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Abstract 

In this work, we study the kumaraswamy weibull geometric (Kw-WG) distribution which includes as 

special cases, several models such as the kumaraswamy weibull distribution, kumaraswamy exponential 

distribution, weibull geometric distribution, exponential geometric distribution, to name a few. This 

distribution was monotone and non-monotone hazard rate functions, which are useful in lifetime data 

analysis and reliability. We derive some basic properties of the Kw-WG distribution including non-central 

rth-moments, skewness, kurtosis, generating functions, mean deviations, mean residual life, entropy, order 

statistics and certain characterizations of our distribution. The method of maximum likelihood is used for 

estimating the model parameters and a simulation study to investigate the behavior of this estimation is 

presented. Finally, an application of the new distribution and its comparison with recent flexible 

generalization of weibull distribution is illustrated via two real data sets. 

Keywords: Weibull Geometric distribution; Data Analysis; Moments; Entropy; 

Characterizations. 

Introduction  

In analyzing lifetime data one often uses the Exponential, Rayleigh, Linear Failure Rate 

or Weibull distributions. These distributions have several popular properties and nice 

physical interpretations which make them quite useful. The Weibull distribution 

(Weibull, 1951) has been used in many different fields of applications. The hazard rate 

function (hf) of the Weibull distribution can only be increasing, decreasing or constant. 

So it cannot be used to model lifetime data with a bathtub or other shape of hazard 

function, such as human mortality and machine life cycles. For several years, researchers 

have been developing various extensions of the Weibull distribution, with number of 

parameters ranging from 2 to 5. For example Exponentiated Weibull (EW) Distribution 

(Manal and Fathy, 2003), Beta-Weibull (BW) distribution (Lee et al., 2007), 

Kumaraswamy Weibull (KwW) distribution (Cordeiro et al., 2010), McDonald Weibull 

(McW) distribution (Cordeiro et al., 2014), Modified Beta Weibul (MBW) distribution 

(Khan, 2015), Kumaraswamy Complementary Weibull Geometric (KwCWG) 

distribution (Afify et al., 2016), The Transmuted Weibull- Weibull (Alizadeh et al., 

2017). 
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Barreto-Souza et al. (2011) introduced a new extension of Weibull distribution (Weibull 

Geometric distribution) by compounding Weibull and Geometric distributions with 

probability density function (pdf) and cumulative distribution function (cdf)  

 
and 

 
 

respectively, where                                 and                 .     

 

On the other hand, Cordeiro and de Castro (2011) introduced the Kumaraswamy-G (Kw-

G) class of distributions with the following pdf and cdf 

 
where G(x) is a cdf with its corresponding pdf, g(x). Clearly, for a=b=1, we obtain the 

main distribution. The parameters a and b control the skewness and tail weights. The 

form of this class of distributions is simpler than the Beta-G class (Eugene et al., 2002) 

because it does not involve incomplete beta function. Nadarajah et al. (2012) obtained 

general results about this class of distributions. 

 

In this paper, a more flexible five parameter generalization of Weibull distribution based 

on Kumaraswamy-G class and Weibull Geometric distribution, called Kumaraswamy 

Weibull Geometric (Kw−WG), is introduced. A comprehensive description of some of its 

mathematical properties is presented. The pdf of this model includes decreasing, right and 

left skew uni-bimodal shape and the hf of this distribution contain increasing, decreasing, 

unimodal, bathtube and non-monotone shape. The Kw-WG distribution includes some 

well-known class of distribution as special cases such as Kw-W, Kw-Rayleigh (Gomez et 

al, 2014), EW, Exponential Geometric (Adamidis and Loukas, 1998), Weibull Geometric 

(Barreto-Souza et al., 2011) to name a few. 
 

