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Abstract
Consider a single server retrial queueing system with pre-emptive priority service and vacation
interruptions in which customers arrive in a Poisson process with arrival rate λ1 for low priority
customers and λ2 for high priority customers. Further it is assume that the service times follow an
exponential distribution with parameters μ1 and μ2 for low and high priority customers
respectively. The retrial is introduced for low priority customers only. The server goes for vacation
after exhaustively completing the service to both types of customers. The vacation rate follows an
exponential distribution with parameter α. The concept of vacation interruption is used in this
paper that is the server comes from the vacation into normal working condition without completing
his vacation period subject to some conditions. Let k be the maximum number of waiting spaces
for high priority customers in front of the service station. The high priority customers will be
governed by the pre-emptive priority service. We assume that the access from orbit to the service
facility is governed by the classical retrial policy. This model is solved by using Matrix geometric
Technique. Numerical study have been done for Analysis of Mean number of low priority
customers in the orbit (MNCO), Mean number of high priority customers in the queue (MPQL),
Truncation level (OCUT), Probability of server free and Probabilities of server busy with low and
high priority customers and probability of server in vacation for various values of λ1, λ2, μ1, μ2, α
and σ in elaborate manner and also various particular cases of this model have been discussed.

Keywords: Single server – pre-emptive priority service – matrix geometric
method – classical retrial policy-single vacation-exhaustive service – vacation
interruptions.

1. Introduction
Queueing systems in which arriving customers who find all servers and waiting
positions (if any) occupied may retry for service after a period of time are called
Retrial queues [1, 2, 7, 8]. Because of the complexity of the retrial queueing
models, analytic results are generally difficult to obtain. There are a great number
of numerical and approximations methods are available, in this paper we will
place more emphasis on the solutions by Matrix geometric method [4, 6, 11, 12,
13, 14]. Vacation policies have been extensively discussed by many researchers
in queueing and retrial queueing models. In this paper we introduce this vacation
interruption policy for retrial queueing system with priority service. The concept of
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vacation interruption was discussed by Jihong Li and Naishuo Tian [10] in
the working vacation under classical queueing models who described it as

“We introduce a new policy: the server can come back from the vacation to the
normal working level once some indices of the system, such as the number of
customers, achieve a certain value in the vacation period. The server may come
back from the vacation without completing the vacation. Such policy is called
vacation interruption.”

The above policy is modified and has been introduced for priority services in
Retrial queueing system. The vacation interruption for priority service in retrial
queueing system is governed by the following principle i.e. if the server is on
vacation and if atleast one high priority customer enters the system, then the
server will be called back and he should immediately start to serve interrupting
his vacation period.

2. Motivation and Examples
This model arises due to many real time examples. We are illustrating some
examples here to better understand of this model

a. This model suited for military and defence. Officers may come home for
vacation by availing their leave. If there is any complicated situations
happen in the border, then they will be call back to join duty immediately by
interrupting their vacation.

b. It is suited for General Hospital (GH) also  in which doctors will be call back
to their service to attend the emergency cases by interrupting theirt vacation

c. It is suited for officials in the Government sector. If there is any natural
calamity or declaration of election during this time the officials will be call
back to resume their work by interrupting their vacations.

3. Model Description
Consider a single server retrial queueing system with pre-emptive priority service
[3, 5, 9], where the server goes for exhaustive service type vacation with vacation
interruptions in which two types of customers arrive in a Poisson process with
arrival rate λ1 for low priority customers and λ2 for high priority customers. These
customers are identified as primary customers. Further it is assumed that the
service times follow an exponential distribution with parameters μ1 and μ2 for low
and high priority customers respectively. Vacation rate follows an exponential
distribution with parameter α. Retrial is introduced for low priority customers only.
Let k be the maximum number of waiting spaces for high priority customers in
front of the service station.

In this model the status of the server may be idle, busy or in vacation. The server
cannot be in vacation if there is atleast one high priority customer present in the
system.  If the server is free at the time of a primary customer (low/high) arrival,
the arriving customer begins to be served immediately by the server and
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customer leaves the system after service completion. Otherwise, if the server is
busy or in vacation then the low priority arriving customer goes to orbit and
becomes a source of repeated customers. This pool of source of repeated
customers may be viewed as a sort of queue. Every such source produces a
Poisson process of repeated customers with intensity σ. If an incoming repeated
customer (low) finds the server free, it is served and leaves the system after
service, while the source which produced this repeated customer disappears. If
the server is busy and there are some waiting spaces then the high priority
customer can enter into the queue and waits for service. If there are no waiting
spaces then the high priority customers cannot enter into the service station and
will be lost for the system.

