¢9|yi) is defined by:
m, (v;,6) _ a(0)f,(y,16)
%01n)= m.(y,)  m(y)
:q(‘g)Ep(”i |Yi'7)fp(yi |‘9) )
ms(yi)Ep(”i |‘9)
Q(Q)Pr(i es| Yi’7)fp(Yi | X; ’9)
m, (y;)Priies|y)

Note that:

(i) If the sampling design is noninformative, that is, Pr(ies|y,,y)="Pr(ies|y) for
all y,, then the sample joint pdf of y, and ©® is the same as the population joint
pdf of y, and ®, the Bayes sample predictive pdf of y, posterior distribution is
the same as the Bayes population predictive pdf of y,, and the sample posterior
distribution of ® =@ given Y, is the same as the population posterior distribution

of ®=6 given Y,. So that data collection method (sampling design) does not
influence Bayesian inference.

(i)  The Bayes sample predictive pdf of y,,m./(y,), represents the normalizing
constant in Bayes theorem, so that

q(0)f,(y 16)

q,(01y;)= (8)
( ) ms (yl )

is called normalized sample posterior distribution, while

a,(81y;) < a(@)f,(y; 16) ©)

is the unnormalized one.
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(ili))  The sample posterior distribution (the distribution of ® after the sample is drawn)
can be viewed as a way of combining the prior information q(@) (which reflects
the subjective belief of ® before the sample is drawn), the sampling design,
Pr(i €s| yi,;/), and the population information fp(yi |¢9). In other words,
qs(49|yi) contains all of the information combining prior knowledge, sampling
design and observations.

(iv)  With fixed f (y;|6) and q(@), the sample posterior distribution is completely
determined by Ep(ﬂ'i |y,, 7). For more information on this issue, see Pfeffermann,

Krieger and Rinott (1998), and Eideh (2010). Hence, sample posterior distribution
combine: population distribution  f_(y;|6), prior distribution q(¢) and

Ep(”i | yi’7)-

(V) Furthermore,

qs(el | Yi) _ q(‘gl) q(el)fs(yi |91) (10)
qs(92 | yi) Q(Hz) q(HZ)fs(yi |92)

That is, the sample posterior odds are equal to prior odds, q( )/q( ) multiplied
by the sample likelihood ratio,

L6 1y:) _ f.(yi16)
L,(6, | yi) fo(y; |Hz)

(11)

4. Sample Posterior Likelihood and Bayesian Inference for Superpopulation
Parameter

Data collected by sample surveys, are used extensively to make inferences on assumed
population models. Often, survey design features (clustering, stratification, unequal
probability selection, etc.) are ignored and the sample data are then analyzed using
classical methods based on simple random sampling. In this section we account for
informative sampling design in the analysis of survey data using Bayesian inference.

If y. =(y,,...y,) are independent and identical random variables from f_(y, @), then

we can write the sample joint conditional pdf of y, = (yl,...yn )' given ® =4, as:
f (v, 10)=Lly,l0)= Hf i 10) (12)

Thus sample joint pdf of 'y, :(yl,...yn) and O is:
m,(y..0)=a(0)L, (y.[0) (13)

Pak.j.stat.oper.res. Vol.XIIl No.2 2017 pp327-353 333



Abdulhakeem A.H. Eideh

If ©® isa continuous random variable, then Bayes sample predictive pdf of
ys = (yli"'yn) is:
m,(y,)=[m,(y,.0)d60 = [a(@)L,(y.|o)o (14)
® ®

Hence the conditional sample pdf of (~)S|yS or the sample posterior likelihood:

a6 (@1y,)=L(01y,)
_ Q(é’rzl—zi)’#e) (15)

o q(O)L, (ys|¢9)

Now we are in a position to deal with Bayesian inference, via the sample posterior
distribution and the sample posterior likelihood. This provides the following

representation of the sample posterior pdf of ® |y, :

Sample Posterior information = Prior information + Sampling design information +
Sampling information

And in terms of pdfs:
Sample Posterior pdf = Prior pdf+ Sample Likelihood function
= Prior pdf+ sampling design+ population pdf

Therefore the sample posterior pdf of ®|y, summarizes the total information, after

viewing the sample data, collected under informative sampling design, and provides a
basis for sample posterior or Bayesian inferences concerning the population parameters
of interest.

