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Abstract 

Multiphase sampling has been the concept not being utilized is estimation of ratio and regression estimator 

widely. In the recent study we have proposed new dimension of sampling survey of estimations by 

proposing two generalized p-phase regression estimators with single and two auxiliary variables for 

estimating population mean. The proposed estimators are the generalized p-phase cases of Hanif et al 

(2015) and Hanif (2007) respectively. Both the estimators from which we took motivation are now special 

cases of our proposed estimators. We have derived unbiasedness, expression of Mean Square Errors along 

with family of estimators based upon p-phased generalization. We have derived expression of MSE in such 

a way that these expression can be used to obtained results for every phase we desire. By conducting 

empirical study on proposed estimators we have shown many situation in which MSE can be reduced by 

increasing number of phases. Hence, our study will open new horizon in the field of multiphase sampling 

where a lot of challenges are waiting to be resolved by proposing new estimators for phases above 2nd 

phase. 

Keywords:   MSE, NIC, Generalized P-Phased, Auxiliary Variable. 

1.   Introduction 

Sampling survey is perhaps the oldest statistical procedure to determine the accurate and 

useful estimates under prevailing constraints of time and money. The regression and ratio 

methods of estimation are two strongest pillars of sampling survey. In ratio and 

regression estimation many interventions in terms of estimators with different structural 

and functional form have been made. Two phase and multiphase sampling are the 

concepts associated in estimation of population mean from finite population under 

different cases of availability or non- availability of auxiliary information. In the recent 

study we have proposed new dimension of sampling survey of estimations by proposing 

generalized p-phase regression estimator. The proposed estimators undertakes multiphase 

sampling producers for estimation. Our estimator is attempt to utilize information from 

phases above second phase. Not only we become able to gather maximum information 

about auxiliary variables, but also in many cases the Mean Square Error (MSE) is also 

reduced.   

 

The regression estimator have been used widely by Srivastava (1967), Walsh (1970), 

Reddy (1973, 74), Gupta (1978), Sahai (1979), Vos (1980) for estimation. The Classical 

Regression Estimator (CRE) is  

𝑇1 = �̅� + 𝛽𝑦𝑥(�̅� − �̅� )                                                                                              (1.1) 

mailto:qunchless@gmail.com


Farhan Hameed, Hina Khan 

Pak.j.stat.oper.res.  Vol.XIII  No.3 2017  pp661-685 662 

Vos (1980) used weighted average of Mean Per Unit (MPU) Ratio Estimator to propose 

following estimator:- 
 

𝑇2 = 𝛼�̅� + (1 − 𝛼)  
�̅�

�̅�
 �̅�                                                                                          (1.2) 

where 𝛼 is constant. The estimator (1.8.1.3) is identical to MPU estimator for 1  and is 

identical to RE for 0  . 

 

Das (1988) with little modification of CRE proposed following estimator: 
 

𝑇3 = �̅�  −𝑊𝜆(�̅� − �̅� )                                                                                             (1.3) 
 

For  𝑊= 1 estimator (1.3) reduces to (1.2)  and for 𝑊 = 0 it reduces to MPUE. 

 

Mohanty (1967) combined Ratio Estimator with two auxiliary variables and proposed the 

estimator:- 

𝑇4 = �̅� + 𝛽𝑦𝑥(�̅� − �̅�) 
�̅�

𝑧̅
                                                                                           (1.4) 

 

The estimator (1.4) reduces to (1.1) under non-availability of Z. The estimator (1.4) was 

termed as Regression-In-Ratio Estimator (RIRE). 

 

Samiuddin and Hanif (2006) presented RE in single phase as:-   

𝑇5 = �̅� + 𝛼(�̅� − �̅�) + 𝛽( �̅� − 𝑧̅)                                                                           (1.5) 
 

Now, some of the estimators in two phase sampling presented in literature are as 

follows:- 

 

Mohanty (1967) followed (1.4) to proposed the estimator in 2nd phase sampling with two 

auxiliary variables under No Information Case (NIC);-  

𝑇6 = [�̅�2 + 𝑏𝑦𝑥(�̅�1 − �̅�2)]
𝑧1̅
𝑧1̅
                                                                                  (1.6) 

 

Chand (1975) presented estimator in Partial Information Case (PIC):- 
 

𝑇7 = 
�̅�2
𝑧2̅
[𝑧1̅ + 𝑏𝑧𝑥(�̅� − �̅�1)]                                                                                    (1.7) 

 

There have been numerous estimators in the literature other. Some notable references are 

Khaire and Srivastava (1981), Saho and Saho (1993), Upadhayaya and Singh (2001), Roy 

(2003), Samiuddin and Hanif (2006), Hanif et al (2010). 

 

The attempts to present RE above second phase is a new dimension in this context Hanif 

et al (2015) presented two estimators in three phase and four phase sampling. 

�̅�𝐻1  =  �̅�3 + 𝛽1(�̅�1 − �̅�2) + 𝛽2(�̅�2 − �̅�3)                                                            (1.8) 

  �̅�𝐻2   =  �̅�4 + 𝛽1(�̅�1 − �̅�2) + 𝛽2(�̅�2 − �̅�3) + 𝛽3(�̅�3 − �̅�4)                              (1.9) 

 

The optimizing constants 𝛽1, 𝛽2, 𝛽3  were identical as under:-  

 𝛽1 = 𝛽2 = 𝛽3 =
𝑆𝑥𝑦

𝑆𝑥
2  
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The corresponding MSE of (1.8) and (1.9) were 

 𝑀𝑆𝐸(�̅�𝐻1  ) = 𝜃3𝑆𝑦
2(1 − 𝜌2) + 𝜃1𝜌

2𝑆𝑦
2     (1.10) 

 

The corresponding expression of MSE of (3.7.2) is as under:- 

 𝑀𝑆𝐸(�̅�𝐻2  ) = 𝜃4𝑆𝑦
2(1 − 𝜌2) + 𝜃1𝜌

2𝑆𝑦
2                                                                 (1.11) 

 

Based upon the finding in third and fourth phase Hanif at el (2015) concluded that MSE 

will tends to increase. Earlier, Samiuddin and Hanif (2007) considered NIC to present RE 

in two phase sampling which was similar to structural formation of (1.8) and (1.9), but in 

two phase sampling with two auxiliary variables  :-  

�̅�𝑆𝐻  =  �̅�2 + 𝛼(�̅�1 − �̅�2) + 𝛽(𝑧1̅ − 𝑧2̅)     (1.12) 

 

Here, the co-efficient 𝛼 and 𝛽 were obtained through optimization of the expression of 

MSE. The expression of MSE of (1.12) was obtained as:- 

𝑀𝑆𝐸(�̅�𝑆𝐻) =
�̅�2 𝐶𝑦

2

1 − 𝜌𝑥𝑧2
 [
𝜃2(1 − 𝜌𝑥𝑦

2 − 𝜌𝑦𝑧
2 − 𝜌𝑥𝑧

2 + 2𝜌𝑥𝑦𝜌𝑥𝑧𝜌𝑦𝑧)

+𝜃1(𝜌𝑥𝑦
2 + 𝜌𝑦𝑧

2 − 2𝜌𝑥𝑦𝜌𝑥𝑧𝜌𝑦𝑧) 
]               (1.13) 

 

The optimizing coefficients were:-  

𝛼 = 
�̅�𝐶𝑦(𝜌𝑥𝑦 − 𝜌𝑥𝑧𝜌𝑦𝑧)

�̅�𝐶𝑦( 1 − 𝜌𝑥𝑧2 )
                                                                                       (1.14) 

𝛽 =  
�̅�𝐶𝑦(𝜌𝑦𝑧 − 𝜌𝑥𝑧𝜌𝑥𝑦)

�̅�𝐶𝑧( 1 − 𝜌𝑥𝑧2 )
                                                                                        (1.15) 

2.   P-Phased Sampling Notations 

The p-phase sampling plan is just the extension of 2nd phase sampling procedure. Under 

such plan subsequent sub samples of sizes 𝑛1, 𝑛2 −−−−−−𝑛𝑝 are drawn for first 

phase, 2nd phase up to pth phase respectively. The information on auxiliary and 

understudy variables will be gather in similar pattern as in two phase case. 

 

Let 𝑌𝑖  , 𝑋𝑖 and 𝑍𝑖 are variables with means �̅�, �̅� and �̅� and variances 𝑆𝑦
2 , 𝑆𝑥

2 and 𝑆𝑧
2 

respectively. 𝐶𝑦 =
𝑆𝑦

�̅�
 , 𝐶𝑥 =

𝑆𝑥

�̅�
 and 𝐶𝑧 =

𝑆𝑧

𝑍
 are co-efficient of variations. Also ,xy xz   

and yz  will represent population correlation coefficients between X & Y, X & Z and Y & 

Z respectively.𝑛𝑖, 𝑖 = 1,2, …… . . 𝑝, are subsequent sample sizes. Whereas, �̅�𝑖  , �̅�𝑖 and  𝑧�̅�, 
𝑖 = 1,2, …… . . 𝑝, represent sample means at  first, second and so on phases. 