If the server is in vacation and a high priority customer enters the system then as
per vacation interruption policy the server comes back immediately and starts to
serve the customer. Otherwise, the system state does not change.

If the server is engaging a low priority customer and if at that time a high priority
customer enters, then this high priority customer will immediately get the service
and that low priority customer goes to orbit without completing the service. This
type of priority service is called the Pre-emptive priority service.

Most of the queueing system with repeated attempts assume that each customer
in the retrial group seeks service independently of each other after a random time
exponentially distributed with rate σ so that the probability of repeated attempt
during the interval (t, t +∆t) given that there were n customers in orbit at time t is
nσ ∆t + O(∆t). This discipline for access for the server from the retrial group is
called classical retrial rate policy. The input flow of primary calls (low and
high), interval between repetitions and service times are mutually independent.

4. Matrix Geometric Solutions
Let  N(t) be  the random variable which represents the number of low priority
customers in the orbit  at time t, H(t) be the random variable which represents the
number of high priority customers in the  queue (in front of the service station) at
time t and S(t) represents the server state at time t.

The random process is described as

{ < N(t) , H(t), S(t) > /  N(t) = 0, 1, 2, . . . ;  H(t) = 0, 1, 2, . . . , k  ;  S(t) = 0, 1, 2, 3 }

S(t) = 0 means the server is idle at time t.

S(t) = 1 means the server is  busy with a low priority customer at time t.

S(t) = 2 means the server is  busy with a high priority customer at time t.

S(t) = 3 means the server is in vacation at time t.
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The possible state space is

{ (u , v , w) / u = 0,1,2,3, . . .   ; v = 0 ;   w = 0,1,2,3 } 
{ (u , v , w)/  u = 0,1,2,3, . . .   ;   v =1,2,3, . . . , k ;  w = 2}

The infinitesimal generator matrix Q is given below

Q =

we define

T1 = -(λ1+ λ2)            T2 = -(λ1+ λ2+μ1)       T3 = -(λ1+ λ2+μ2)      T4 = -(λ1+ λ2+α)

T6 = -(λ1+μ2)             T8 = -(nσ+ λ1+ λ2)        T9 = -(Mσ+ λ1+ λ2) T10 = -(λ2+μ1)

T11 = -(λ2+μ2) T12 = -(λ2+α)

Matrices A00, A01, An n-1,  An n and An n+1 are  square  matrices  of order  k+4  for

n = 1, 2, 3, . . .

A00 =

Ann-1 = (aij) for n = 1, 2, 3, . . .

where aij =  nσ   if  i  = 1 and j = 2

= 0    otherwise.

A00 A0 O O O …
A10 A11 A0 O O …
O A21 A22 A0 O …
O O A32 A33 A0 …
… … … … … …
… … … … … …

T1 λ1 λ2 0 0 0 . . . 0 0

0 T2 0 μ1 0 0 . . . 0 0

0 0 T3 μ2 λ2 0 . . . 0 0

α 0 λ2 T4 0 0 . . . 0 0

0 0 μ2 0 T3 λ2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . T3 λ2

0 0 0 0 0 0 . . . µ2 T6
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Ann =

Ann+1 = A0 =  ( bi j ) for  n = 0, 1, 2, 3, . . .

where   bii =  λ1 for  i = 2, 3, 4, . . . , k+4

=  λ2 for i = 2 and j = 3

=  0  otherwise.

If the capacity of the orbit is finite say M then

AMM =

Let X be a steady-state probability vector of Q, partitioned as

X = (x(0), x(1), x(2), . . . ) where X satisfies

XQ = 0 and Xe = 1 (1)

x(i) =  ( Pi00  , Pi01 , Pi02 ,Pi03, Pi12 , Pi22 , . . . , Pik2 ) ;   i = 0, 1, 2, . . .

