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Abstract
In a set of n repeated Bernoulli trials where each trial results in an event E, the number of events
materialized is a random variable. Even when the trials are not dependent, there do arise
situations where it is tedious to find the probability distribution of this random variable. The paper
expresses the moments of this random variable in terms of probabilities of particular events
providing some of applications of this result.
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1. Introduction
The use of Bernoulli trials often appears in ecological, epidemiological and
agricultural research where events happen over space and time. The affliction of
a disease, for instance, to human dwellings, agricultural plants and animals often
creates a puzzling pattern that engages a scientist’s concern, interest and
curiosity.  Linking of locations where events occur, may exhibit a peculiar fashion,
but it is a phenomenon that scientists do not generally ignore for their
understanding. They value its importance for various purposes. So when a group
of dependent, or independent trials result in the same activity, or event, one may
not limit his interest necessarily to the patterns of events randomly occurring. It
could be in the number of specific patterns of these events as well. A
researcher’s eagerness may desire for information how the chances for this
happening   are distributed. The probability distribution of a random variable of
this kind could be quite complex, depending on the kind of a configuration that a
researcher considers.

Moran (1948), Fuchs and David (1965) investigate the distributions of certain
configurations. Memon and David (1968) for instance, develop a theorem on
factorial moments of the number of specific events that arise as a consequence
of Bernoulli trials that happen simultaneously. They use this result to find the
asymptotic distribution of the number of randomly occurring ‘horizontal and
vertical joins’ at ‘n2‘ locations of an  n x n  lattice square; in this case, even for a
join of this form and n is as  large as 4, the derivation of the exact distribution of
the number of such joins is not simple.

In view of complexities arising for the calculation of moments of the kind of
variable indicated above, in this paper we develop a relationship between its
moments and probabilities of particular events. Applications of this result are also
given.
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2. Main Result
Let B1, B2,……, Bn be Bernoulli trials so that each trial produces the event E with
probabilities p1, p2, ….,pn. We introduce the random variable X that denotes the
number of events E that occur when these trials materialize simultaneously. In n
trials, X can take a value 0, 1, 2, …, n with certain probabilities. We state the
following theorem expressing the rth moment of X in terms of the probabilities of
particular events in n trials.

Theorem 1

r1 i1 r2 i1 , i2 rr i1,......, ir
i i < i i < i .......  ir1 1 2 1 2
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E(X ) a p a p ...... a p


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where pi1, … ,im ( = 0  for m > n) denotes the probability of m events in a
particular subset of Bernoulli trials Bi1, Bi2,……,Bim, and i1, i2, …,im =  1, 2, ….n.
The coefficients arm of nonzero joint probabilities  have the values
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Proof
To prove the theorem let

iφ = 1      when the trial Bi produces the event E
= 0       otherwise, i = 1, 2, ……, n.

so that the number of events that occur when all n trials are simultaneously run,
can be expressed as

1 2 nX =
φ φ .......... φ
   (2.1)

which can take a value   0, 1, 2,……, n.

When r is a positive integer, from above it follows that

1 2 n

r

i ,i ,.......i1 2 n-1

r!X  =  A
(i )! (i )! ........ (i )! (2.2)

where
1 2 ni i i

1 2 nA =
φ   φ  ............. φ

n 1 2 n-1i = r - i  - i - .... - i ;      i1 , i2 , … , in-1 = 0, 1, …, r

If some particular Bernoulli trials Bu1, Bu2…., Bum result in E, we have
u1 u2 umφ = φ .... φ 1   with the associated probability pu1, …, um for these m

events. Note that this probability is zero for m > n.  Expression (2.2) includes the
sum of terms each with at least one variable iφ and their products under the
restriction i1 + i2 +….+ in = r.  Thus for i1 = r, i2 =0 , …, in = 0,  the expression A
includes  the variable r

1φ . The first term with similar powered random variables
comprises

r r r
1 2 nφ φ ......... φ  
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with expectation  r
i

i

E
φ

 ;   i =  1, 2, ………,n

= r1 i
i

a p ,

where ar1 = 1 (2.3)

that is, the first term involves probability pi of E in the trial Bi.

The product 1 1i r - i
i jφ  φ involves two distinct variables in Expression (2.2) when

1 < i1 < r-1 for fixed i , j  such that  1< i < j < n.  The expectation  1 1i r - i
i jE

φ  φ
= pij

is constant for all 1 < i1 < r-1, so that its coefficient is

   1i 1 1

r!
i ! r - i !

simplifying to

ar2 =  2r - 2. (2.4)

For fixed i,j,k the product 1 2 1 2i i r - i - i
i j kφ  φ  φ has different superscripts as i1, i2 vary

such that
1 < i1 < r-2,  1 < i2 < r- i1-1,  1< i < j < k < n.