The generalized maximum likelihood estimator (MLE) ég eQ of 8 Q isthe value of

0 that maximizes the sample posterior likelihood function, L,(6]y,). Thatis, 6, e Q) is

the most likely value of 8 € Q, given the prior and the sample data y, :(yl,...yn) .

Obviouslyég € Q has the interpretation of being the "most likely" value of & given the
prior and the sample data y, = (y,,...y, )’.
From Bayesian viewpoint, estimating the population parameter & is obtained by

choosing a decision function &(y. ), which depends on a loss function L[§(ys ), :9], whose
conditional expectation under the sample posterior distribution is minimum. That is,

5(y,)=argmin E_{L[5(y, 6]y}

= argmin [L[5(y,).0la,(0]y, )do (16)
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If L[o(y,).0]=[5(y,)-6] (squared error loss function), then it is easy to show that, the
sample Bayes estimate of & € Q2 is given by:

s(y,)=6, =E,(@l,) (17)
and the sample Bayes estimate of = 5(©)e Q is given by:
f. =E.{pO)y.} (18)

Moreover, the lOO(l—a)% highest sample posterior density (HSPD) credible set for
0 € Q, is the subset C of ® of the form:

C=1{0c0:q,0ly,)>k(a)} (19)

where y, = (yl,...yn)' ,and k() is the largest constant such that:
PCly,)>1-« (20)

5. Application 1 — Normal Superpopulation Model

According to the definition of sample posterior distribution, to consider the Bayesian
inference, we need to specify: f,(y;|6) and q(6), and E (7, | y;, 7).

From now on, we denote the parameter index the population distribution by &, and the
parameter index the sample distribution by &, . Consider the following population model:

v, 10, =0, ~N(6,,0%) (21)
be independent random variables, i=1,....N , where ¢®>0 is known, i=1,...,N. Let

y. =(Yy,...y.) be the sample data. Suppose that
Ep(ﬂi|yi): EXp(aiyi) (22)

Using equation (1), it is easy to verify that the sample model is:

y,10, =6, ~N(6,,6?) (23)
where 6, =60, +a,0° =6, (Hp,al,az) is a linear function of@,. So in order to find the
Bayes estimator of &,, we (for simplicity and to makes life easy) choose a prior
distribution for 6, and then derive the Bayes estimator for 6 , via the relationship
between 6, and 6;. We consider different cases based on prior distribution.

Case 1: Assume that the prior distribution for ©, ~ N(y,rz) with known (u,rz). Hence

in this case and the subsequent cases,(ai,az,rz,u) is know, and the only unknown
parameter is @,. Using the formulas in the previous sections, and doing some algebra we
have:
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(a) The sample posterior distribution of ©,|y, is given by:

o’ +nrzyS r’c?
o,y ~ N(” s (24)
o +nr o +NnNrt
where y,=n">"" vy,
so that
2 25
uo’ +nr’y,
E.(® = =3 25
1 5|y5) o’ +nr? @)
and
o’r? (Uz/n) )
V. (O = = T 26
©.ly.) o?+nr?  (o?/n)+1? (26)
Now, for given (ai,az,rz,y) and using ©, =©, +a,0°, we have
E.(0,y.)=E.(0,-a0c’y.)
_ﬂ02+”7275_a02 27)
~ ol4nr? '
and
VS(G)p ys):VS(G)s -a,0° ys)
( ) o272 (28)
=V, y,)=—2-
0.y, o’ +nr?
Furthermore, the sample posterior distribution of @ |y is given by:
o’ +nt’y, r’o?
®pys~N[ﬂz—z‘a102'ﬁ (29)
o +NnNrt o +Nnt

Hence the sample and population posterior pdfs of © |

y, belong to the same family of

normal distributions, but the mean under the sample posterior pdf is different from the
mean under the population posterior pdf of ® |y,. Furthermore if a =0, that is the

sampling design is ignorable, then the sample and population posterior pdfs are similar.

(b) For given (ai,az,rz,u), the Bayes estimate of &, €Q under the sample posterior
pdf is:

2 2=
A Ho"+NTY,
epB:ES(®pys): o2 +ng? _31‘72
=gu+(1-9)y, — a0 = gu+1-¢)y, a0’ (30)

0,5(srs)-a,0”
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where ( )
e
RGOS )
and
0,5(srs)= pu+(1- @)y, (32)

is the Bayes estimate of ¢, € 2 under noninformative sampling design.
Note that:

1) If a, =0 (that is, sampling design is noninformative), then the Bayes estimate of
0, € Q based on the population model and sample model are coincide.