T8 λ1 λ2 0 0 0 … 0 0

μ1 T2 0 0 0 0 … 0 0

μ2 0 T3 0 λ2 0 … 0 0

α 0 λ2 T4 0 0 … 0 0

0 0 μ2 0 T3 λ2 … 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . T3 λ2

0 0 0 0 0 0 … 0 T6

T9 λ1 λ2 0 0 0 … 0 0

μ1 T10 0 0 0 0 … 0 0

μ2 0 T11 0 λ2 0 … 0 0

α 0 λ2 T12 0 0 … 0 0

0 0 μ2 0 T11 λ2 … 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 . . . T10 λ2

0 0 0 0 0 0 … 0 -μ2
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5. Computational Methods
Retrial queueing models can be solved computationally by the following
techniques.

(a) Direct Truncation Method
(b) Generalized Truncation Method
(c)  Truncation Method using level dependent quasi birth- and –death Process

(LDQBD)
(d) Matrix Geometric Approximation.

5.1 Direct Truncation Method

In this method one can truncate the system of equations for sufficiently large
value of the number of customers in the orbit, say M. That is, the orbit size is
restricted to M such that any arriving customer finding the orbit full is considered
lost. The value of M can be chosen so that the loss probability is small. Due to
the intrinsic nature of the system, the only choice available for studying M is
through algorithmic methods. While a number of approaches are available for
determining the cut-off point, M, the one that seems to perform well is to increase
M until the largest individual change in the elements of X for successive values is
less than ε a predetermined infinitesimal value.

6. Analysis of Steady State Probabilities

Applying the Direct Truncation Method described in section 4.1, we find the
steady state probability vector X. If M denotes the cut-off point or Truncation
level, then the steady state probability vector X(M) is partitioned as X(M) = (x(0) ,

x(1), x(2) , . . . , x(M)), where X(M) satisfies X(M) Q = 0 and X(M) e = 1

where x(i) = (Pi00 , Pi01 , Pi02 ,Pi03, Pi12 , Pi22 , . . . ,Pik2 );  i = 0, 1, 2, 3, . . . , M.

The above system of equations is solved exploiting the special structure of the
co-efficient matrix. It is solved by Numerical methods. Since there is no clear cut
choice for M, we may start the iterative process by taking, say M = 1 and
increase it until the individual elements of X do not change significantly. That is, if
M* denotes the truncation point then

|| xM*(i) - xM*-1(i)  ||∞ < ε where ε is an infinitesimal quantity.
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7. Stability Condition

Theorem

The inequality 1

1

F
1

 
  

where F = 1 +x +x2 + . . . + xk+2 and x = λ2/µ2 is the necessary

and sufficient condition for the system to be stable.

Proof

Let Q be an infinitesimal generator matrix for the queueing system (without retrial).

The stationary probability vector X satisfies

XQ = 0 and Xe = 1 (2)

Let R be the rate matrix satisfying the equation

A0 + RA1 + R2A2 = 0 (3)

The system is stable if sp(R) < 1.

The matrix R satisfies sp(R) < 1 if and only if

ΠA0e <  ΠA2e (4)

where Π =  ( π1, π2,…, πk, πk+1, πk+2, πk+3 )   satisfies

ΠA  = 0 and Πe = 1 (5)

and A = A0 + A1 + A2 (6)

A0, A1 and A2 are square matrices of order k+3

A0 = (aij)

where   aij = λ1 for i = 1 and j = 1

= λ2 for i = 1 and j = 3

= 0   otherwise

A1 =

T2 0 0 0 0 . . . 0 0
0 T3 0 λ2 0 . . . 0 0
0 λ2 T4 0 0 . . . 0 0
0 μ2 0 T3 λ2 . . . 0 0
0 0 0 μ2 T3 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . T3 λ2

0 0 0 0 0 . . . μ2 T6
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A2 = (aij)

where      aij =  µ1 if  i  = 1 and j = 1

=  µ2 if  i = 2 and  j = 1

= α   if i = 3 and j = 1

= 0    otherwise.

By substituting A0,  A1 ,  A2 in  equations (5) and (6), we get

πi = xi-1 π1 where   i = 2, 3, 4,…, k+3

From (5), π1 + π2 + π3+ π4 + π5 + . . . + πk+2 + πk+3 = 1.