This article is organized as follows. In Section 2, the new distribution with its pdf is 

proposed. Further, the distributional properties of the new distribution, such as the cdf, 

survival and hazard rate functions, moment generating function, non-central and 

descending factorial moments, mean deviation, Bonferroni and Lorenz curves, mean 

residual life and mean inactivity time, Renyi and q entropy functions and order statistics 

with its moments are discussed. Section 3 deals with the characterizations of this model 

based on truncated moments, hazard function, reversed hazard function and certain 

function of the random variable. In Section 4, the maximum likelihood estimation of the 

parameters and the Fisher information matrix are discussed and a simulation study to 

investigate behavior of the estimators is done. Applications of the proposed model are 

illustrated in Section 5. Concluding remarks are given in Section 6. 
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The Kumaraswamy-Weibull Geometric distribution 

The cdf of                                        is defined by 

 
 

(1) 

 

where                        and                  are parameters. Its pdf has the form    

 

 

(2) 

 
 
 

 

 

 

Note that,   is a scale parameter and the other positive parameters a,b,p and c are shape 

parameters. The graphs of pdf in (2), for selected parameters values are given in Figure 1. 

This distribution is more flexible than Weibull Geometric distribution and can be model 

decreasing, right and left skew unimodal and bimodal data sets.  

 

 

 

 

 

 
 

 
 

 

Figure 1:   Plots of the pdf for some parameter values. 
 

 

If X is a random variable with pdf (2), we write X~                                    . The survival 

and hazard rate functions corresponding to (2) are 
 

 
and 

 

 

 
(3) 
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respectively. The hf (3) is quite flexible for modeling survival data. See the plots of  

           for selected parameter values given in Figure 2. The hf (3) can be increasing, 

decreasing, unimodal, bathtub and non monotone as shown in the Figure 2. 

 
 

 

Figure 2:   Plots of the Kw − WG(a,b,p,c,λ) hazard rate function for some parameter 

values. 
 

Some properties of the Kw − WG distribution are: 

 

 
 

A physical interpretation of the Kw − WG distribution (for positive integer value of a and 

b) is as follows. Suppose a system is made of b independent components and each 

component is made up of a independent subcomponents. Suppose the system fails if any 

of the b components fails and each component fails if all of the a subcomponents fail. 

 

Let                   denote the lifetimes of the subcomponents within the jth component, 

j=1,…,b and let X denote the time to failure distribution of the entire system. The cdf of 

X is  

( )Fh x

1,...,j jaX X
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or 

 
 

Therefore, X has the Kw − WG distribution given by (1). 

The distributions which are sub-models of the Kw − WG distribution are listed in Table 

1. 

Table 1: Some special cases of Kw − WG distribution 

 

Asymptotics 

The asymptotics of cdf, pdf and hf as x → 0 are given by 

 
 

 
and 

 

 1 1( ) 1 ( ,..., ) 1 1 ( ) ,
b

bP X x P X x X x P X x = −   = − − 

   11 1 11( ) 1 1 ( ,..., ) 1 1 ( ( )) .
bb a

aP X x P X x X x P X x = − −   = − − 



Mahdi Rasekhi, Morad Alizadeh, G.G. Hamedani 

Pak.j.stat.oper.res.  Vol.XIV  No.2 2018  pp347-366 352 

Also, the asymptotics of cdf, pdf and hf as x → ∞ are given by 

 

 
and 

 
 

These equations show the effect of parameters on tails of distribution. 

Extreme Value 

If                         is a random sample from Kw−WG distribution and if                  

           

 

denotes the sample mean, then by usuall central limit theorem                      

approaches the standard normal distribution as n → ∞. One may be interested in the 

asymptotic of the extreme values                                             and                   

For Kw − WG distribution, it can be seen that 
 

 
and 

                                 

 
 

 

Then it follows from Theorem 1.6.2 of Leadbetter et al. (1987) that there must be 

norming constant                              and      such that 

 
 

 
 

as n → ∞. Using Corollary 1.6.3 of Leadbetter et al. (1987), we can obtain the form of  

                 and     . 