(2) If a, >0 and y, >0, then Ep(ﬂi |y,)=e*" is an increasing function of v, so
that larger values are more likely to be in the sample than smaller values. In this
case, épB(srs) overestimate @, € Q. The Bayes estimate épB :67pB(srs)—ala2
adjusts @, (srs) by the positive quantity a,0°.

(3) If a, <0 and y, >0, then E (7, |y;)=e*" is a decreasing function of y,, so
that smaller values are more likely to be in the sample than larger values. In this
case, O,5(srs) underestimate 9, € . The Bayes estimate 8, =0,;(srs)-a,0°

adjusts .5(srs) by the negative quantity a,c”.

4) 0, +a,0° =0, isaweighted average of 4 (prior mean) and ¥, (the maximum
likelihood estimator of &, € Q2), with weights ¢ and 1— ¢, respectively.

(5) 0, can be written as:
2

s T - (c?/n) L
N Ty P g T e 9

that,
o imd, —iml g lotn)
ol Gpg = 1M (O_z/n)+z_2 Ys (O'Z/n)+T2 H—q (34)

= 2
=Y, —a,0

Hence, for large sample size n, the Bayes estimate of &, e 2 ), shrinkage to y, —-a,0°.

That is, as the sample size n increases, the influence of the prior distribution on posterior
inferences decreases.

This idea, sometimes referred to as asymptotic theory, because it refers to properties that
hold in the limit as n becomes large. The large-sample results are not actually necessary
for performing Bayesian data analysis but are often useful as approximations and as tools
for understanding. See Gelman et al. 2009.
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(c) It is easy to verify that for given (ai,az,rz,,u), the generalized MLE of g, €Q is

given by:
épg = ys _¢(ys - /,l)— aio-z (35)
= gu+(L-9)y, -0’

which is the sample Bayes estimate of 6, € Q.

(d) Furthermore, thelOO(l— a)% highest sample posterior density (HSPD) credible set
for 0,, Is given by:

c =((¢u+(1—¢)75 ~a0t): zam/#J (36)

where is the 100(1—«/2)% percentile of the standard normal distribution.

Note that if a, =0 (that sampling design is noninformative), then the 100(1-c )%
highest sample posterior density (HSPD) credible set for &, is given by:

— 0'2‘[2
c =[¢u+(1—¢)(ys)iza/z,/ﬁj (37)
o +nr
which is the classical 100(1— a)% highest posterior density (HPD) credible set for 6, .

Not that {q(6, )6, €Q} is a conjugate family for {f (y,|6,);6, €Q}, because
q.(6, | 'y,) is in the class of {q(8, ); 8, € Q}.

Case 2: Assume that the prior distribution for ©®, =0 +a,0° ~ N(,u+a162,2'2) with
known (,u, rz,ai). Under this case we have:

ity o2
E,(0,ly,)=gu+[1-p)y,)+ fao”

= Ep(®p ys)+ da,o’ (39)
vs(@5|ys)=%=vp(®p y.) (40)
E.(0,.)=E.(0.)y.)-a0" = gu+ 1-4)y. —a0?) (41)
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For given (ai,oz,rz,,u), the Bayes estimator of 6, € Q under the sample posterior pdf
is:

0 =E,(0,]y,)=gu+1-¢)y.)+da,0? (42)
where

()

Hence, the Bayes estimator of 6, € Q is:

A

ap = ys _¢(ys _:u+na1T2)

(43)
= g+ (- )y, —a0?)

It is easy to verify that for given (ai,az,rz,y), the generalized MLE of 6, € Q) is given
by:
O = pp+ L=, )+ doyo’? (44)

So that:
gpg = ys _¢(ys —u+ naiz-z)

(45)
= gu+(1-4)y, -a0?)

The 100(1- )% highest sample posterior density (HSPD) credible set for 6, € Q, is
given by:

A ey 0

So that for 6, =6, —a,0” e Q is:

c =(¢y+(1—¢)(vs ~a0%)x za/z,/#J (47)

Not that {q(6, ); 6, € Q} is a conjugate family for {f_(y, |6, ); 6, € Q}, because q.(6, | y;)
is in the class of {q(6, ), 6, € Q}.