 

The Finite Population Correction Factor (FPC) in p-phase Simple Random Sampling 

With Out Replacement (SRWOR) sampling will be denoted by 𝜃𝑖, 𝑖 = 1,2…… . 𝑝, and 

given as:-   

𝜃𝑖 = 
𝑁−𝑛𝑖

𝑁𝑛𝑖 
=

𝑁

𝑁𝑛𝑖
− 

𝑛𝑖

𝑁𝑛𝑖
= 

1

𝑛𝑖
− 

1

𝑁
= 𝑛𝑖

−1 − 𝑁−1     (2.1) 

 

Also we have:- 

𝜃𝑖  > 𝜃𝑗  for 𝑖 > 𝑗        (2.2) 
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The error term in each of the variables will be represented as under with the assumption 

that the quantities|�̅�𝑥𝑖|, |�̅�𝑧𝑖| are very small as compare to |�̅�| and |�̅�|. 

�̅�𝑖 = 𝑋 ̅ + �̅�𝑥𝑖

𝑧�̅� = 𝑍 ̅ + �̅�𝑧𝑖

�̅�𝑖 = 𝑌 ̅ + �̅�𝑦𝑖

                                          𝑖 = 1,2………𝑝}
 
 

 
 

                                                                                        (2.3) 

 

Furthermore, the following results for expectations can be derived using (2.3) 
  𝐸(�̅��̅�𝑖) = 𝐸(�̅�𝑖 − 𝑋 ̅) = 𝐸(�̅�𝑖) − 𝐸(𝑋 ̅) = 𝑋 ̅ − 𝑋 ̅  = 0

𝐸(�̅��̅�𝑖)  = 𝐸(𝑧�̅� − 𝑍 ̅) = 𝐸(𝑧�̅�) − 𝐸(𝑍 ̅) = 𝑍 ̅ − 𝑍 ̅     =  0

𝐸(�̅��̅�𝑖) = 𝐸(�̅�𝑖 − 𝑌 ̅) = 𝐸(�̅�𝑖) − 𝐸(𝑌 ̅) = 𝑌 ̅ − 𝑌 ̅  =    0

                                                             𝑖 = 1,2,3…… . 𝑝 }
 
 

 
 

                                      (2.4) 

 

The expectation of square of error terms will be as under:- 
  𝐸(�̅�𝑥𝑖)

2   = 𝐸(�̅�𝑖 − 𝑋 ̅)
2 = 𝜃𝑖𝑆𝑥

2 = 𝜃𝑖𝑋 ̅
2𝐶𝑥

2

  𝐸(�̅�𝑧𝑖)
2   = 𝐸(𝑧�̅� − 𝑍 ̅)

2 = 𝜃𝑖𝑆𝑧
2 = 𝜃𝑖𝑍 ̅

2𝐶𝑧
2

  𝐸(�̅�𝑦𝑖)
2   = 𝐸(�̅�𝑖 − 𝑌 ̅)

2 = 𝜃𝑖𝑆𝑦
2 = 𝜃𝑖𝑌 ̅

2𝐶𝑧
2

                                            𝑖 = 1,2,3…… . 𝑝 }
 
 

 
 

                                                           (2.5) 

 

In addition to (2.4) and (2.5) the following results of expectations from cross products 

will also be utilized:-  
  𝐸(�̅�𝑥𝑖 . �̅�𝑥𝑗) =  𝜃𝑖�̅�

2𝐶𝑥
2

  𝐸(�̅�𝑧𝑖 . �̅�𝑧𝑗) =  𝜃𝑖𝑋 ̅
2𝐶𝑧

2

  𝐸(�̅�𝑦𝑖 . �̅�𝑦𝑗) =  𝜃𝑖𝑋 ̅
2𝐶𝑦

2

  𝐸(�̅�𝑥𝑖 . �̅�𝑧𝑗) = 𝜃𝑖𝑆𝑥𝑧 = 𝜃𝑖�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧

  𝐸(�̅�𝑥𝑖 . �̅�𝑦𝑗) = 𝜃𝑖𝑆𝑥𝑦 = 𝜃𝑖�̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦

  𝐸(�̅�𝑧𝑖 . �̅�𝑦𝑗) = 𝜃𝑖𝑆𝑦𝑧 = 𝜃𝑖�̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

𝑖 ≤ 𝑗, 𝑖 = 1,2,3 − −− 𝑝 }
 
 
 
 
 
 

 
 
 
 
 
 

                                                                       (2.6) 

 

Finally, the following results will also be used:-  

  𝐸(�̅�𝑥𝑖 − �̅�𝑥𝑗)
2   =  (𝜃𝑗 − 𝜃𝑖)𝑋 ̅

2 𝐶𝑥
2

  𝐸(�̅�𝑧𝑖 − �̅�𝑧𝑗)
2 = (𝜃𝑗 − 𝜃𝑖)𝑍 ̅

2 𝐶𝑧
2

  𝐸(�̅�𝑥𝑖 − �̅�𝑥𝑖+1)�̅�𝑦𝑝 = (𝜃𝑖 − 𝜃𝑖+1)𝑆𝑥𝑦 = (𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦

  𝐸(�̅�𝑧𝑖 − �̅�𝑧𝑖+1)�̅�𝑦𝑝   = (𝜃𝑖 − 𝜃𝑖+1)𝑆𝑧𝑦 = (𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

                   𝑖 < 𝑗, 𝑖 = 1,2, − − −𝑝 }
 
 
 
 

 
 
 
 

         (2.7) 
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3. Proposed Estimators  

We took motivation from Hanif et al (2015) and Samiuddin and Hanif (2006) to present 

estimators in generalized p-phased estimators as under. Generalizing Hanif et al (2015) 

estimators (1.8) and (1.9) we propose.  

(a)- Proposed Estimator-I 

Taking Motivation from Hanif et al (2015), we propose the following generalized p-

phased regression estimator with single auxiliary variable. 

�̅�𝐹1 = �̅�𝑝 + ∑𝛽𝑖 (�̅�𝑖 − �̅�𝑖+1) 

𝑝−1

𝑖=1

                        𝑝 ≥ 2

}                                                                           (3.1) 

(b)  Proposed Estimator-II 

Similarly, the Samiuddin and Hanif (2006) estimator presented in (1.12) is p-phased 

generalized as:-  

�̅�𝐹2 = �̅�𝑝 + ∑𝛼𝑖  (�̅�𝑖 − �̅�𝑖+1) +∑𝛽𝑖 (𝑧�̅� − 𝑧�̅�+1)

𝑝−1

𝑖=1

𝑝−1

𝑖=1

                        𝑝 ≥ 2

}                                     (3.2) 

4.  Unbiasedness and MSE of proposed Estimator-I 

Now, we will prove unbiasedness of the proposed estimators (3.1) and (3.2) as well as the 

expression of MSE will be derived.  

 

Considering (3.1) and using comment (2.3) we get: 

�̅�𝐹1 − �̅� =   �̅�𝑦𝑝 + ∑𝛽𝑖 (�̅�𝑥𝑖 − �̅�𝑥𝑖+1)                                                               (4.1)

𝑝−1

𝑖=1

 

 

Applying expectation and using (2.4) we obtained:-  

𝐸(�̅�𝐹1) − �̅� =   0 

𝐸(�̅�𝐹1) =  �̅�                                                                                                                (4.2) 
 

From (4.2) we observed that (3.1) is unbiased estimator of Population Mean. 

Now, to derive MSE of (3.1) consider (4.1) and squaring both sides and applying 

expectations  

𝐸 [(�̅�𝐹1 − �̅�)
2] = 𝐸 [(�̅�𝑦𝑝)

2 

] + 𝐸 [∑𝛽𝑖
2 (�̅�𝑥𝑖 − �̅�𝑥𝑖+1)

2
+ 2 ∑ 𝛽𝑖𝛽𝑗(�̅�𝑥𝑖 − �̅�𝑥𝑖+1) (�̅�𝑥𝑗 − �̅�𝑥𝑗+1)

𝑝−1

𝑖<𝑗=1

 

𝑝−1

𝑖=1

]  

+2 𝐸 [∑𝛽𝑖 (�̅�𝑥𝑖 − �̅�𝑥𝑖+1)

𝑝−1

𝑖=1

�̅�𝑦𝑝]                                                                             (4.3) 
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Upon using (2.6) the third term on R.H.S of (4.3) will vanish and with results (2.6) and 

(2.7) we obtain:-  

𝑀𝑆𝐸(�̅�𝐹1) =  𝜃𝑝𝑆𝑦
2 + ∑𝛽𝑖

2 (𝜃𝑖+1 − 𝜃𝑖) 𝑆𝑥
2

𝑝−1

𝑖=1

+  2 ∑𝛽𝑖 

𝑝−1

𝑖=1

(𝜃𝑖 − 𝜃𝑖+1)𝑆𝑥𝑦    (4.4) 

 

The optimizing co-efficient 𝛽𝑖 will be determine by minimization of (4.4). For this 

purpose we proceed as:  

𝜕𝑀𝑆𝐸(�̅�𝐹1)