Substituting the values of πi in the above equation, we get

π1 = F-1 where    F = 1 +x +x2 +. . . + xk+2 .

From (4), (λ1/μ1)  < F-1

1

1

F
1

 
  

The inequality 1

1

F
1

 
  

is also a sufficient condition for the retrial queueing system to

be stable.

Let Qn be the number of customers in the orbit after the departure of nth customer from
the service station. We first prove the embedded Markov chain {Qn, n ≥ 0} is ergodic if

1

1

F
1

 
  

. It is readily to see that {Qn, n ≥ 0} is irreducible and aperiodic. It remains to

be proved that {Qn, n ≥ 0} is positive recurrent. The irreducible and aperiodic Markov
chain {Qn, n ≥ 0} is positive recurrent if | ψi| < ∞ for all i and limsup 0i

i



 where

ψi = E( Qn+1 - Qn / Qn = i ) ;   i = 0, 1, 2, 3, . . .

ψi = 1

1

F 
  

-
1 2

 
   

i

i


  

if 1

1

F
1

 
  

,  then | ψi| < ∞ for all i and limsup 0i
i




 .

Therefore the embedded Markov chain {Qn , n ≥ 0}  is ergodic.

As  k → ∞, the above stability condition becomes 1 2

1 2

1
  

    
.
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8. Special Cases

1. This model becomes single server Retrial queueing system with Pre-emptive priority
service discussed by Ayyappan and et al [5] if α→∞.

2. This model becomes single server Retrial queueing system if λ2 →0, μ2 → ∞, α→ ∞.
3. This model becomes single server classical queueing system if λ2 →0, μ2 →∞, α→∞

and σ→∞.

9. System Performance Measures

In this section we list some important performance measures along with their formulae.
These measures are used to bring out the qualitative behaviour of the queueing model
under study. Numerical studies have been dealt to study the following measures.

p(u,0,0) =  Probability that there are u customers in the orbit, no customers in the high
priority queue and server is free.

p(u,0,1) =  Probability that there are u customers in the orbit, no customers in  the  high
priority queue and server is busy with a low priority customer.

p(u,v,2) =  Probability that there are u customers in the orbit , v  customers in the high
priority queue and server is busy with a high priority customer.

p(u,0,3) = Probability that there are u customers in the orbit and v customers in the high
high priority queue and server is in vacation.

We can find the steady state probability vector X for various values of λ1, λ2, μ1, μ2, σ, α
and k and the following system measures can be studied with these probabilities.

a. The probability mass function of server state

Let S(t) be the random variable which represents the server state at time t. In this
model S(t) takes the values 0, 1, 2, 3.

P0 = Probability that the server is idle =
0

( ,0,0)
i

p i





P1 = Probability that the server is busy with a low priority customer =
0

( ,0,1)
i

p i





P2 = Probability that the server is busy with a high priority customer =
0 0

( , , 2)
k

i j

p i j


 


P3 =  Probability that the server is in vacation                                     =
0

( ,0,3)
i

p i





b. The probability mass function of number of customers in the orbit

Let X(t) be the random variable which represents the number of low priority
customers in the orbit. X(t) takes the values 0, 1, 2, 3, . . .
Probability of no customers in the orbit

=
0

(0,0,0) (0,0,1) (0, , 2) (0,0,3)
k

j

p p p j p


  
Probability of n customers in the orbit =

0

( ,0,0) ( ,0,1) ( , , 2) ( ,0,3)
k

j

p n p n p n j p n


  
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c. The Probability mass function of number of high priority customers in the queue

Let H(t) be the random variable which represents the number of high priority customers
in  the  queue  at time t. In this model we assume that  the  capacity  of  high  priority
customers in the queue is finite and H(t) takes the values 0, 1, 2, 3 , . . . , k.

Probability of no customers in the high priority queue =
3

0 0

( ,0, )


 

i l

p i l

Probability of n customers in the high priority queue   =
0

( , , 2)
i

p i n





d. The Mean number of high priority customers in the queue (MPQL)

MPQL   =
1 0

( , , 2)  


 

 
 
 

 
k

j i

j p i j

e. The Mean number of low priority customers in the orbit

MNCO =
0 0

( ,0,0) ( ,0,1) ( , , 2) ( ,0,3)


 

 
   

 
 

k

i j

i p i p i p i j p i

f. The probability that the orbiting customer is blocked

Blocking Probability =
1 0

( , , 2) ( ,0,1) ( ,0,3)]


 

 
  

 
 

k

i j

p i j p i p i

g. The probability that an arriving customer enters the service  station immediately

=
0

( ,0,0)
i

p i





10. Numerical Study

The values of parameters λ1, λ2, µ1, µ2 are chosen so that they satisfy the stability
condition discussed in section 6.