Case 3: Assume that the prior distribution for ©  ~ N(,u,rz) with known (,u,rz).
Similar to Cases 1 and 2, we have:

2 2 _ 2 _2
ys~N(y0 +nr°y, —naro o j (48)

® ,
O'2+n2'2 0'2+nr2

p
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so that
2 25 2 __2
Mo +NTy, —naro
E.\® =
s( pys) o2 +nrl
2 25 2_2
HOo  +NTTY T 0
=T N (49)
o +nr o +nr
:Ep(®py5)_naivp(®py5)
and
2 2
o't
V,\® =—
s( pys) o2 +nz2

(50)
Z/n
) (Og/ni+)rz a :V"(@p
which is similar to Case 2 (a).

y.)

(b) For given (ai,az,rz,u), the Bayes estimator of 6, € Q) under the sample posterior
pdf is:

A

HpB = Es(®p ys)= ¢/u+(1_¢)ys —(1—¢)3.162
— g+ - 9)y. - a0*)

which is similar to Case 2 (b).

(51)

where

Note that, here, épB is a weighted average of ux (prior mean) and (ys —alo—z) (the
maximum likelihood estimator of &, € Q3 )), with weights ¢ and 1-¢, respectively.

(c) It is easy to verify that for given (ai,az,rz,y), the generalized MLE of 0, €Q is
given by:
epg = ys _¢(ys —H+ nairz) (52)

which is the sample Bayes estimate of &, € Q - similar to Case 2 (c).

(d) The 100(1—a )% highest sample posterior density (HSPD) credible set for @, , is
given by:
— GZTZ
C =(¢ﬂ+(1—¢)(ys —alaz)i Za/2 m] (53)

which is similar to Case 2 (d).
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Note that if a, = 0 (that sampling design is noninformative), then the lOO(l—a)% highest
sample posterior density (HSPD) credible set for 6, is given by

C= [¢y+(1—¢)(vs)i za/z,/ﬁ) (54)

which is the 100(1— )% highest posterior density (HPD) credible set for 6, .

Hence, the prior distribution for ©, ~ N(y,rz) with known (,u,rz) is equivalent to the
prior distribution ©, =®, +a,6% ~ N(u+a,0%,7?) with known (1,7%,3,), in the sense
that, they give the same predictor of 8, € Q .

Not that {q(ep) 0, eQ} is a conjugate family for {1“S(yi | 6, ); 0, eQ}, because
qs(é’p | yi) is in the class of {q(ep)ep eQ}.

It should be noted that, the similarity between Case 2 and Case 3 is interpreted as
follows: since under Case 3, 0, ~ N(/J,Tz), therefore

©,=0,+a0’ ~ N(,u+a102,z'2), which is the prior distribution under Case 2. The

situation is different under Case 1, where®, = ©, +a,6 ~ N(u,72).

Case 4: Suppose that the prior distribution of 6, is noninformative or improper:
q(6,)=1-0 <6, <o (55)

() Since Y, is a sufficient statistics for 6, =6, + a,c”, therefore, the conditional sample
pdf of G)s|y1,...,yn or the sample posterior likelihood is:
a.(6, 1y,)=a(@, L. 1y,)

=q,(01Y,)a(6,)=L,(01Y,) (56)
1 n 2
-~ _expl-———(y. -6
27 02/n exp{ 20° (ys 5)}

Hence the posterior distribution of ®S|yS is given by:

2
oy, - N[vs%j (57)
so that
E.(©.y.)=7, (58)
and
2
v,(@,ly.)="- (59)

Pak.j.stat.oper.res. Vol.XI1l No.2 2017 pp327-353 341



Abdulhakeem A.H. Eideh

We are interested in sample posterior distribution of @ |y..

Since 6, =6, - a,c’ , therefore, sample posterior distribution of @ oY is given by:

O,y ~ N(ys—alo-z,%zj (60)
so that
ES(G)p ys): Y, —a102 (61)
= Ep(®p ys)— alo'2
and
2
VS(®p yS)zaT:Vp(@p yS) (62)

Note that the sample and population posterior pdfs of @

y. belong to the same family

of normal distributions, but the mean under the sample posterior pdf is different from the
mean under the population posterior pdf of ® |y,. Furthermore if a, =0, that is the

sampling design is ignorable, then the sample and population pdfs are similar.

(b) For given (ai,az), the Bayes estimator of &, € Q under the sample posterior pdf is
épB = Es (®p ys): ys _a'l(j2 (63)
which is the same as the maximum likelihood estimator of @, € Q under the sample
model: y, |®, =6, ~ N(Hs,az)whereé?p =0, -a0"°.