𝜕𝛽𝑖
= 

𝜕

𝜕𝛽𝑖
(𝜃𝑝𝑆

2𝑦) + 
𝜕

𝜕𝛽𝑖
∑𝛽𝑖

2 (𝜃𝑖+1 − 𝜃𝑖) 𝑆𝑥
2

𝑝−1

𝑖=1

+ 2
𝜕

𝜕𝛽𝑖
∑𝛽𝑖 

𝑝−1

𝑖=1

(𝜃𝑖 − 𝜃𝑖+1)𝑆𝑥𝑦   

𝜕𝑀𝑆𝐸(�̅�𝐹1)

𝜕𝛽𝑖
= 2 ∑𝛽𝑖 

𝑝−1

𝑖=1

(𝜃𝑖+1 − 𝜃𝑖) 𝑆𝑥
2 + 2∑(𝜃𝑖 − 𝜃𝑖+1)𝑆𝑥𝑦                              (4.5)

𝑝−1

𝑖=1

 

 

Now putting:-  

𝜕𝑀𝑆𝐸(�̅�𝐹1)

𝜕𝛽𝑖
= 0 

 

We get:-  

2 ∑  

𝑝−1

𝑖=1

(𝜃𝑖+1 − 𝜃𝑖)[𝛽𝑖 𝑆𝑥
2 − 𝑆𝑥𝑦] = 0 

 

Upon Simplification: 

 𝛽𝑖 = 
𝑆𝑥𝑦

 𝑆𝑥
2                                                                                                                        (4.6) 

 

From (4.6), 𝛽1, 𝛽2, 𝛽3 …………𝛽𝑝−1 are identical i.e.  

𝛽𝑖 = 
𝑆𝑥𝑦

 𝑆𝑥2
= 𝛽(𝑠𝑎𝑦), 𝑖 = 1 ,2 ,3 − − − − − (𝑝 − 1)                                         (4.7) 

 

Now, differentiate (4.2.1.5) again w.r.t 𝛽𝑖 

𝜕2𝑀𝑆𝐸(�̅�𝐹1)

𝜕𝛽𝑖
2 =  2 𝑆𝑥

2 (𝜃𝑝 − 𝜃1)                                                                             (4.8) 

 

The expression (4.8) will turn out to be positive because that  𝑆𝑥
2 is variance and the term 

(𝜃𝑝 − 𝜃1) will also be positive for = 2,3, − − − − 𝑝, under the condition presented in 

(2.2). Furthermore, because, these are non-zero quantities so the second derivative test 

will not fall into indecision zone. Now, we replace the optimized values obtained in (4.7) 

into (4.4) to get the final expression of MSE of (3.1).  

𝑀𝑆𝐸(�̅�𝐹1) =  𝜃𝑝𝑆𝑦
2 + ∑𝛽 [𝛽(𝜃𝑖+1 − 𝜃𝑖) 𝑆𝑥

2 + 2(𝜃𝑖 − 𝜃𝑖+1)𝑆𝑥𝑦 ]

𝑝−1

𝑖=1

             (4.9) 
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Expressing (4.7) as  

𝛽 =  
𝑆𝑥𝑦𝑆𝑦 

𝑆𝑥2𝑆𝑦
= 
𝑆𝑦

𝑆𝑥
.
𝑆𝑥𝑦

√𝑆𝑥2 𝑆𝑦2
= 
𝑆𝑦

𝑆𝑥
. 𝜌𝑥𝑦                                                                  (4.10) 

and using in (4.9) 

𝑀𝑆𝐸(�̅�𝐹1) =  𝜃𝑝𝑆𝑦
2 + 𝑆𝑦

2. 𝜌𝑥𝑦
2 ∑[𝜃𝑖 − 𝜃𝑖+1]

𝑝−1

𝑖=1

                                                     (4.10) 

 

On expanding the summation we get:-                           

𝑀𝑆𝐸(�̅�𝐹1) =  𝜃𝑝𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2                                                           (4.11) 
 

Hence, (4.11) provides generalized p-phased expression of proposed estimator (3.1). 

From the expression (4.11) we observed that our proposed estimator is generalized case 

of Hanif at el (2015) estimators (1.8) and (1.9). Based upon (4.11) proposed estimator 

(3.1) can considered as generalized p-phased regression estimator with single auxiliary 

variable having family of estimators for  𝑝 ≥ 2. 

Table 1:   Family of proposed Estimator-1 

p Estimator(�̅�𝑭𝟏(𝒑)) MSE(�̅�𝑭𝟏(𝒑)) 

 

≥ 2 
 

�̅�𝐹1(𝑝) = �̅�𝑝 + ∑𝛽𝑖 (�̅�𝑖 − �̅�𝑖+1) 

𝑝−1

𝑖=1

 

From (3.1) 

 

𝜃𝑝𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2  

From (4.11) 

 

3 
 

�̅�𝐹1(3) = �̅�𝐻1 = �̅�3 + 𝛽1(�̅�1 − �̅�2) + 𝛽2(�̅�2 − �̅�3) 

From  (1.8) 

 

𝜃3𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2  

From (1.10) 

 

4 

 

�̅�𝐹1(4) = �̅�𝐻2 

= �̅�4 + 𝛽1(�̅�1 − �̅�2) + 𝛽2(�̅�2 − �̅�3) + 𝛽3(�̅�3 − �̅�4) 
From (1.9) 

 

𝜃4𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2  

From (1.11) 

4.1 Intra-Phase Comparison for Proposed Estimator-I 

Considering (4.11) and replacing 𝑝 by 𝑝 − 1, we get:-   

𝑀𝑆𝐸(�̅�𝐹1)𝑝−1 = 𝜃𝑝−1𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2                                               (4.1.1) 

 

Now, comparing (4.11) and (4.1.1):- 

𝑀𝑆𝐸(�̅�𝐹1)𝒑 < 𝑀𝑆𝐸(�̅�𝐹1)𝑝−1 

𝜃𝑝𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2 < 𝜃𝑝−1𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2  

𝜃𝑝 < 𝜃𝑝−1                                                                                                                   (4.1.2) 
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Condition (4.1.2) suggest that for every next phase FPC should decrease which is 

contradictory to basic methodology of multiphase sampling as we have stated in (2.2). 

Therefore, MSE will lean towards increasing pattern.  

4.2 Empirical Study of Proposed Estimator-I 

Now, we undertake the following population to observe the behavior of MSE of proposed 

estimator-I 

Table 4.2.1:   Summary of the Population 

Understudy 

Variable 

Auxiliary 

Variable 

Population 

Size 

Var(Y) Var(X) Correlation 

Co-efficient 

Y= MPG of Car X= Weight of Car N=81 𝑆𝑌
2 = 101.49 𝑆𝑋

2=66.85 𝜌𝑋𝑌 =-0.9128 
 

R-codes for the expression (4.11) are used to find MSE at different phases. Furthermore, 

intra phase relative efficiency is also computed. The finding are presented in the table 

4.2.2 along with corresponding graphical depiction in Figure 4.2.1 

Table 4.2.2:   Behavior of MSE of Proposed Estimator-I 

Sample Size Phases MSE Relative Efficiency 

20 1 3.82177 

 15 2 4.10389 107.3819226 

10 3 4.66813 113.7489112 

5 4 6.36085 136.2612118 

3 5 8.61781 135.4820582 

2 6 11.439 132.7368607 

1 7 19.9026 173.9889294 

 

Figure 7.1.2: Behavior of MSE of Proposed Estimator-I 
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We can observe that the MSE tends to increase phase by phase. At earlier phases MSE 

shows slow and steady increase very little, but dynamic quick increasing pattern is 

observed afterwards. Relative efficient will always greater than 100% because of 

increasing pattern of MSE. Because of small population the curve in Figure 4.2.1 shows 

sharp slope. Now, simulating population using multivariate normal distribution up to 𝑁 =
200000. First stage sample is taken as 3000, afterwards decrease of 100 is at each phase 

is considered until  𝑝 = 30. The results are reflected in Figure 4.2.2.The curve is very 

smooth and steady in slope, but still upward.  

 

We can conclude that if we have large population and considerably larger sample sizes, 

there is negligible danger of losing efficiency. As in the current example we can easily 

observe that up to phase 25 intra phase MSEs are adjacent. Therefore, proposed estimator 

(3.1) is fair choice in sufficiently large population. 

 

Based upon the mathematical finding and empirical studies. Now, we are in a straight 

forward position to conclude that MSE of (3.1) will tend to increase by increasing phases. 

Such a statement is justified, because we have generalized p-phased analysis of the 

general case of Hanif at al (2015). They just utilized four phase to conclude that “MSE 

will increase should be the case”. Whereas, we not only conducted intra-phase 

mathematical comparison, but also supported our conclusion with the empirical study 

having flexible choice of phases 

 

Figure 4.2.2: Behavior of MSE of Proposed Estimator with Simulation 
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5.1 Unbiasedness and MSE of Proposed Estimator-II 

First we derive unbiasedness of (3.2), for this consider use (2.3) in (3.2) and applying 

expectations both sides:- 

𝐸(�̅�𝐹2 − �̅�)  = [𝐸( �̅�𝑦𝑝) + ∑𝛼𝑖𝐸 ( �̅�𝑥𝑖 − �̅�𝑥𝑖+1) +∑𝛽𝑖 𝐸( �̅�𝑧𝑖 − �̅�𝑧𝑖+1)

𝑝−1

𝑖=1

𝑝−1

𝑖=1

]          (5.1.1) 

 

From the results in (2.4) the R.H.S on (5.1.1) vanished and we get:- 

𝐸(�̅�𝐹2) = �̅�   (5.1.2) 
(5.1.2) provides evidence for unbiasedness of proposed estimator-II. 