The system performance measures of this model have been done and expressed in the
form of tables which are shown below by finding the steady state probability vector X for
various values for λ1, λ2, µ1, µ2, σ, α and k.

If λ1 = 10   λ2=5   μ1 =20   μ2=25 σ = 100  α = 100 and k = 6, then the steady state

probability vector is X = (x(0) , x(1), x(2) , . . . , x(M))

where

x(0) = [ 0.2147, 0.1430,  0.0337,  0.0322,  0.0046,  0.0006,  0.0001,  0.0000,  0.0000,
0.0000]

x(1) = [ 0.0286,  0.1078,  0.0340,  0.0028,  0.0060,  0.0010,  0.0002,  0.0000,  0.0000,
0.0000]

x(2) = [ 0.0103, 0.0759,  0.0267,  0.0002,  0.0055,  0.0011,  0.0002,  0.0000,  0.0000,
0.0000]
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x(3) = [ 0.0049, 0.0530,  0.0196,  0.0000,  0.0044,  0.0009,  0.0002,  0.0000,  0.0000,
0.0000]

x(4) = [ 0.0026, 0.0369,  0.0139,  0.0000,  0.0033,  0.0007,  0.0002,  0.0000,  0.0000,
0.0000]

x(5) = [ 0.0015, 0.0256,  0.0098,  0.0000,  0.0024,  0.0006,  0.0001,  0.0000,  0.0000,
0.0000]

x(6) = [ 0.0009, 0.0178,  0.0068,  0.0000,  0.0017,  0.0004,  0.0001,  0.0000,  0.0000,
0.0000]

x(7) = [ 0.0005, 0.0123,  0.0048,  0.0000,  0.0012,  0.0003,  0.0001,  0.0000,  0.0000,
0.0000]

x(8) = [ 0.0003, 0.0085,  0.0033,  0.0000,  0.0008,  0.0002,  0.0001,  0.0000,  0.0000,
0.0000]

x(9) = [ 0.0002, 0.0059,  0.0023,  0.0000,  0.0006, 0.0002,  0.0000,  0.0000,  0.0000,
0.0000]

x(10) = [ 0.0001,0.0041, 0.0016,  0.0000,  0.0004,  0.0001,  0.0000,  0.0000,  0.0000,
0.0000]

Similarly, we can find x (n) for n ≥ 10 and it is noticed that x(n) → 0 as n→∞ . For the
numerical parameters chosen above, x(n) → 0 for n ≥ 37 and the sum of the steady state
probabilities becomes 0.9999999999. In the same manner,  we can find steady state
probability vector X for all values of λ1, λ2, µ1, µ2, σ , α and k.