Expansion for the density function 

Let X follow the Kw− WG(a,b,p,c,λ) distribution. The pdf of X, using the generalized 

binomial expantions (Spiegel et al., 2009), 

 
can be rewritten as the following series representation 
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where 

     (5) 

Moments and generating function 

Some of the most important characteristics of a distribution can be studied through 

moments. For a random variable X having density function (2),              is obtained by 

using Equation (4) and Gamma integral     

 

 

 

as 
 

 (6) 

 

 

The skewness and kurtosis measures can be calculated from the ordinary moments using 

well−known relationships. Graphical representation of these quantities for some choices 

of parameter b as function of a, by fixing                         and             , are given in Figures 

3.  
 

The central moments (     ) and cumulants (     ) of X can be obtained from Equation (6) as 

 

                                                            and     

 

respectively, where                                                                         , etc. The pth 

descending factorial moment of X is 

 
Figure 3: Skewness and kurtosis of the Kw − WG distribution as functions of a for some 

values of b. 
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where                                  is the Stirling number of the first kind. Thus the factorial 

moments of X are given by 

 
 

The moment genrating function (mgf) of X,                             can be expressed as 

 

Thus the mgf of                                        is 

 

Quantile function 

The quantile function, say                                                                 , of the Kw WG 

distribution obtaines by inverting Equation (1) as 
 

   (7) 

 

 

 

We can simulate data from the                                         distribution by 

 

 

 

 

 

where u has the uniform U(0,1) distribution. 

Mean deviations 

The amount of scatter in X is evidently measured to some extent by the totality of 

deviations from the mean and median. If X has the Kw− WG distribution (1), we can 

derive the mean deviations about the mean                   and about the median M as 

 

                                                                and 

 

respectively. The median M is obtained from Equation (7) as 

 
These measures can be calculated from the relationships 

 
and                                                                            (8) 
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where            is easily obtained from Equation (1) and                                From Equation 

(4) and using the incomplete gamma function                                   we can obtain 
 
 

            (9) 

 

 

Equation (9) is the basic value to compute the mean deviations     and     in Equation (8). 

It can also be used to determine Bonferroni and Lorenz curves. These curves have 

applications not only in economics in the study of income and poverty, but also in other 

fields like reliability, demography, insurance and medicine. 

Mean residual life and mean inactivity time 

The mean residual life has many applications in biomedical sciences, life insurance, 

maintenance and product quality control, economics and social studies, demography and 

product technology (see Lai and Xie, 2006). The MRL is given by                          

for t > 0, and it represents the expected additional life length for a unit, which is alive at 

age t. 

 

The MRL of X can be computed as 

 
where J(t) is Equation (9). 

 

The mean inactivity time defined by                                       (for t > 0) represents the 

waiting time elapsed since the failure of an item on condition that this failure had 

occurred in (0,t). The MIT of X is given by 

 

 

 

 

where J(t) is Equation (9). 

Entropy 

 

The entropy of a random variable X is a measure of the uncertainty variation. The Renyi 

entropy is defined by 

 
where          and        . Similarily,                 is expanded as follow  
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     (10) 

 

 

 

Therefore, the Renyi entropy for the Kw-WG distribution is given by 

 
     (11) 

 

 

 

The q-entropy      is defined by 

 
Where                                    (         and          ), follows from (11) as  

 

Order statistics and moments 

In this section, we derive closed-form expressions for the pdf of the rth order statistic of 

X. Let                     be a random sample from the Kw − WG distribution with cdf and pdf 

given by (1) and (2), respectively. Let                                  denote the order statistics 

obtained from this sample. The pdf of        , say             , is given by 

 

where F(x) and f(x) are the cdf and pdf of X given by (1) and (2), respectively, and B(.,.) 

is the beta function. Similarily,              expands as 

 

where 

 

 
 

 

The rth moment of the ith order statistic        can be obtained from the following result: 
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Characterizations 

Characterizations of distributions is an important research area which has recently 

attracted the attention of many researchers. This section deals with various 

characterizations of Kw-WG family of distributions. These characterizations are based 

on: (i) a simple relationship between two truncated moments; (ii) the hazard function; 

(iii) the reverse hazard function; (iv) certain functions of the random variable. It should 

be mentioned that for characterization (i) the cdf need not have a closed form. We present 

our characterizations (i) − (iv) in four subsections. 