 

Now, for MSE Estimator (3.2), we proceed as 

�̅�𝐹2 − �̅� =  �̅�𝑦𝑝 + ∑𝛼𝑖  ( �̅�𝑥𝑖 − �̅�𝑥𝑖+1) +∑𝛽𝑖 ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1

𝑝−1

𝑖=1

𝑝−1

𝑖=1

) 

 

Squaring both sides and applying expectations 

𝑀𝑆𝐸(�̅�𝐹2) = 𝐸 ( �̅�𝑦𝑝)
2

+ 𝐸 

[
 
 
 
 
 

∑𝛼𝑖
2 𝐸( �̅�𝑥𝑖 − �̅�𝑥𝑖+1)

2

𝑝−1

𝑖=1

+

2 ∑ 𝛼𝑖 𝛼𝑗  𝐸( �̅�𝑥𝑖 − �̅�𝑥𝑖+1) ( �̅�𝑥𝑗 − �̅�𝑥𝑗+1)

𝑝−1

𝑖<𝑗=1 ]
 
 
 
 
 

+  𝐸 

[
 
 
 
 
 

∑𝛽𝑖
2 ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1)

2

𝑝−1

𝑖=1

+

2 ∑ 𝛽𝑖 𝛽𝑗  ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1) ( �̅�𝑧𝑗 − �̅�𝑧𝑗+1)

𝑝−1

𝑖<𝑗=1 ]
 
 
 
 
 

 

+2  ∑𝛼𝑖  𝐸( �̅�𝑥𝑖 − �̅�𝑥𝑖+1)

𝑝−1

𝑖=1

( �̅�𝑦𝑝) +  2 ∑𝛽𝑖𝐸 ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1)

𝑝−1

𝑖=1

( �̅�𝑦𝑝) 

                    +2 𝐸 {∑𝛼𝑖 ( �̅�𝑥𝑖 − �̅�𝑥𝑖+1)

𝑝−1

𝑖=1

}{∑𝛽𝑖 ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1)

𝑝−1

𝑖=1

}                                  (5.1.3) 

 

The last term on R.H.S of (5.1.3) can be expanded as:- 

𝐸 [∑𝛼𝑖  ( �̅�𝑥𝑖 − �̅�𝑥𝑖+1)

𝑝−1

𝑖=1

∑𝛽𝑖 ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1)

𝑝−1

𝑖=1

]

=  ∑ [∑𝛼𝑖 𝐸( �̅�𝑥𝑖 − �̅�𝑥𝑖+1)𝛽𝑗  ( �̅�𝑧𝑗 − �̅�𝑧𝑗+1)

𝑝−1

𝑖=1

]                                  (5.1.4)

𝑝−1

𝑗=1

 

 



Generalized P-phased Regression Estimators with Single and Two Auxiliary Variables 

Pak.j.stat.oper.res.  Vol.XIII  No.3 2017  pp661-685 671 

For  𝑖 = 𝑗 , using results (2.5) and (2.6):- 

𝐸 [∑𝛼𝑖  ( �̅�𝑥𝑖 − �̅�𝑥𝑖+1)

𝑝−1

𝑖=1

∑𝛽𝑖 ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1)

𝑝−1

𝑖=1

]

=   ∑𝛼𝑖𝛽𝑖

𝑝−1

𝑖=1

(𝜃𝑖+1 − 𝜃𝑖  )�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧                                                     (5.1.5) 

 

For 𝑖 ≠ 𝑗 we have two possibilities for  𝑖 < 𝑗, using results (2.5) and (2.6):- 

𝐸( �̅�𝑥𝑖 − �̅�𝑥𝑖+1) ( �̅�𝑧𝑗 − �̅�𝑧𝑗+1) =  𝜃𝑖𝑆𝑥𝑧 − 𝜃𝑖𝑆𝑥𝑧 − 𝜃𝑖+1𝑆𝑥𝑧 + 𝜃𝑖+1 𝑆𝑥𝑧 

𝐸( �̅�𝑥𝑖 − �̅�𝑥𝑖+1) ( �̅�𝑧𝑗 − �̅�𝑧𝑗+1) = 0                                                                        (5.1.6) 

 

Similarly, for 𝑖 > 𝑗.   

𝐸( �̅�𝑥𝑖 − �̅�𝑥𝑖+1) ( �̅�𝑧𝑗 − �̅�𝑧𝑗+1) = 0                                                                         (5.1.7) 

 

Therefore, with (5.1.5), (5.1.6) and (5.1.7), (5.1.4) will become:- 

𝐸 [∑𝛼𝑖 ( �̅�𝑥𝑖 − �̅�𝑥𝑖+1)

𝑝−1

𝑖=1

∑𝛽𝑖 ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1)

𝑝−1

𝑖=1

] =   ∑𝛼𝑖𝛽𝑖

𝑝−1

𝑖=1

(𝜃𝑖+1 − 𝜃𝑖 )�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧        (5.1.8) 

 

Similar, by using (2.5), (2.6) and (2.7):-  

𝐸 [2 ∑ 𝛼𝑖  𝛼𝑗  𝐸( �̅�𝑥𝑖 − �̅�𝑥𝑖+1) ( �̅�𝑥𝑗 − �̅�𝑥𝑗+1)

𝑝−1

𝑖<𝑗=1

] = 0                                                       (5.1.9) 

𝐸 [2 ∑ 𝛽𝑖 𝛽𝑗 ( �̅�𝑧𝑖 − �̅�𝑧𝑖+1) ( �̅�𝑧𝑗 − �̅�𝑧𝑗+1)

𝑝−1

𝑖<𝑗=1

] = 0                                                          (5.1.10) 

 

Therefore, with comments (2.4), (2.5), (2.6) and (2.7) and results obtained in (5.1.8), 

(5.1.9) and (5.1.10), (5.1.3) will:- 

𝑀𝑆𝐸(�̅�𝐹2) = 𝜃𝑝�̅�
2𝐶𝑦

2 +∑𝛼𝑖
2 (𝜃𝑖+1 − 𝜃𝑖)𝑋 ̅

2𝐶𝑥
2

𝑝−1

𝑖=1

+ ∑𝛽𝑖
2 (𝜃𝑖+1 − 𝜃𝑖)𝑍 ̅

2𝐶𝑧
2

𝑝−1

𝑖=1

 

+2  ∑𝛼𝑖 

𝑝−1

𝑖=1

(𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦 +  2 ∑𝛽𝑖(𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

𝑝−1

𝑖=1

 

                    +2 ∑𝛼𝑖𝛽𝑖

𝑝−1

𝑖=1

(𝜃𝑖+1 − 𝜃𝑖  )�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧                                                         (5.1.11) 
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To determine 𝛼𝑖 and 𝛽𝑖 differentiate (5.1.11) with respect to 𝛼𝑖 and 𝛽𝑖 respectively. 

𝜕

𝜕𝛼𝑖
[𝑀𝑆𝐸(�̅�𝐹2)] = 2∑  𝛼𝑖(𝜃𝑖+1 − 𝜃𝑖)𝑋 ̅

2𝐶𝑥
2

𝑝−1

𝑖=1

+ 2∑(𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦

𝑝−1

𝑖=1

 

+2 ∑𝛽𝑖

𝑝−1

𝑖=1

(𝜃𝑖+1 − 𝜃𝑖  )�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧                                                        (5.1.12) 

 

𝜕

𝜕𝛽𝑖
[𝑀𝑆𝐸(�̅�𝐹2)] = 2∑  𝛽𝑖(𝜃𝑖+1 − 𝜃𝑖)𝑍 ̅

2𝐶𝑧
2

𝑝−1

𝑖=1

+ 2∑(𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

𝑝−1

𝑖=1

 

   +2 ∑𝛼𝑖

𝑝−1

𝑖=1

(𝜃𝑖+1 − 𝜃𝑖  )�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧                                                                               (5.1.13) 

 

Equating (5.1.12) and (5.1.13) to zero 

∑(𝜃𝑖+1 − 𝜃𝑖  )

𝑝−1

𝑖=1

�̅�  𝐶𝑥[�̅� 𝐶𝑥 𝛼𝑖 + �̅� 𝜌𝑥𝑧𝐶𝑧𝛽𝑖] =  ∑(𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦

𝑝−1

𝑖=1

        (5.1.13) 

         ∑(𝜃𝑖+1 − 𝜃𝑖  )

𝑝−1

𝑖=1

�̅�  𝐶𝑧[�̅� 𝐶𝑧 𝛽𝑖 + �̅� 𝜌𝑥𝑧𝐶𝑥𝛼𝑖]

=  ∑(𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

𝑝−1

𝑖=1

                                                              (5.1.14) 