System Performance Measures
Probability that the server is idle = 0.264736
Probability that the server is busy with a low priority customer = 0.500000
Probability that the server is busy with a high priority customer = 0.199998
Probability that there are 0 customers in the orbit = 0.428921
Probability that there are 1 customers in the orbit = 0.180424
Probability that there are 2 customers in the orbit = 0.120041
Probability that there are 3 customers in the orbit = 0.083086
Probability that there are 4 customers in the orbit = 0.057689
Probability that there are 5 customers in the orbit = 0.040027
Probability that there are 6 customers in the orbit = 0.027742
Probability that there are 7 customers in the orbit = 0.019207
Probability that there are 8 customers in the orbit = 0.013284
Probability that there are 9 customers in the orbit = 0.009180
Probability that there are 10 customers in the orbit = 0.006339
Probability that there are 11 customers in the orbit = 0.004374
Probability that there are 12 customers in the orbit = 0.003016
Probability that there are 13 customers in the orbit = 0.002079
Probability that there are 14 customers in the orbit = 0.001432
Probability that there are 15 customers in the orbit = 0.000986
Probability that there are 16 customers in the orbit = 0.000679
Probability that there are 17 customers in the orbit = 0.000467
Probability that there are 18 customers in the orbit = 0.000321
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Probability that there are 19 customers in the orbit = 0.000221
Probability that there are 20 customers in the orbit = 0.000152
Probability that there are 21 customers in the orbit = 0.000104
Probability that there are 22 customers in the orbit = 0.000072
Probability that there are 23 customers in the orbit = 0.000049
Probability that there are 24 customers in the orbit = 0.000034
Probability that there are 25 customers in the orbit = 0.000023
Probability that there are 26 customers in the orbit = 0.000016
Probability that there are 27 customers in the orbit = 0.000011
Probability that there are 28 customers in the orbit = 0.000007
Probability that there are 29 customers in the orbit = 0.000005
Probability that there are 30 customers in the orbit = 0.000004
Probability that there are 31 customers in the orbit = 0.000002
Probability that there are 32 customers in the orbit = 0.000002
Probability that there are 33 customers in the orbit = 0.000001
Probability that there are 34 customers in the orbit = 0.000001
Probability that there are 35 customers in the orbit = 0.000001
Mean number of customers in the orbit = 1.839531
Probability that the orbiting customer is blocked = 0.391682
Probability that there are 0 customers in the high priority queue = 0.960002
Probability that there are 1 customers in the high priority queue = 0.032000
Probability that there are 2 customers in the high priority queue = 0.006400
Probability that there are 3 customers in the high priority queue = 0.001280
Probability that there are 4 customers in the high priority queue = 0.000256
Probability that there are 5 customers in the high priority queue = 0.000051
Probability that there are 6 customers in the high priority queue = 0.000010
Mean number of customers in the high priority queue = 0.049982

Tables 1, 2, 3 and 4 show the impact of σ and k over Mean number of customers
in the orbit and Mean number of customers in the high priority queue. Further, we
infer the following

 Mean number of customers in the orbit decreases as retrial rate σ
increases.

 Mean number of customers in the high priority queue increases as k
increases.

 This model becomes standard pre-emptive priority queueing model with
vacation interruptions if σ is large.

Table 5 shows the effect of vacation rate over the system. As α is large, the
model coincides with single server Retrial queueing system with pre-emptive
priority service discussed by Ayyappan and et al [5].
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Table 1: System performance measures for λ1=10, λ2=5, μ1=20, μ2=25, α =100 & k=2
σ P0 P1 P2 P3 MNCO MPQL
10 0.2941 0.5000 0.1987 0.0072 4.6528 0.0449
20 0.2840 0.5000 0.1987 0.0173 3.0863 0.0449
30 0.2780 0.5000 0.1987 0.0233 2.5604 0.0449
40 0.2742 0.5000 0.1987 0.0270 2.2958 0.0449
50 0.2717 0.5000 0.1987 0.0296 2.1364 0.0449
60 0.2699 0.5000 0.1987 0.0314 2.0297 0.0449
70 0.2685 0.5000 0.1987 0.0328 1.9534 0.0449
80 0.2674 0.5000 0.1987 0.0339 1.8960 0.0449
90 0.2666 0.5000 0.1987 0.0347 1.8513 0.0449

100 0.2659 0.5000 0.1987 0.0354 1.8155 0.0449
200 0.2625 0.5000 0.1987 0.0388 1.6538 0.0449
300 0.2613 0.5000 0.1987 0.0400 1.5996 0.0449
400 0.2607 0.5000 0.1987 0.0406 1.5725 0.0449
500 0.2603 0.5000 0.1987 0.0410 1.5563 0.0449
600 0.2600 0.5000 0.1987 0.0412 1.5454 0.0449
700 0.2599 0.5000 0.1987 0.0414 1.5377 0.0449
800 0.2597 0.5000 0.1987 0.0416 1.5318 0.0449
900 0.2596 0.5000 0.1987 0.0417 1.5273 0.0449
1000 0.2595 0.5000 0.1987 0.0417 1.5237 0.0449
2000 0.2592 0.5000 0.1987 0.0421 1.5074 0.0449
3000 0.2590 0.5000 0.1987 0.0423 1.5019 0.0449
4000 0.2590 0.5000 0.1987 0.0423 1.4992 0.0449
5000 0.2589 0.5000 0.1987 0.0424 1.4976 0.0449
6000 0.2589 0.5000 0.1987 0.0424 1.4965 0.0449
7000 0.2589 0.5000 0.1987 0.0424 1.4957 0.0449
8000 0.2589 0.5000 0.1987 0.0424 1.4951 0.0449
9000 0.2589 0.5000 0.1987 0.0424 1.4947 0.0449