(c) It is easy to verify that for given (ai,az), the generalized MLE of 6, €Q is given
by:
esg = ys - aio-z (64)

(d) The 100(1—a)°/o highest sample posterior density (HSPD) credible set for 6, is
given by:
O

C= ((ys - 31‘72)1 Zo/ _} (65)

n

Note that if a, = 0 (that sampling design is noninformative), then the 100(1—c )% highest
sample posterior density (HSPD) credible set for &, is given by:

2

C =((vs)iza/z “—] (66)

n

which is the 100(1— )% highest posterior density (HPD) credible set for 6. Also it is
the 100(1— )% confidence interval for 6.
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Not that {q(6,).6, €Q} is a conjugate family for {f.(y, |6,),6, €Q}. Because
q. (6, | y,) is in the class of {q(6, ), 6, € Q}.

6. Application 2 — Bernoulli Superpopulation Model

Let y,|®, =6, ~ Ber(é’p) are independent random variables, where 6, <(01),
i=1...,N. Suppose that the sample inclusion probabilities have expectations:
Ep(”i | yi): Pr(i € S|yi): exp(ao + aiyi)’ 3,8, #0
B exp(a,)=p, if y,=0 (67)
_{exp(ao +a)=p if y =1

Sothat, a, =In p, and a, =In(p,/p, ). In this case p, and p, are known before sampling.
We can show that the sample distribution of Y, is:

((yfo,)-Pris :% )Efggyilep)

_ prl . (1_9p)p0 1-y;
_ (eppl (g, )poj (eppl +(1_9p)poj (68)

=(6.)'@-6,) "y, =01

Thus the distribution of y,,i€s is the same as the distribution of y,,i €U, except that
the population parameter &, changes to:

_ 0,0, _ B
o), 00 022)=0.6,) (69)

which is not a linear function of 0,.

Notice that if a, =0, or equivalently p, = p,, that is, the sampling design is ignorable
then the sample and population distributions are the same.

Case 1: Now suppose that the prior distribution of 6, is ®, ~ B(a, B), where (a, 3) are

known. The conditional sample pdf of ® |

y, or the sample posterior likelihood is given

by:
4.6, 1y.)= a6, L. (v.]6, ) 6, < © (70)
where
q(ep )Ls (ys Hp): q(ep )1;[ fs(yi | gp)
ny, n-ny; 71
-1 9"“1(1—9)“[ %ot ]yx( 6-0,)e } e
Beta(a, ) ° " 0,0 +(1-0, )p, 0,p,+ (-0, o,
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which cannot be written in the form of beta distribution.

Not that (0, } 8, € is not a conjugate family for {f,(y,|6,}6, €Qf, because
qs(ep | yi) iIs not in the class {q(Hp)Hp eQ}. Recall  that
0, = {(prl)/(eppl +(1—¢9p )os )} is not a linear function of 4.

Case 2: To makes life easy, assume that the prior distribution of 6, is ®, ~ B(a, 8). Itis
easy to verify that, the conditional sample pdf of ®S|yS or the sample posterior likelihood
is given by:

a,(6, 1y.) = a6, )L,y |6, ). 6, € @ (72)
where

a(6,)L.(y.|6.)=ale. )1_1[ fo(y; 16,)

1 v g
— 9 a+nysl 1_0 S+n-ny,-1
Beta(a, B) ° 1-0.)

(73)

Hence,

6, (60, 1y.)oc =0, (10, ) (74)

m —
Beta(a, 8) °
After some algebra, we can show that the sample posterior distribution of (~)s|yS is given

by:
®s|ysB(a+nys’ﬁ+n_nys) (75)

So that

Es(®s|ys) 0‘+n7s

_a+nm+n—nﬂ+ﬁ

- (76)
_a+ny,

_a+ﬂ+n
and
(@ +ny fn-ny, +5)

VS(®S|yS): (a+p+n)f(a+p+n+1)

(77)

Not that {q(6,) 6, €Q} is a conjugate family for {f (y,|6,)6, € Q}. Because
q,(6, | y,) isinthe class {q(6, ); 6, € Q}.