 

From (5.1.13) and (5.1.14) we get:-  

𝐴𝛼𝑖 + 𝐵𝛽𝑖 = 𝐶                                                                                                         (5.1.15) 

𝐸𝛼𝑖 + 𝐷𝛽𝑖 = 𝐹                                                                                                         (5.1.16) 
 

Where:- 

             𝐴 =  �̅� 𝐶𝑥   , 𝐵 =  �̅� 𝜌𝑥𝑧𝐶𝑧    , 𝐶 =  �̅� 𝜌𝑥𝑦𝐶𝑦

              𝐷 =  �̅� 𝐶𝑧   , 𝐸 =  �̅� 𝜌𝑥𝑧𝐶𝑥     , 𝐹 =  �̅� 𝜌𝑧𝑦𝐶𝑦
}                                                   (5.1.17) 

 

Solving (5.1.15) and (5.1.16) simultaneously:- 

𝛼𝑖 = 
𝐶𝐷 −  𝐵𝐹

𝐴𝐷 −  B𝐸
   (5.1.18), 𝛽𝑖 = 

𝐶𝐸 −  𝐴𝐹

𝐵𝐸 −  𝐴𝐷
                                             (5.1.19) 

 

Making replacements in (5.1.18) and (5.1.19) from (5.1.17):- 

𝛼𝑖 = 
�̅� 𝐶𝑦[ 𝜌𝑥𝑦  −  𝜌𝑥𝑧 𝜌𝑧𝑦]

�̅� 𝐶𝑥[ 1 − 𝜌𝑥𝑧2 ]
   (5.1.20) ,  𝛽𝑖 = 

�̅� 𝐶𝑦[ 𝜌𝑧𝑦 − 𝜌𝑥𝑦𝜌𝑥𝑧]

�̅� 𝐶𝑧[1 − 𝜌𝑥𝑧2 ]
          (5.1.21) 
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Differentiate (5.1.13)and (5.1.14) partially w.r.t 𝛼𝑖 and 𝛽𝑖 
𝜕2

𝜕𝛼𝑖
2 [𝑀𝑆𝐸(�̅�𝐹2)] =  𝑋 ̅

2𝐶𝑥
2(𝜃𝑝 − 𝜃1) > 0                                                          (5.1.22) 

𝜕2

𝜕𝛽𝑖
2 [𝑀𝑆𝐸(�̅�𝐹2)] =  𝑍 ̅

2𝐶𝑧
2(𝜃𝑝 − 𝜃1) > 0                                                          (5.1.23) 

(5.1.22) and (5.1.23) will be positive quantities because they are product of two non-

negative and non-zero terms. That is product of variance and (𝜃𝑝 − 𝜃1) > 0 will be 

positive. Therefore, the values obtained in (5.1.20) and (5.1.21) will minimize MSE. 

From (5.1.20) and (5.1.21) we observed that 

𝛼1 = 𝛼2 = 𝛼3 = ⋯…… . 𝛼𝑝−1 = 
�̅� 𝐶𝑦[ 𝜌𝑥𝑦  − 𝜌𝑥𝑧 𝜌𝑧𝑦]

�̅� 𝐶𝑥[ 1 − 𝜌𝑥𝑧2 ]
= 𝛼(𝑠𝑎𝑦)                      (5.1.24) 

𝛽1 = 𝛽2 = 𝛽3 = ⋯…… . 𝛽𝑝−1 = 
�̅� 𝐶𝑦[ 𝜌𝑧𝑦 − 𝜌𝑥𝑦𝜌𝑥𝑧]

�̅� 𝐶𝑧[1 − 𝜌𝑥𝑧2 ]
= 𝛽(𝑠𝑎𝑦)                          (5.1.25) 

 

Now, replacing (5.1.24) and (5.1.25) in (5.1.11)  

𝑀𝑆𝐸(�̅�𝐹2) = 𝜃𝑝�̅�
2𝐶𝑦

2 +∑𝛼2 (𝜃𝑖+1 − 𝜃𝑖)𝑋 ̅
2𝐶𝑥

2

𝑝−1

𝑖=1

+ ∑𝛽2 (𝜃𝑖+1 − 𝜃𝑖)𝑍 ̅
2𝐶𝑧

2

𝑝−1

𝑖=1

 

+2  ∑𝛼 

𝑝−1

𝑖=1

(𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦 +  2 ∑𝛽(𝜃𝑖 − 𝜃𝑖+1)�̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

𝑝−1

𝑖=1

 

+2 ∑𝛼𝛽

𝑝−1

𝑖=1

(𝜃𝑖+1 − 𝜃𝑖  )�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧 

𝑀𝑆𝐸(�̅�𝐹2) = 𝜃𝑝 [
�̅�2𝐶𝑦

2 + 𝛼2𝑋 ̅2𝐶𝑥
2 + 𝛽2 𝑍 ̅2𝐶𝑧

2 − 2 𝛼 �̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦 − 2𝛽 �̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

+2𝛼𝛽�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧
] 

 +𝜃1 [
 2𝛼 �̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦 + 2 𝛽 �̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦 − 𝛼

2𝑋 ̅2𝐶𝑥
2 − 𝛽2 𝑍 ̅2𝐶𝑧

2

−2 𝛼𝛽�̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧
]        (5.1.26) 

 

Replacing values from (5.1.24) and (5.1.25) 

𝑀𝑆𝐸(�̅�𝐹6) = 𝜃𝑝

[
 
 
 
 
 
 
 
 
 
 
 
 �̅�2𝐶𝑦

2 + (
�̅� 𝐶𝑦[ 𝜌𝑥𝑦  −  𝜌𝑥𝑧 𝜌𝑧𝑦]

�̅� 𝐶𝑥[ 1 − 𝜌𝑥𝑧2 ]
)

2

𝑋 ̅2𝐶𝑥
2 

(
�̅� 𝐶𝑦[ 𝜌𝑧𝑦 − 𝜌𝑥𝑦𝜌𝑥𝑧]

�̅� 𝐶𝑧[1 − 𝜌𝑥𝑧2 ]
)

2

𝑍 ̅2𝐶𝑧
2

−2 (
�̅� 𝐶𝑦[ 𝜌𝑥𝑦  −  𝜌𝑥𝑧 𝜌𝑧𝑦]

�̅� 𝐶𝑥[ 1 − 𝜌𝑥𝑧2 ]
) �̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦

−2( 
�̅� 𝐶𝑦[ 𝜌𝑧𝑦 − 𝜌𝑥𝑦𝜌𝑥𝑧]

�̅� 𝐶𝑧[1 − 𝜌𝑥𝑧2 ]
) �̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

+2(
�̅� 𝐶𝑦[ 𝜌𝑥𝑦  −  𝜌𝑥𝑧 𝜌𝑧𝑦]

�̅� 𝐶𝑥[ 1 − 𝜌𝑥𝑧2 ]
) ( 

�̅� 𝐶𝑦[ 𝜌𝑧𝑦 − 𝜌𝑥𝑦𝜌𝑥𝑧]

�̅� 𝐶𝑧[1 − 𝜌𝑥𝑧2 ]
) �̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧

]
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+𝜃1

[
 
 
 
 
 
 
  2 (

�̅� 𝐶𝑦[ 𝜌𝑥𝑦  −  𝜌𝑥𝑧 𝜌𝑧𝑦]

�̅� 𝐶𝑥[ 1 − 𝜌𝑥𝑧
2 ]

) �̅�  �̅� 𝜌𝑥𝑦𝐶𝑥𝐶𝑦 + 2 ( 
�̅� 𝐶𝑦[ 𝜌𝑧𝑦 − 𝜌𝑥𝑦𝜌𝑥𝑧]

�̅� 𝐶𝑧[1 − 𝜌𝑥𝑧
2 ]

) �̅�  �̅� 𝜌𝑧𝑦𝐶𝑧𝐶𝑦

−(
�̅� 𝐶𝑦[ 𝜌𝑥𝑦  −  𝜌𝑥𝑧 𝜌𝑧𝑦]

�̅� 𝐶𝑥[ 1 − 𝜌𝑥𝑧2 ]
)

2

𝑋 ̅2𝐶𝑥
2 − ( 

�̅� 𝐶𝑦[ 𝜌𝑧𝑦 − 𝜌𝑥𝑦𝜌𝑥𝑧]

�̅� 𝐶𝑧[1 − 𝜌𝑥𝑧2 ]
)

2

 𝑍 ̅2𝐶𝑧
2 

−2 (
�̅� 𝐶𝑦[ 𝜌𝑥𝑦  −  𝜌𝑥𝑧 𝜌𝑧𝑦]

�̅� 𝐶𝑥[ 1 − 𝜌𝑥𝑧2 ]
) ( 

�̅� 𝐶𝑦[ 𝜌𝑧𝑦 − 𝜌𝑥𝑦𝜌𝑥𝑧]

�̅� 𝐶𝑧[1 − 𝜌𝑥𝑧2 ]
) �̅�  �̅� 𝜌𝑥𝑧𝐶𝑥𝐶𝑧

]
 
 
 
 
 
 
 

 

 