Table 2: System performance measures for λ1=10, λ2=5, μ1=20, μ2=25, α=100 & k = 4
σ P0 P1 P2 P3 MNCO MPQL
10 0.2929 0.5000 0.1999 0.0072 4.6909 0.0497
20 0.2828 0.5000 0.1999 0.0172 3.1159 0.0497
30 0.2769 0.5000 0.1999 0.0232 2.5872 0.0497
40 0.2731 0.5000 0.1999 0.0269 2.3212 0.0497
50 0.2706 0.5000 0.1999 0.0294 2.1609 0.0497
60 0.2688 0.5000 0.1999 0.0313 2.0537 0.0497
70 0.2674 0.5000 0.1999 0.0326 1.9769 0.0497
80 0.2663 0.5000 0.1999 0.0337 1.9192 0.0497
90 0.2655 0.5000 0.1999 0.0346 1.8743 0.0497

100 0.2648 0.5000 0.1999 0.0353 1.8383 0.0497
200 0.2614 0.5000 0.1999 0.0386 1.6757 0.0497
300 0.2602 0.5000 0.1999 0.0398 1.6213 0.0497
400 0.2596 0.5000 0.1999 0.0404 1.5941 0.0497
500 0.2592 0.5000 0.1999 0.0408 1.5777 0.0497
600 0.2590 0.5000 0.1999 0.0411 1.5668 0.0497
700 0.2588 0.5000 0.1999 0.0412 1.5590 0.0497
800 0.2587 0.5000 0.1999 0.0414 1.5532 0.0497
900 0.2586 0.5000 0.1999 0.0415 1.5486 0.0497
1000 0.2585 0.5000 0.1999 0.0416 1.5450 0.0497
2000 0.2581 0.5000 0.1999 0.0420 1.5286 0.0497
3000 0.2580 0.5000 0.1999 0.0421 1.5231 0.0497
4000 0.2579 0.5000 0.1999 0.0421 1.5204 0.0497
5000 0.2579 0.5000 0.1999 0.0422 1.5187 0.0497
6000 0.2578 0.5000 0.1999 0.0422 1.5177 0.0497
7000 0.2578 0.5000 0.1999 0.0422 1.5169 0.0497
8000 0.2578 0.5000 0.1999 0.0422 1.5163 0.0497
9000 0.2578 0.5000 0.1999 0.0423 1.5158 0.0497
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Table 3: System performance measures for λ1=10, λ2=5, μ1=20, μ2=25, α=100 & k=6
σ P0 P1 P2 P3 MNCO MPQL
10 0.2928 0.5000 0.2000 0.0072 4.6927 0.0500
20 0.2828 0.5000 0.2000 0.0172 3.1174 0.0500
30 0.2768 0.5000 0.2000 0.0232 2.5886 0.0500
40 0.2731 0.5000 0.2000 0.0269 2.3225 0.0500
50 0.2706 0.5000 0.2000 0.0294 2.1622 0.0500
60 0.2687 0.5000 0.2000 0.0313 2.0550 0.0500
70 0.2674 0.5000 0.2000 0.0326 1.9782 0.0500
80 0.2663 0.5000 0.2000 0.0337 1.9205 0.0500
90 0.2654 0.5000 0.2000 0.0346 1.8755 0.0500