The expectation of this product is pijk (which is zero if n >3),  the probability of
three specific events in n Bernoulli trials.  The coefficient of this probability in
E(A)  is

 1 2i , i 1 2 1 2

r!
  i !  i ! r - i - i !

and so summing over i2 it is reduced to
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1
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that is,

ar3 = 3r - 3 2r + 3 (2.5)

For n >3 we do not need coefficients ar4, ar5 , ….

In (2.2) the expectation E[ 3 1 2 31 2 i r - i - i - ii i
i j k lφ  φ  φ  φ ] has the coefficient that is

determined under the conditions

1 < i1 < r-3,    1 < i2 < r- i1-2,    1 < i3 < r- i1- i2 –1,  1< i < j < k < l < n.

The coefficient of probability of  pijkl

 1 2 3
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r!a  =
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   r r r       = 4 4 3 + 6 2 4  (2.6)

Continuing the above procedure of obtaining the coefficients (2.3) to (2.6) from
(2.2) after taking expectation we can determine the coefficient arm for
m=1, 2, 3, …,r.  It is based on m-1 summations.

   
m-1 r v

r m
v=0
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v
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 

 (2.7)

The last term is associated with  r events E in n trials.  It can be seen that the
probability  pi1, … , ir of  r  specific events has the coefficient  (2.7) for m=r, which
simplifies to  r!.

2.1 REMARKS:
1) E(Xr ) in the statement of theorem applies to a positive integer r. However

its value is  1 for r=0 in (2.2).
2) For r > n  since the associated joint probability of r events E in n trials is

zero, the  coefficients  arm for m  >  n are ignored in the theorem . Thus if
n=2 and  r is any positive integer  > 2,  the expression for the rth moment
in the theorem contains only the first two terms. If each trial produces the
event with the same p, then

E(Xr )  =  2p +  ( 2r - 2) p2.
3) From the above theorem we can derive  the result on factorial moments

that   Memon and David obtain in their paper  [3].
4) When the trials occur independently with equal probabilities p the above

theorem assumes  a simpler expression as
pi1, … ,im = pm.

2.2 Corollary
For r < n,  we have

i
i

E(X) = p ,
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4
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E(X ) = p 14 p 36 p 24 p l
l

     
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the summations

i i < j i < j < k i < j < k <

  ,   ,   ,
l

   
extending over all  particular sets of events of sizes 1, 2, 3, 4 in n trials
respectively where  i, j, k, l = 1, 2, …… n.

3. Applications of the Theorem
We now consider applications of this theorem in this section. The condition is that
the integer r ≤ n.

Application I: Suppose that an event E can occur with probability p at a location
during a period of time, and that there are n similar locations. Let X denote the
number of events E that materialize at these locations simultaneously but
independently. The moments of X  in this case can be found by substituting

pi =  p,   pij = p2,   pijk = p3,   pijkl = p4, ………..

in the above theorem. For instance, the fourth moment of X is

np [1 + 7(n - 1)p  +  6(n - 1)(n - 2)p2 + (n - 1)(n - 2)(n - 3)p3]. (3.1)

Application II: Consider two independent sets of m and n locations. Let the
probabilities that the events E and E* materialize at these locations be as follow.

Set A pa1, pa2, ……, pam at  Location 1, 2, …..., m

Set B pb1, pb2, ……, pbn at  Location 1, 2, ….. , n

Let X  be the number of  pairs of locations, one in Set A  and the other in Set B,
at which the events E and E* occur simultaneously. The number of possible
single links is mXn each with probability pai pbj. The moments of X can be
determined by the above theorem using the probabilities of these links.

For example, if m = n = 2 and the probabilities of events E  and  E* are pa1 = 0.2,
pa2 = 0.4,  pb1 = 0.1,  pb2 = 0.3 it is easy to see that  X  can  take the values  0, 1,
2, 4. The first moment of X immediately comes to 0.24. It is found that the two,
three and four links jointly materialize with probabilities 0.0548, 0.0096 and
0.0024. Therefore by the above corollary, the second, third and fourth moments
of X are calculated as 0.3496, 0.6264, 1.4104 respectively.