𝑀𝑆𝐸(�̅�𝐹2) =  
�̅�2 𝐶𝑦

2𝜃𝑝
(1 − 𝜌𝑥𝑧2 )2

[
 
 
 
(1 − 𝜌𝑥𝑧

2 )2 − 𝜌𝑥𝑦
2 + 2𝜌𝑥𝑧  𝜌𝑧𝑦𝜌𝑥𝑦 − 𝜌𝑧𝑦

2

−4𝜌𝑧𝑥
3  𝜌𝑧𝑦𝜌𝑥𝑦 + 2𝜌𝑧𝑥

2 𝜌𝑥𝑦
2 + 2𝜌𝑧𝑥

2 𝜌𝑧𝑦
2

−𝜌𝑥𝑦
2 𝜌𝑥𝑧

2 − 𝜌𝑥𝑧
2 𝜌𝑧𝑦

2 + 2𝜌𝑥𝑧
3 𝜌𝑧𝑦𝜌𝑥𝑦 

 ]
 
 
 

 

+
�̅�2 𝐶𝑦

2𝜃1
(1 − 𝜌𝑥𝑧2 )2

[
𝜌𝑥𝑦
2 + 𝜌𝑧𝑦

2 − 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦 − 2𝜌𝑥𝑦
2 𝜌𝑥𝑧

2 − 2𝜌𝑧𝑦
2 𝜌𝑥𝑧

2 + 4𝜌𝑥𝑧
3  𝜌𝑧𝑦𝜌𝑥𝑦

+𝜌𝑥𝑦
2 𝜌𝑥𝑧

2 + 𝜌𝑥𝑧
2 𝜌𝑧𝑦

2 − 2𝜌𝑥𝑧
3 𝜌𝑧𝑦𝜌𝑥𝑦

 

] 

 

On further simplification we get:- 

𝑀𝑆𝐸(�̅�𝐹2) =  
�̅�2 𝐶𝑦

2

(1 − 𝜌𝑥𝑧2 )
[
𝜃𝑝(1 − 𝜌𝑥𝑦

2 − 𝜌𝑧𝑦
2 − 𝜌𝑥𝑧

2 + 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)

+𝜃1(𝜌𝑥𝑦
2 + 𝜌𝑧𝑦

2 − 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)
 

]                       (5.1.27) 

 

Hence, (5.1.27) provides the generalized p-phased expression of MSE of proposed 

Estimator-II. The expression is generalized p-phased for p=2,3,4--------. 

 

For proposed estimator (3.2) the family is constructed in Table 5.1.1 for different phases 

with single and double auxiliary variables. From the expression in (5.1.27), we can 

approach to expression (4.11), if we consider only single auxiliary variable 𝑥 and 𝛽𝑖 as 

zero in (3.2). Therefore, the proposed estimator-I in (3.1) is member of the family of 

proposed estimator-II. Furthermore, the estimators of Hanif et al (2015) and Samiuddin 

and Hanif (2007) are cases of proposed estimator-II (3.2). 
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Table 5.1.1:   Family of Proposed Estimator-II 

Condition Estimator / MSE 

 

 

𝑝 ≥ 2 , 𝛼𝑖 ≠ 0 , 𝛽𝑖 ≠ 0 
 

 

 

𝑀𝑆𝐸 (�̅�𝐹2(𝑝)) = 

�̅�𝐹2(𝑝) = �̅�𝑝 + ∑𝛼𝑖  (�̅�𝑖 − �̅�𝑖+1) +∑𝛽𝑖 (𝑧�̅� − 𝑧�̅�+1)

𝑝−1

𝑖=1

𝑝−1

𝑖=1

 

From (3.2) 

�̅�2 𝐶𝑦
2

(1 − 𝜌𝑥𝑧2 )
[
𝜃𝑝(1 − 𝜌𝑥𝑦

2 − 𝜌𝑧𝑦
2 − 𝜌𝑥𝑧

2 + 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)

+𝜃1(𝜌𝑥𝑦
2 + 𝜌𝑧𝑦

2 − 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)
 

] 

From (5.1.27) 

 

𝑝 = 2 , 𝛼𝑖 ≠ 0 , 𝛽𝑖 ≠ 0 
 

 

𝑀𝑆𝐸 (�̅�𝐹2(2) = �̅�𝑆𝐻) = 

 

�̅�𝐹2(2) = �̅�𝑆𝐻 = �̅�2 + 𝛼 (�̅�1 − �̅�2) + 𝛽(𝑧1̅ − 𝑧2̅) 

From (1.12) 

�̅�2𝐶𝑦
2

(1 − 𝜌𝑥𝑧2 )
[
𝜃2(1 − 𝜌𝑥𝑦

2 − 𝜌𝑧𝑦
2 − 𝜌𝑥𝑧

2 + 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)

+𝜃1(𝜌𝑥𝑦
2 + 𝜌𝑧𝑦

2 − 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)
 

] 

 

𝑝 = 3 , 𝛼𝑖 ≠ 0 , 𝛽𝑖 ≠ 0 
 

 

𝑀𝑆𝐸 (�̅�𝐹6(3)) = 

�̅�𝐹2(3) = �̅�3 + ∑𝛼𝑖  (�̅�𝑖 − �̅�𝑖+1) +∑𝛽𝑖 (𝑧�̅� − 𝑧�̅�+1)

2

𝑖=1

2

𝑖=1

 

�̅�2 𝐶𝑦
2

(1 − 𝜌𝑥𝑧2 )
[
𝜃3(1 − 𝜌𝑥𝑦

2 − 𝜌𝑧𝑦
2 − 𝜌𝑥𝑧

2 + 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)

+𝜃1(𝜌𝑥𝑦
2 + 𝜌𝑧𝑦

2 − 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)
 

] 

 

 

𝑝 = 4 , 𝛼𝑖 ≠ 0 , 𝛽𝑖 ≠ 0 
 

𝑀𝑆𝐸 (�̅�𝐹2(4)) = 

�̅�𝐹2(4) = �̅�4 + ∑𝛼𝑖  (�̅�𝑖 − �̅�𝑖+1) +∑𝛽𝑖 (𝑧�̅� − 𝑧�̅�+1)

3

𝑖=1

3

𝑖=1

 

�̅�2 𝐶𝑦
2

(1 − 𝜌𝑥𝑧2 )
[
𝜃4(1 − 𝜌𝑥𝑦

2 − 𝜌𝑧𝑦
2 − 𝜌𝑥𝑧

2 + 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)

+𝜃1(𝜌𝑥𝑦
2 + 𝜌𝑧𝑦

2 − 2𝜌𝑥𝑧 𝜌𝑧𝑦𝜌𝑥𝑦)
 

] 

 

 

𝑝 ≥ 2 , 𝛼𝑖 ≠ 0 , 𝛽𝑖 = 0 
 

 

𝑀𝑆𝐸 (�̅�𝐹2(𝑝) = �̅�𝐹1(𝑝))= 

�̅�𝐹2(𝑝) = �̅�𝐹1(𝑝) = �̅�𝑝 + ∑𝛼𝑖  (�̅�𝑖 − �̅�𝑖+1)

𝑝−1

𝑖=1

 

From (3.1) 

𝜃𝑝𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2  

From (4.1.11) 

𝑝 = 3 , 𝛼𝑖 ≠ 0 , 𝛽𝑖 = 0 
 

𝑀𝑆𝐸 (
�̅�𝐹2(3) = �̅�𝐹1(3)

= �̅�𝐻1
) = 

�̅�𝐹6(3) = �̅�𝐹1(3) = �̅�𝐻1 = �̅�3 + 𝛼1(�̅�1 − �̅�2) + 𝛼2(�̅�2 − �̅�3) 

From  (1.8) 

𝜃3𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2  

From (1.10) 

 

𝑝 = 4 , 𝛼𝑖 ≠ 0 , 𝛽𝑖 = 0 

𝑀𝑆𝐸 (
�̅�𝐹2(4) = �̅�𝐹1(4)

= �̅�𝐻2
) = 

�̅�𝐹6(4) = �̅�𝐹1(4) = �̅�𝐻2 = �̅�4 + ∑𝛼𝑖  (�̅�𝑖 − �̅�𝑖+1)

3

𝑖=1

 

From (1.9) 

𝜃4𝑆𝑦
2(1 − 𝜌𝑥𝑦

2 ) + 𝜃1𝑆𝑦
2. 𝜌𝑥𝑦

2  

From (1.11) 
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5.2 Empirical Study for Proposed Estimator-II 

To perform empirical study on proposed estimator –II we will use different combination 

of correlations between the variable to demonstrate the pattern of MSE. Since we have 

two auxiliaries and an understudy variable therefore, we will have eight different 

combinations of correlations with respect to their signs. Such combinations are presented 

in Table 5.2.1 for moderate and low correlations. 