Hence, for given (a,,B, Lo pl), the Bayes estimate of 6, € Q under the sample posterior
pdf is given by:
n o +nyq
HSB = Es(®s|ys)= y

a+p+n (78)
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But we are interested in the Bayes estimate of &, Q. For this, using the relationship
between 6, and 4,, we get:

A

0 _ esB Po
B ~ A

i O Po + (1_ O )pl (79)

— Po (a + nys )

pola+ny,)+ p,(n—ny, + B)

Notice that if p, = p,, that is, the sampling design is ignorable, then
A a+ny A
O . =—5 =@ (srs 80
5= s gan =0l (80)
which is the classical Bayes estimate of &, under simple random sample.

A

The Bayes estimate ¢, can be written as:

6

:( NPy, jy +( po(“"'ﬂ) J a (81)

" pola+ny )+ pi(n-ny +5) ] pola+ny,)+ pi(n=ny, +5) Ja+

which is a linear combination of Y, - maximum likelihood estimator of &, under the
population model y, |®, =6, ~ Ber(ep), and (a/a + f3) - mean of O, :B(a, j).

Furthermore, we have:

S

s \pola ) pln—ny, + 8))7

im 6 5 = lim

" n%w( po(a"‘ﬁ) j a (82)
po(a+nys)+p1(n—nys+,8) a+p

Hence, for large sample size n, the Bayes estimate of &, € Q , shrinkage to:

poys a2 (G
_ —_— 4 (inf (83)
poys+p1(1_ys) p( )

where @, (inf ) denotes the maximum likelihood estimate of @, under informative
sampling design, treating &, as fixed unknown constant.

Notice that if p, = p;, that is, the sampling design is ignorable, then lim épB =Y.

n—o

The important feature of this formula is that, if @, (consequently6;) is treated as fixed
unknown constant (classical or frequentist statistics), that is, « = =0, and the sampling
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design is informative, then for large sample size n, the Bayes estimate of ¢, becomes
{(pOYS )/(poys +p1(1_ ys ))}

It is easy to verify that for given («, ), the generalized MLE of 6, € Q, is given by:
5 a+ny
Y oa+p+n

B n 7. + a+p o
a+p+n)° a+p+n)a+p
which is the sample Bayes estimate of &, € Q3. Hence using the relationship between 6,

and 0,,we have
é Po (a + nys )

(84)

= - - (85)
P po(a+nys)+pl(n_nys +IB)
Notice that if p, = p,, that is, the sampling design is ignorable then, then
A a +ny, A
== 75 _0 86
Y a+pB+n P (86)

which the Bayes estimate of g, € 2 under noninformative sampling design.

The important feature of this formula is that, if @, is treated as fixed unknown constant
(classical or frequentist statistics), that is, «=4=0, and the sampling design is
noninformative, then for large sample size the Bayes estimate of &, becomes Y, which
is the MLE of 4, .

7. Bayes Prediction of Finite Population Total

Sverchkov and Pfeffermann (2004) use sample and sample complement distributions for
the prediction of finite population totals under informative sampling for single-stage
sampling designs. Later Eideh and Nathan (2009) extend the theory to general linear
functions of the population values and to two-stage informative cluster sampling. None of
the above studies consider prediction of finite population total from Bayesian perspective.
In this section we use sample posterior and sample complement posterior distributions, to
predict the finite population total under single-stage informative sampling design. Let

TZiZjl:yizzyi+zyi:zyi+zyi (87)

ies iec ies igs

The available information for the prediction process is
O=[{(y,,7,)ies}U{l,,icU},N,n], where I, =1 for ies and I, =0 forigs.

Now, following the notations in Sections 2 and 3, the sample complement posterior
distribution of ® ; =6, given Y, denoted by qc(Hp‘yi) is defined by:
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_9(6,)1.(:16,)
Yoy

where, f.(y,|6) is the sample complement distribution of y; given ®, =6, , which is
given by:

(88)

Ep(l_”i | yi)fp(yi |6p)

f(vi16,) = (o) (89)
Also, we have: { } { }
E,(L-7)yi 16,5 E(w-1)y |6
E.ly |6, )=—2 0= e 90
W10)=E e, e w010, o0
and
jq(ep)fc(yi |49p)d6p if ®, is continuous
=4 91
m (%) 3 a6, )f.(v. 16,) if ©, is discrete oy
Hence, qc(é?p | yi) can be written as:
q(@ )E (1_7Ti |yi)f (yi |0 )
qc(Hp | yi): 2 P _ ? :
mc(yi )Ep(l T |8) (92)

o« Q(Hp)Ep(l_”i | yi)fp(yi |6p)
E,(l-716,)