Characterizations based on two truncated moments 

In this subsection we present characterizations of Kw-WG distribution in terms of a 

simple rela-tionship between two truncated moments. This characterization result 

employs a theorem due to Gl¨anzel (1987) see Theorem 1 below. Note that the result 

holds also when the interval H is not closed. Moreover, as mentioned above, it could be 

also applied when the cdf F does not have a closed form. As shown in [10], this 

characterization is stable in the sense of weak convergence. 

Theorem 1.  Let (Ω, ℱ, 𝐏) be a given probability space and let  𝐻 = [𝑑, 𝑒] be an interval 

for some  𝑑 < 𝑒  (𝑑 = −∞, 𝑒 = ∞  might as well be allowed). Let 𝑋: Ω → 𝐻  be a 

continuous random variable with the distribution function 𝐹 and let 𝑔 and h be two real 

functions defined on 𝐻 such that 

 

is defined with some real function   . Assume that 𝑔, ℎ ∈ 𝐶1(𝐻), 𝜉 ∈ 𝐶2(𝐻) and 𝐹 is 

twice continuously differentiable and strictly monotone function on the set 𝐻. Finally, 

assume that the equation 𝜉ℎ = 𝑔 has no real solution in the interior of 𝐻. Then 𝐹 is 

uniquely determined by the functions 𝑔, ℎ and 𝜉 , particularly 

 

where the function 𝑠 is a solution of the differential equation 𝑠′ =
𝜉′ℎ

𝜉ℎ−𝑔
 and 𝐶 is the 

normalization constant, such that ∫
𝐻

𝑑𝐹 = 1. 

Proposition 1.  Let 𝑋: Ω → (0, ∞)  be a continuous random variable and let  
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for x > 0. The random variable X belongs to Kw-WG family (2) if and only if the 

function ξ defined in Theorem 1 has the form 

 
Proof. Let X be a random variable with pdf (2), then 

 
and 

 
and finally 

 
 

Conversely, if ξ is given as above, then 

 

and hence 

 

Now, in view of Theorem 1, X has density (2).        

 

Corollary 1.  Let 𝑋: Ω → (0, ∞)  be a continuous random variable and let h(x) be as in 

Proposition 1.. The pdf of 𝑋 is (2) if and only if there exist functions 𝑔 and 𝜉 defined in 

Theorem 1 satisfying the differential equation 

 

 
 

The general solution of the differential equation in Corollary 1 is 

 

where D is a constant. Note that a set of functions satisfying the above differential 

equation is given in Proposition 1 with            . However, it should be also noted that 

there are other triplets (h,g,ξ) satisfying the conditions of Theorem 1. 

1

2
D =
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Characterization based on hazard function 

It is known that the hazard function,    , of a twice differentiable distribution function, F, 

satisfies the first order differential equation 

 
     (12) 

 

For many univariate continuous distributions, this is the only characterization available in 

terms of the hazard function. The following characterization establish a non-trivial 

characterization of Kw-WG distribution, for a = 1, in terms of the hazard function, which 

is not of the trivial form given in (12). 

 

Proposition 2.  Let 𝑋: Ω → (0, ∞)  be a continuous random variable. For a = 1,the pdf of 

X is (2) if and only if its hazard function     satisfies the differential equation 

 
     (13) 

 

with the initial condition                  for c > 1. 

 

Proof. If X has pdf (2), then clearly (13) holds. Now, if (13) holds, then 

 
or 

 
which is the hazard function of the Kw-WG distribution for a = 1. 

Characterization in terms of the reverse (or reversed) hazard function 

The reverse hazard function,      of a twice differentiable distribution function, F, is 

defined as 

 
 

Proposition 3.  Let 𝑋: Ω → (0, ∞)  be a continuous random variable. For b = 1, the pdf of 

X is (2) if and only if its reverse hazard function           satisfies the differential equation 

 
     (14) 

 
 

Proof. If X has pdf (2), then clearly (14) holds. Now, if (14) holds, then 

 
or 

 
which is the reverse hazard function of the Kw-WG distribution. 