Table 5.2.1:   Combinations of Low-Moderate Level of Correlation 

S.N Combinations �̅� 𝝆𝒙𝒚 𝝆𝒙𝒛 𝝆𝒚𝒛 N 

1 𝜌𝑥𝑦 < 0, 𝜌𝑥𝑧 > 0, 𝜌𝑦𝑧 < 0 48.0557 -0.4406 0.80354 -0.3547 1678 

2 𝜌𝑥𝑦 > 0, 𝜌𝑥𝑧 > 0, 𝜌𝑦𝑧 > 0 48.0557 0.4406 0.80354 0.3547 1678 

3 𝜌𝑥𝑦 < 0, 𝜌𝑥𝑧 < 0, 𝜌𝑦𝑧 < 0 48.0557 -0.4406 -0.80354 -0.3547 1678 

4 𝜌𝑥𝑦 > 0, 𝜌𝑥𝑧 > 0, 𝜌𝑦𝑧 < 0 48.0557 0.4406 0.80354 -0.3547 1678 

5 𝜌𝑥𝑦 < 0, 𝜌𝑥𝑧 < 0, 𝜌𝑦𝑧 > 0 48.0557 -0.4406 -0.80354 0.3547 1678 

6 𝜌𝑥𝑦 > 0, 𝜌𝑥𝑧 < 0, 𝜌𝑦𝑧 < 0 48.0557 0.4406 -0.80354 -0.3547 1678 

7 𝜌𝑥𝑦 < 0, 𝜌𝑥𝑧 > 0, 𝜌𝑦𝑧 > 0 48.0557 -0.4406 0.80354 0.3547 1678 

8 𝜌𝑥𝑦 > 0, 𝜌𝑥𝑧 < 0, 𝜌𝑦𝑧 > 0 48.0557 0.4406 -0.80354 0.3547 1678 

 

With combinations in Table 5.2.1 the MSE results are reported in Table 5.2.2. By 

observing results of MSE we can see only two type of results. Therefore, just two cases:- 

(i)-All correlations are positive or two out of three correlations are negative. (ii)-All 

correlations are negative or two out of three are positive are produced. 

 

Now, conversing over the results in first case, MSE tends to increase slowly till phase 7. 

Afterwards, it has a sharp upward slop. For the seconds case MSE decreases steadily up 

to phase 6 and at phase 7 it is almost zero. We also observed that MSE produced are 

negative. This phenomenon is not the contradiction because, we have used population 

parameters to find values of MSE. The population parameters are constants whereas, FPC 

is variable depend upon phases. So, there is likelihood that MSE can be negative. 

Therefore, producing negative MSE is not objectionable.  

 

The graphical pattern of both cases is under Figure 5.2.1. It is evident that for case (ii) 

MSE is reduced while phases increased. 
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Table 5.2.2:   𝑴𝑺𝑬(�̅�𝑭𝟐(𝒑)) at Combinations of Low-Moderate Correlation 

Sample 

Size Phase 

𝑴𝑺𝑬(�̅�𝐹2(𝑝)
) 

S.N#1 S.N#2 S.N#3 S.N#4 S.N#5 S.N#6 S.N#7 S.N#8 

200 2 11.20 11.20 9.38 9.38 11.20 11.20 9.38 9.38 

180 3 12.49 12.49 8.40 8.40 12.49 12.49 8.40 8.40 

160 4 14.15 14.15 7.14 7.14 14.15 14.15 7.14 7.14 

140 5 16.37 16.37 5.46 5.46 16.37 16.37 5.46 5.46 

120 6 19.47 19.47 3.10 3.10 19.47 19.47 3.10 3.10 

100 7 24.12 24.12 -0.42 -0.42 24.12 24.12 -0.42 -0.42 

80 8 31.88 31.88 -6.31 -6.31 31.88 31.88 -6.31 -6.31 

60 9 47.38 47.38 -18.09 -18.09 47.38 47.38 -18.09 -18.09 

40 10 93.91 93.91 -53.41 -53.41 93.91 93.91 -53.41 -53.41 

 

 

 Figure 5.2.1: 𝑴𝑺𝑬(�̅�𝑭𝟐(𝒑)) at Combinations of Low-Moderate Correlation 

 
 

As we have just shown that only two types of results can be produced for all eight 

combinations of correlations therefore, in Table 5.2.3 we present intra-phase and second 

phased reference relative efficiencies  
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Table 5.2.3:  Intra-Phase Relative Efficiency of �̅�𝑭𝟐(𝒑)  at Moderate-Level 

Correlations 

Phase 
MSE(Case1

) 

MSE(Case2

) 

Each phase/2nd 

phase (%) 

Each Phase / 

Previous Phase (%) 

Case1 Case2 Case1 Case2 

2 11.2 9.38 - - - - 

3 12.49 8.4 111.52 89.55 111.52 89.55 

4 14.15 7.14 126.34 76.12 113.29 85.00 

5 16.37 5.46 146.16 58.21 115.69 76.47 

6 19.47 3.1 173.84 33.05 118.94 56.78 

7 24.12 -0.42 215.36 -4.48 123.88 -13.55 

8 31.88 -6.31 284.64 -67.27 132.17 1502.38 

9 47.38 -18.09 423.04 -192.86 148.62 286.69 

10 93.91 -53.41 838.48 -569.40 198.21 295.25 

 
For case one when see that all the reported figures are above 100 which means that there 

is increasing pattern in MSE. The efficiency of the estimator reduces as phase increase. 

But there is not a much of difference as we move from one phase to another. For case 2 

both types of efficiencies are less than 100 up to phase four. Having relative efficiency 

less than 100 means that the performance of the estimator is getting better and better with 

the increment in the phase. For example if we consider phase four in 2nd case the relative 

efficiency for current phase versus 2nd phase is 33.05 which means MSE at phase four is 

just 33% of MSE which was produced by phase two. Similarly, the intra-phase efficiency 

for case two is also better as with increasing phase MSE decreases resulting in better 

performance.  

 

Now, we consider high correlation between variables and will observe what pattern MSE 

will display. For this purpose we will now consider only two combinations i.e. all 

positives and all negatives. Consider the following table 5.2.4 

Table 5.2.4:   Combinations of High Levels of Correlation 

S.N Combinations of Correlation �̅� 𝝆𝒙𝒚 𝝆𝒙𝒛 𝝆𝒚𝒛 N 

1 

High positive between understudy 

and auxiliaries 

Low positive between auxiliaries 

48.0557 0.9406 0.20354 0.9547 1678 

2 

High positive between understudy 

and auxiliaries 

high positive between auxiliaries 

48.0557 0.9406 0.90354 0.9547 1678 

3 

High negative between understudy 

and auxiliaries 

Low negative between auxiliaries 

48.0557 -0.9406 -0.20354 -0.9547 1678 

4 

High negative between understudy 

and auxiliaries 

High negative between auxiliaries 

48.0557 -0.9406 -0.90354 -0.9547 1678 
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We have consider four different combinations on the basic of degree of correlation 

between auxiliary variables. Each of high positive and high negative correlation between 

understudy and auxiliary variables is combined with corresponding high and low 

correlation between auxiliaries. One the ground of four cases we computed MSE of 

proposed estimator which are presented in Table 5.2.5.   

 

From the Table 5.2.5 we can observe for combinations of correlation at serial no 1 in 

Table 7.2.4, the MSE has shown decreasing pattern with the increase in the phase. Up to 

phase 7 MSE has become very low. Similarly, for combinations of serial no 3 the MSE 

has shown decline via increases in phases. Comparatively, for Serial no 3 the decrease in 

MSE is rapid than the decrease in MSE of serial no 3.  For, serial number 2 the MSE 

almost remains constant intra-phase. After each phase there is a very minor increase 

MSE. For serial number 4 MSE starts from negative values. Again it is not suspicious as 

we have used population quantities to find MSE. If we wise to make comparison we can 

use magnitude of MSE in such case. 

Table 5.2.5:   𝑴𝑺𝑬(�̅�𝑭𝟐(𝒑)) at Combinations of High Correlation 

Sample 

Size Phase 

M𝑺𝑬(�̅�𝐹2(𝑝)
) 

S.N#1 S.N#2 S.N#3 S.N#4 

200 2 9.53 10.26 8.56 -12.42 

180 3 8.74 10.33 6.54 -40.67 

160 4 7.73 10.44 3.95 -76.98 

140 5 6.37 10.59 0.5 -125.4 

120 6 4.48 10.81 -4.32 -193.1 

100 7 1.64 11.13 -11.5 -294.8 

80 8 -3.09 11.66 -23.6 -464.3 

60 9 -12.5 12.72 -47.7 -803.2 

40 10 -41 15.92 -120.2 -1820.1 

 

The pattern of M𝑆𝐸(�̅�𝐹6(𝑝)) for all serial numbers 1 to 4 is presented graphically in figure 

7.2.2. We observed that for serial number 1 and 3   MSE is showing decreasing pattern 

while for serial number 2 we have upward trend but it is not so sharp. By observing the 

numerical results and graphical pattern of MSE we can conclude that the proposed 

estimator will give better performance with the increasing phase when there is 

combination of correlations is like serial number 1, 3as mentioned in table 7.2.4 
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Figure 5.2.2:   Behavior of 𝑴𝑺𝑬(�̅�𝑭𝟐(𝒑))  at Combinations of High Correlation 

 

Table 5.2.6:   Relative Efficiency of �̅�𝑭𝟐(𝒑)  at Combinations of High Correlations 