Let yp:(yl """ yn'yn+1""yN) :(y's’y,c)’ Where yS:(yl""’yn) and
Y. :(yn+1,..., N ),. Let T =T(yp) be the finite population quantity to be predicted. For
example: the finite population total T ="y, . Let T(y,,...,y,)=T(y,) define the
predictor of T(y,) based on O. The loss involved in predicting T(y,) by T(y,) is

L(T(yp),'f(ys)). For given ®, =6, and y,, and squared error loss function, the Bayes
predictor of T(yp) is:

T(y,)=,T(,)y.) (93)

Now we consider the following:

E,(T(y, ). )= E{:Zlyilys} - Ep{Zyi +Zyi}lys}

ies iec

= v+ 2 E(yily,)

ies iec

(94)

Thus, the estimate of the population total, for a fully Bayesian method under squared
error loss, requires the posterior predictive expectation Ec(yi|ys) for prediction of
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y,,iec=5 given y,. This posterior expectation, under informative sampling design,
can be obtained by the iterated expectations:

E(vily.)=EE.(Vily..0, v | (95)
where E; is the expectation with respect to the sample posterior distribution of ®, given

Y., and E_ is the expectation with respect to the sample complement of the posterior
predictive distribution of y,,i ec given y..

Illustration 1: Case 4 in Section 5. Superpopulation model: Let
Vil®,=6, ~ N(Gp,az) be independent random variables, i =1,...,N , where o >0 is

known, i=1..,N. Suppose that E,(z|y,)=exp(ay,). Then the sample model is:
Yy, |®, =6, ~ N(@S,GZ), where 6, =6, +a,0°. Suppose that the prior distribution of 6,

2
Y~ N(ys _alo-z’o-_]'
n

Computation of E,(y, |ys): E,, {EC (yi Y. 6, )ys}:
Since y;,1 e cis independent of y_, therefore

a6 b, - S

is q(6,)=1-00<6, <. Then ©,

(96)

After some algebra, and noting that E  {z,y, |6, {= E E iz, y; | y;,6, | we can show that:
M, (a,)
E\yily..0,)=0, -aoc> —-— 97
Avlyi0,)=0, a0 50 ©7)
where Mp(al):exp(a10p+0.5afaz) is the moment generating function of

Yi |®p :‘9p - N(@p,o'z),

so that,
M
Ec(yi |ys): Es {Ec (yi yS'gp ]ys}: ESﬂZQP B a10'2 1- h;(aga)i)jhys}
" (98)
B ) M, (a,)
- Es (9p|ys)_ ala Es{|:1_ M p(ai)j||ys}
Now,
E6,y.)=7. -a0? (99)
and
M, (a,) F exp(alep +0.5a202)
Es W |ys = J. _ 2 2\~
o(ay) 71 exp(alé?p +0.58%0?) (100)

1 n _ 2 \\2
mexp[_g(ep (5, ~a0")f o,
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Using Taylor series expansion of Mp(al)/l—Mp(ai) around 6, =y, —a,c°, we can
show that, approximately:

Es{l: M, (a,) ):||ys} ~ exp(al(yS - a102)+ 0.5afo—z) (101

1-M,(a 1-expla(y, —a,0%)+0.5a%02)

Hence,
€ (vly.)=(5, - o) 2PE: ~05alc”)

102
1-exp(a,y, -0.5a%c7) (102)

Thus, for given (ai,az) the Bayes predictor of T = ZIN:l y, Is:
f(ys): Ep(T(yp)yS)

T [l -ao) o B8 058 |

s = 1-expla,y, —0.5a%c?)

exp(a, y, —0.5a%c"?) (103)
1- exp(alyS - 0.5a1202)

iV 2 __2
=Ny, - (N —n)a,c*<1+ exp(alys__ 0-5611(2 )2
1_exp(alys _0-5alO' )

=ny, +(N -n)y, —(N —n)a102{1+

Note that if a, =0, that is, the sampling design is noninformative, then the Bayes

predictor of T = ZL y; is the classical one obtained under design-based and frequentist

model-based schools. Furthermore, the Bayes predictor of T = Z.N: ,¥i under informative
sampling adjust the classical predictor by the term

g _ 2 2
(N —n)a,oc*41+ exp(aiys_ 0'5%3)2 . This adjusted term depends on the
1—exp(a1ys—0.5a10 )

informativeness parameter a, .

Bayes prediction of finite population total of the other (Casesl,2,3) considered in
Sections 5 can be treated similarly.