On the contrary, it is cumbersome to first find the probability distribution of X
even in the above a simple case. Here, for X=0 we consider seven possibilities
that do not culminate in single links and the probability for this happening is
0.8076. For X=1, 2, 4 the number of possibilities that entail these links are four,
four and one respectively. It can be shown that their probabilities are 0.1496,
0.0404 and 0.0024 respectively. With this information we can now find the
moments.
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Application III: Let n locations be arranged in some order, say horizontal. The
two locations adjacent ith and (i +1)th can be treated as a join when the event E
occurs at each  location independently with probability p during a specified time
period. We define the random variables

iφ = 1     for the ith join that materializes.     i = 1, 2, …, n-1.               (3.2)
= 0     for otherwise,

and X as the number of materializing specified joins when the n trials happen
simultaneously.  To find the first four moments of X  for n > 10 the moments  we
have to find

i i < j i < j < k i < j < k <

  ,   ,   ,
l

   
that appear in the theorem. The first summation refers to the probability of single
joins. Since the expectation of each iφ in (3.2) is p2 the first moment

E(X) = c11 p2 (3.3)

where c11 =  n-1

For the second summation we consider the combinations that produce two joins.
This combination is possible when two joins are contiguous, or when the two
single joins are separated. In the first case there are (n-2) possibilities each with
probability p3. For the second case the probability of this configuration is p4 and
the number of these configurations can be determined from the series

1 + 2 + ………………+ (n-4),
arising when forming all possible configurations  of two disjoint links. Its sum is
(n-3)(n-4)/2.  Thus the total probability of two joins, adjacent or otherwise, when n
trials happen simultaneously is

(n-2) p3 + (1/2) (n-3)n-4)p4 .
Now adding the first two terms in the expression for the second moment, as in
the corollary, we have

E (X2) = c21 p2 + c22 p3 + c23 p4 (3.4)

where            c21 =  (n - 1).
c22 = 2(n - 2).
c23 = (n - 3) (n - 4).

Similarly, the probability of three links involves p4, p5 and p6 and is simplified to

(n-3)p4 + (n-4)(n-5) p5 + (1/6) (n-5)n-6)p6 .

The evaluation of fourth moment depends on four links forming configurations
that involve p5, p6, p7, p8.

Hence for n>10, the third and fourth moments of X are:

E(X3)  =  c31p2 + c32 p3 + c33 p4 + c34 p5 +  c35 p6. (3.5)
where     c31 =  n - 1                      , c32 =  6(n - 2).

c33 =  3(n - 2) (n - 3) ,          c34 =  6(n - 4) (n - 5).
c35 =  (n - 5)(n - 6) (n - 7).
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and

E(X4)  =  c41 p2 + c42 p3 + c43 p4 + c44 p5 + c45 p6 + c46 p7 + c47 p8 (3.6)

where      c41=  n - 1 ,       c42 =  14(n - 2).
c43 =  (n - 3)(7n + 8)          ,       c44 =  12(n - 4) (3n - 13).
c45 =  6(n -1) (n - 5)(n - 6) , c46 = 12(n - 8)(n - 6)(n -76).
c47 =  (n - 7)(n - 8)(n - 9)(n - 10).

We can use the above moments (3.3),.….,(3.6) to find the asymptotic distribution
of the random variable X. Assuming that  np2  λ as n  ∞, and p is small, it is
easy to see that the first, second, third and fourth moments of X are simplified to

λ, (3.7)
λ2 + λ ,
λ3 + 3 λ2 +  λ,
λ4 + 6 λ3 + 7 λ2 +  λ,

respectively, indicating that X is asymptotically distributed as a Poisson random
variable with λ as its parameter.

It may be noted that the theorem in the above application for n = 4, for instance,
provides first four moments as:

E(X)   =   c11 p2 (3.8)

E (X2) =  c21 p2 + c22 p3

E(X3)  =  c31p2 + c32 p3 + c33 p4 .

E(X4)  = c41 p2 + c42 p3 + c43 p4

The higher moments in this case involve p2
, p3 and p4 with different coefficients.

Application IV: Moran (1948), Memon and David (1968) determine factorial
moments of the randomly emerging number of  horizontal and vertical BB joins of
a rectangular lattice based on m x n locations when the event B can
independently occur at each location with probability p during a given time
period. They found the moments of this random variable using their theorem on
factorial moments (as mentioned in the above remark). The proposed theorem in
this paper can be applied to directly determine the moments of their random
variable.
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