Fh

Fh

(0) 0Fh =

,Fr

( )Fr x
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Characterization based on certain functions of the random variable 

The following propositions have already appeared in (Hamedani, 2013) , so we will just 

state them here which can be used to characterize Kw-WG distribution. 

 

Proposition 4.  Let 𝑋: Ω → (d, e)  be a continuous random variable with cdf F. Let ψ(x) 

be a differentiable function on (d,e) with                      . Then for          , 

 

 
If and only if 

 
 

Proposition 5.  Let 𝑋: Ω → (d, e)  be a continuous random variable and let ψ(x) be a 

differentiable function on (d,e) with                      . Then for          , 

 

implies 

 
 

Remarks 3.4.1. (a) It is easy to see that for certain functions, e.g.,  

 

                  and (d,e) = (0,∞) , Proposition 4 provides a characterization of Kw-WG 

distribution.(b) Taking, e.g.,                                                         and       (d,e) = (0,∞) , 

Proposition 5 provides a characterization of Kw-WG distribution for b = 1. (c) Clearly 

there are other suitable functions ψ, we choose the above ones for simplicity. 

Maximum likelihood estimation 

We calculate the maximum-likelihood estimates (MLEs) of the parameters of the Kw-

WG dis-tribution from complete samples only. Let Let                     be a random sample 

of size n from the Kw − WG(a,b,p,c,λ) distribution. The log-likelihood function for the 

vector of parameters                               can be written as 

 

 
     (15) 

 

 

 

 

The log-likelihood can be maximized either directly by using the R program or by 

solving the nonlinear likelihood equations obtained by differentiating Equation (15). 
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Simulation 

In this section, we investigate the behavior of the ML estimators for a finite sample size 

(n). Simulation study based on Kw−WG(a,b,p,c,λ) distribution is carried out. The random 

variables are generated by using quantile technique presented in section 2.5 from Kw − 

WG(a,b,p,c,λ). A simulation study consisting of following steps is being carried out for 

each (a,b,p,c,λ) such as (0.5,0.5,0.1,3,0.4) (unimodal pdf), (0.25,0.25,0.95,10.85,0.25) 

(bimodal pdf), (0.5,0.5,0.1,3,0.4), (0.9,1.6,0.9,2,0.5) (increasing pdf) for n = 200,400,600. 

 

• Choose the initial value of                                          for the corresponding elements of 

the parameter vector                             , to specify Kw − WG(a,b,p,c,λ) distribution 

 

• choose sample size n 

 

• generate 5000 independent samples of size n from Kw − WG(a,b,p,c,λ). 

 

• compute the ML estimate      of      for each of the 5000 samples 

 

• compute the mean of the obtained estimators over all 5000 samples, the average bias 

 
and the average mean square error 

 
of simulated estimates. 

 

Table 2 presents bias and mean square error for some selected parameter values and for 

different values of n. The values in Table 2 indicate that the estimates are stable and are 

more close to the true values when the sample sizes increased. 

Table 2:   Average bias in paranthesis and average MSE of the simulated estimates 
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Application and comparison 

In this section, we present an application of the Kw − WG distribution using two real data 

sets. The first data set is given by Raqab and Kundu (2009) on the gauge lengths of 20 

mm and consists of n = 74 observations. Also, these data set is used by Nofal et al. (2015) 

and Afify et al. (2016). We use the same data to compare the Kw − WG model with some 

rival models. The second data set is an uncensored data set from Murthy et al. (2004) 

(page 180) consisting of 50 observation on failure times of 50 Components (per 1000 

hours). These data were also analyzed by Merovci and Elbatal (2013). 