Phase  Each phase/2nd phase(%) Each phase/Previous phase(%)  

 S.N 1  S.N 2  S.N 3  S.N 4  S.N 1  S.N 2  S.N 3  S.N 4 

3 91.71 100.68 76.40 327.46 91.71 100.68 76.40 327.46 

4 81.11 101.75 46.14 619.81 88.44 101.06 60.40 189.28 

5 66.84 103.22 5.84 1009.66 82.41 101.44 12.66 162.90 

6 47.01 105.36 -50.47 1554.75 70.33 102.08 -864.0 153.99 

7 17.21 108.48 -134.35 2373.59 36.61 102.96 266.20 152.67 

8 -32.42 113.65 -275.70 3738.33 -188.41 104.76 205.22 157.50 

9 -131.16 123.98 -557.24 6466.99 404.53 109.09 202.12 172.99 

10 -430.22 155.17 -1404.2 14654.59 328.00 125.16 251.99 226.61 

 



Generalized P-phased Regression Estimators with Single and Two Auxiliary Variables 

Pak.j.stat.oper.res.  Vol.XIII  No.3 2017  pp661-685 681 

Table 5.2.6 presents measures of relative efficiency for combinations of high correlations 

presents in table 5.2.6. For combinations at serial number 1 and 3 both the measures of 

efficiencies are less than 100 up to phase five and phase four respectively and afterwards 

they becomes negative. This means that performance of proposed estimator will get 

better and better with increase in number of phase where there is combinations of 

correlations at serial number 1 and 3 in table 5.2.4. For serial number 2 the measures are 

boarding little above 100. It can be interpreted that MSE will not differ to large extend 

with increasing number of phases.  

 

For serial number 4 since the MSE starts with negative values and kept on increasing in 

terms of magnitude so we conclude from this evidence that the combinations at serial 

number 4 in table 5.2.4 are not suitable for our proposed estimator.  

 

As a final comment we say that in case we have combinations of high correlations in such 

a way that high positive or high negative correlation between understudy and auxiliaries 

combined with low positive or negative correlations between auxiliaries and our 

proposed estimator will produce better results with increasing phase.  

 

After discussing performance of proposed estimator (3.2) at combinations of high 

correlations. Now, we will examine its performance at low correlations. For this task 

consider table 5.2.7. 

Table 5.2.7:   Combinations of Low Levels of Correlation 

S.N Combinations of 

Correlation �̅� 𝝆𝒙𝒚 𝝆𝒙𝒛 𝝆𝒚𝒛 N 

1 

Low positive between 

understudy and auxiliaries 

Low positive between 

auxiliaries 

48.0557 0.2406 0.20354 0.2547 1678 

2 

Low positive between 

understudy and auxiliaries 

high positive between 

auxiliaries 

48.0557 0.2406 0.90354 0.2547 1678 

3 

Low negative between 

understudy and auxiliaries 

Low negative between 

auxiliaries 

48.0557 -0.2406 -0.20354 -0.2547 1678 

4 

High negative between 

understudy and auxiliaries 

High negative between 

auxiliaries 

48.0557 -0.2406 -0.90354 -0.2547 1678 
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Table 7.2.8:   𝑴𝑺𝑬(�̅�𝑭𝟐(𝒑)) at Combinations of Low Correlation 

Sample 

Size Phase 

M𝑺𝑬(�̅�𝐹2(𝑝)) 

S.N#1 S.N#2 S.N#3 S.N#4 

200 2 11.32 11.37 11.26 9.82 

180 3 12.76 12.87 12.61 9.39 

160 4 14.61 14.80 14.36 8.83 

140 5 17.08 17.36 16.68 8.08 

120 6 20.54 20.96 19.94 7.04 

100 7 25.72 26.36 24.82 5.47 

80 8 34.36 35.35 32.96 2.87 

60 9 51.64 53.33 49.24 -2.35 

40 10 103.49 107.29 98.08 -18.01 

 
Figure 5.2.3: Behavior of 𝑴𝑺𝑬(�̅�𝑭𝟐(𝒑)) at Combinations of Low Correlation 
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For combinations of low level correlations presented in table 5.2.7 the results of MSE of 

proposed estimator (3.2) are presented in table 5.2.8. The corresponding graphical 

representation is in figure 5.2.3. From table 5.2.8 we observed that MSE of the estimator 

tends to increase for first three combinations of low level correlations. The incremental 

rate in all first three case is almost same. Also there is not a rapid uplift in MSE for all 

three cases. For fourth combination of correlations at low levels, MSE has the decreasing 

trend. The MSE shows continuous decrease up to phase 8.  

 

The graphical pattern of MSE of the results produced in table 5.2.8 shows upward slopes 

of first three combinations. The slope for fourth combination is downwards which testify 

that MSE has a decreasing trend. 

 

Table 5.2.9 is demonstration of relative efficiency according to all four combinations in 

Table 5.2.7. We observed that for first three combination both type of efficiencies are 

more than hundred. Which means that with increasing phase the relative efficiency of the 

estimator decline. Whereas, for the fourth combination the relative efficiencies are less 

than 100. In fact with the increase in phases the MSE rapidly decline and performance of 

the estimator gets better and better. 

Table 5.2.9:   Relative Efficiency of  �̅�𝑭𝟐(𝒑)  at Combinations of Low Correlations 

Phase  Each phase/2nd phase(%) Each phase/Previous phase(%)  

 S.N 1  S.N 2  S.N 3  S.N 4  S.N 1  S.N 2  S.N 3  S.N 4 

3 112.72 113.18 112.05 95.57 112.72 113.18 112.05 95.57 

4 129.07 130.13 127.55 89.88 114.51 114.97 113.83 94.04 

5 150.87 152.73 148.21 82.29 116.89 117.37 116.20 91.56 

6 181.40 184.36 177.14 71.67 120.23 120.71 119.52 87.09 

7 227.19 231.82 220.53 55.73 125.24 125.74 124.49 77.76 

8 303.50 310.91 292.84 29.17 133.59 134.12 132.79 52.34 

9 456.12 469.10 437.47 -23.96 150.29 150.88 149.39 -82.13 

10 913.99 943.65 871.36 -183.33 200.38 201.16 199.18 765.26 

6. Conclusions and Recommendations 

On the grounds of mathematical results, mathematical comparisons, constructed families 

and empirical studies of proposed estimators (3.1) and (3.2) we can draw following 

conclusions 

1. Our proposed Estimators are generalized p-phased which provide flexibility to go 

up to any phase of sampling. Furthermore, for every desired phase we do not have 

to construct mathematical expressions right from the word go. We have 

readymade expressions of MSE and just need to replace desired value of 𝑝. 



Farhan Hameed, Hina Khan 

Pak.j.stat.oper.res.  Vol.XIII  No.3 2017  pp661-685 684 

2. The proposed estimator-I is generalized p-phased and estimators by Hanif et al 

(2015) are now special cases of the proposed estimators-I, for 𝑝 = 3 and 𝑝 = 4 

respectively.  

3.  The proposed estimator-II is also generalized p-phased and estimators by 

Samiuddin and Hanif (2007), Hanif et al (2015) and proposed estimator-I are now 

special cases of the proposed estimators-II, for different conditions over  𝑝, 𝛼𝑖 and 

𝛽𝑖. 

4. Based upon the results of empirical study conducted for proposed estimator-I we 

can conclude that the MSE of the estimator will have increasing tend with 

increasing phases. This conclusion is based upon generalized results in contrast to 

the same conclusion drawn by Hanif et al (2015), who just utilized third and 

fourth phase.  

5. In case of large population we observed that MSE of (3.1) are very close to each 

other. Therefore, the loss in efficiency will be negligible if we wish to go beyond 

2nd phase. In this way we can get maximum information out of samples as well as 

the desired principal of repetition can also be achieved under NIC. 

6. The empirical study for proposed estimator-II reviled that for all possible eight 

combinations of correlations between variables only two types of results of MSE 

are produced. This is because of the structural formulation of the expression of 

MSE of (3.2) presented in (5.1.27). 

7. For moderate-low correlation in both cases the behavior of 𝑀𝑆𝐸(�̅�𝑭𝟐) is anti. For 

all positive case 𝑀𝑆𝐸(�̅�𝑭𝟐) tends to increase with number of phases. For 2nd case 

𝑀𝑆𝐸(�̅�𝑭𝟐)  has decreasing pattern. Hence, we can concluded that estimator (3.2) 

will be useful under the situation of case (ii). It will not only reduce MSE but also 

the efficiency of the estimation will also be enhanced. 

8. For other different combinations of correlations we may conclude that estimator 

(3.2) will perform better by reducing MSE and increasing efficiency when there is 

(i)-High positive correlation between 𝑦 and 𝑥 , 𝑦 and 𝑧 and low positive between 

𝑧 and 𝑥. (ii)-High positive correlation between 𝑦 and 𝑥, 𝑦 and 𝑧 and low negative 

between 𝑧 and 𝑥. (iii)-High negative correlation between 𝑦 and 𝑥, 𝑦 and 𝑧 and low 

positive between 𝑧 and 𝑥. In all other case there is a smooth steady and slow 

increase in MSE per phase. 
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