Ilustration 2: Case 2 in Section 6. Let y; |®, =6, ~ Ber(Hp) be independent random
variables, where 6, e(o,l), i=1...,N. Suppose that the sample inclusion probabilities
have expectations:

expla, ) = if y, =0
)= o (104
exp(a, +a,)=p, if y, =1
Recall that the sample distribution of vy, is
f,(yl6,)=(6,)" @-6,)",y, =01 (105)
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where
eppl
0, =
prl + (1— 6?p )po

As in Illustration 1, the Bayes predictor of T =ZiN:1 y, depends on the computation of:
Ec (yi |ys): Es {Ec (yi

E. (Yi

so that,

E. (yi Vs ) =E, {Ec (yi

(106)

Y. 0, )ys } After some algebra, we can show that:

~ (1—,01)913
ys,ep)— (1_p1)+(p0 —Pl)gp

ys,ep]ys}:Es{{(l (1—/01)6?p )ijs} (108)

_p1)+(p0 ~— P

(107)

We know that, approximately

3 po(a+nys)
ES(0p|yS)_ pola+ny, )+ p(n=ny, + ) (109)

1_pl)+(p0_pl)0p po(a+nys)+p1(n—n75 +ﬁ)
that, approximately:

Es{(l b o }Iys}z (1_/)1)[%(“”gso)(f;lr(lzs‘)”ys+ﬂ)J (110)
, o

—p1)+(po = oy - )( ol 1)) J
)+ (oo =i pola+ny, )+ p(n-ny, +B)

1 -
Expand { ( =)o, } around 6, = prla+19.) , We can show

Hence, approximately:

- Pl)[ ol nyio)(f ;r(]z —) ny, + 3 )J

E.(y.ly,)= o (1112)
t=rei)+lon _pl)[po(wnvso)wl(ns—nvs +ﬂ)J
Thus, given (a,,B, po,pl)the Bayes predictor of T =ZiN:1 y, is:
T(y,)=E, (T, Jy.)
(1—/31)( f°(a+n75) = j
Yy pola+ny,)+ p,(n—ny, + ) (112)

= = (1_p1)+(p°_p1)(po( poler+ny,) J

a+nys)+p1(n_nys +ﬁ)

| - Pl)( ol + n;/)s O)(f ;lrgz_) ny, + ﬂ)J
(1—p1)+(Po—P1)[p0( e 7. j

a+nys)+pl(n_nys +ﬁ)

=ny,+(N—-n
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Note that if p, = p,, that is, the sampling design is noninformative, then the Bayes
predictor of T = Z.N:1 y, becomes:

70,0, Jy.) =g, (- 2

which is the classical Bayes predictor obtained under model-based school.

(113)

9. Conclusion

In this paper we introduced the posterior sample and complement-sample distributions
under informative sampling, and use them in the analysis of survey data - developing
Bayes predictors of finite population totals and estimating the parameters that
characterize the superpoulation normal and binomial models. We have seen that several
familiar estimators and predictors in common use are shown to be special cases of the
present theory, thus providing them a new interpretation. Also, we have shown that many
simple Bayesian analyses based on noninformative prior under informative sampling
distributions give similar results to standard non-Bayesian approaches under informative
sampling. Furthermore, for large sample size n, for example, the Bayes estimate of
0,€Q, , shrinkage to —a,c” which is the MLE (or Bayes estimator) under the

sample distribution. That is, as the sample size n increases, the influence of the prior
distribution on sample posterior inferences under informative sampling decreases.

The main features of the present estimators and predictors are their behaviours in terms of
the informativeness parameters. Also the use of the Bayes estimators and predictors that
ignore the informative sampling design yields biased Bayes estimators and predictors.
That is, ignoring the sampling design by not using the weights in the Bayesian statistical
inference of survey data can seriously bias the results of the analysis, leading to
erroneous conclusions. So, we should incorporate survey design when making survey
analytic inferences.

Finally, for simplicity (mathematically handle), and to makes life easy, choose a prior
distribution for 6, - the parameters that characterize the sample distribution, and then

derive the Bayes estimator for @, - the parameters that characterize the superpoulation
model, via the relationship between @ and 6, is more convenient than choose a prior
distribution for &, .

I hope that the present theory and the posed approach in this paper, will encourage survey
statisticians for further investigations for this vital topic of Bayesian statistical inference
from sample survey data.
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