 

In the applications, the information about the hazard shape can help in selecting a 

particular model. For this aim, a device called the total time on test (TTT) plot (Aarset, 

1987) is useful. The TTT plot is obtained by plotting   

where r = 1,...,n and        (i = 1,...,n) are the order statistics of the sample, against r/n. If 

the shape is a straight diagonal the hazard is constant. It is convex shape for decreasing 

hazards and concave shape for increasing hazards. The bathtub-shaped hazard is obtained 

when the first convex and then concave and for bimodal shape hazard, the TTT plot is 

first concave and then convex. The TTT plot for both datasets presented in Figure 4. 

These figures indicates that first and second dataset has increasing hazard and decreasing 

failure rate function. 

 

Therefore, the proposed Kw-WG model can be used to fit these data, since it can be 

model data with increasing and decreasing shapes of failure rate functions. The MLE of 

parameters, maximized log-likelihood function, Cramer-von Mises (  ) and 

AndersonDarling (     ) statistics are determined for fitting distributions. 

 

For first data, we compare the fits of the new model with models: Kumaraswamy 

complemen-tary Weibull Geometric (Kw-CWG) (Afify et al, 2016), Beta Weibull (BW) 

(Lee et al., 2007), McDonald Weibull (McW) (Cordeiro et al., 2014), modified Beta 

Weibull (MBW) (Khan, 2015), Kumaraswamy Weibull (Kw-W) (Cordeiro et al., 2010), 

complementary Weibull Geometric (CWG) (Tojeiro et al., 2014) and Weibull Geometric 

(WG) (Barreto-Souza et al., 2011) distributions. The rival models for second data set are 

McDonald Modified Weibull (McMW) (Merovci and El-batal, 2013), McDonald Weibull 

(McW) (Cordeiro et al., 2014), Beta Weibull (BW) (Lee et al., 2007), Weibull Geometric 

(WG) (Barreto-Souza et al., 2011) and Beta modified Weibull (BMW) (Silva et al., 2010) 

distributions. 

 

Table 3 and Table 4 include the MLEs of the model parameters, their corresponding 

standard errors (SEs) and the values of maximized log-likelihood function,     and     . 

Figures 5 and 6 displays histogram and estimated cdf of dataset with fitted Kw-WG 

distribution. 
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Figure 4: TTT-plot for the first dataset (left figure) and for the second dataset (right 

figure). 

Table 3:  MLEs, their SEs (in parentheses), maximized log-likelihood,    ,       and 

for the fitted models to the first data set 
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Table 4:  MLEs, their SEs (in parentheses), maximized log-likelihood,     , and  

       for the fitted models to the second data set 

 
 

 
Figure 5: Left panel: The Kw − WG density estimate superimposed on the histogram of 

gauge length data . Right panel: The Kw − WG cdf estimates and empirical cdf. 

 
Figure 6:   Left panel: The Kw − WG density estimate superimposed on the histogram of 

failure times data . Right panel: The Kw − WG cdf estimates and empirical cdf. 
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It is seen that the proposed Kw−WG model provides the best fit for both data sets when 

considering maximized log likelihood, Anderson-Darling and Cramer-von Mises 

goodness of fit statistics. 

Conclusion 

This paper proposed a new five parameter lifetime distribution by using Kumaraswamy-

G class of distributions and Weibull Geometric distribution. It contains a number of 

known special submod-els such as Kumaraswamy Weibull distribution, Kumaraswamy 

Exponential distribution, Weibull Geometric distribution, Exponential Geometric 

distribution and etc. We have studied many statistical properties of Kw − WG 

distribution including its probability density function, explicit algebraic expressions of 

survival and hazard functions, mean deviation, order statistics and its mo-ments, entropy, 

moment generating function and its characterizations. The maximum likelihood 

estimation is discussed and a simulation study for its behavior is done. It is suitable for 

increasing, decreasing, bathtub shaped, and non monotone shaped hazard rates, indicating 

its flexibility for modeling lifetime data with various shaped hazard rate functions. 

Accordingly, we expect that the new distribution may attract wider applications in 

reliability, biology, and lifetime data analysis. 
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