100 0.2647 0.5000 0.2000 0.0353 1.8395 0.0500
200 0.2614 0.5000 0.2000 0.0386 1.6769 0.0500
300 0.2602 0.5000 0.2000 0.0398 1.6225 0.0500
400 0.2596 0.5000 0.2000 0.0404 1.5953 0.0500
500 0.2592 0.5000 0.2000 0.0408 1.5789 0.0500
600 0.2589 0.5000 0.2000 0.0411 1.5680 0.0500
700 0.2588 0.5000 0.2000 0.0412 1.5602 0.0500
800 0.2586 0.5000 0.2000 0.0414 1.5544 0.0500
900 0.2585 0.5000 0.2000 0.0415 1.5498 0.0500
1000 0.2584 0.5000 0.2000 0.0416 1.5462 0.0500
2000 0.2581 0.5000 0.2000 0.0419 1.5298 0.0500
3000 0.2579 0.5000 0.2000 0.0421 1.5243 0.0500
4000 0.2579 0.5000 0.2000 0.0421 1.5216 0.0500
5000 0.2578 0.5000 0.2000 0.0422 1.5199 0.0500
6000 0.2578 0.5000 0.2000 0.0422 1.5188 0.0500
7000 0.2578 0.5000 0.2000 0.0422 1.5180 0.0500
8000 0.2578 0.5000 0.2000 0.0422 1.5175 0.0500
9000 0.2578 0.5000 0.2000 0.0422 1.5170 0.0500

Table 4: System performance measures for λ1=10, λ2=5, μ1=20, μ2=25 α=100 and k=8
σ P0 P1 P2 P3 MNCO MPQL
10 0.2928 0.5000 0.2000 0.0072 4.6928 0.0500
20 0.2828 0.5000 0.2000 0.0172 3.1175 0.0500
30 0.2768 0.5000 0.2000 0.0232 2.5886 0.0500
40 0.2731 0.5000 0.2000 0.0269 2.3226 0.0500
50 0.2706 0.5000 0.2000 0.0294 2.1623 0.0500
60 0.2687 0.5000 0.2000 0.0313 2.0550 0.0500
70 0.2674 0.5000 0.2000 0.0326 1.9783 0.0500
80 0.2663 0.5000 0.2000 0.0337 1.9205 0.0500
90 0.2654 0.5000 0.2000 0.0346 1.8756 0.0500

100 0.2647 0.5000 0.2000 0.0353 1.8396 0.0500
200 0.2614 0.5000 0.2000 0.0386 1.6770 0.0500
300 0.2602 0.5000 0.2000 0.0398 1.6226 0.0500
400 0.2596 0.5000 0.2000 0.0404 1.5953 0.0500
500 0.2592 0.5000 0.2000 0.0408 1.5790 0.0500
600 0.2589 0.5000 0.2000 0.0411 1.5681 0.0500
700 0.2588 0.5000 0.2000 0.0412 1.5603 0.0500
800 0.2586 0.5000 0.2000 0.0414 1.5544 0.0500
900 0.2585 0.5000 0.2000 0.0415 1.5499 0.0500
1000 0.2584 0.5000 0.2000 0.0416 1.5462 0.0500
2000 0.2581 0.5000 0.2000 0.0419 1.5298 0.0500
3000 0.2579 0.5000 0.2000 0.0421 1.5244 0.0500
4000 0.2579 0.5000 0.2000 0.0421 1.5216 0.0500
5000 0.2578 0.5000 0.2000 0.0422 1.5200 0.0500
6000 0.2578 0.5000 0.2000 0.0422 1.5189 0.0500
7000 0.2578 0.5000 0.2000 0.0422 1.5181 0.0500
8000 0.2578 0.5000 0.2000 0.0422 1.5175 0.0500
9000 0.2578 0.5000 0.2000 0.0422 1.5171 0.0500
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Table 5: Effect of vacation rate over the system for λ1 = 10, λ2 = 5, μ1 = 20, μ2 = 25,
σ = 100 and   k = 6 and various values of α

α P0 P1 P2 P3 MNCO MPQL
10 0.1243 0.5000 0.2000 0.1757 2.2656 0.0500
20 0.1741 0.5000 0.2000 0.1259 2.0263 0.0500
30 0.2035 0.5000 0.2000 0.0965 1.9406 0.0500
40 0.2223 0.5000 0.2000 0.0777 1.9001 0.0500
50 0.2351 0.5000 0.2000 0.0649 1.8776 0.0500
60 0.2444 0.5000 0.2000 0.0556 1.8637 0.0500
70 0.2513 0.5000 0.2000 0.0487 1.8544 0.0500
80 0.2568 0.5000 0.2000 0.0432 1.8479 0.0500
90 0.2612 0.5000 0.2000 0.0388 1.8432 0.0500

100 0.2647 0.5000 0.2000 0.0353 1.8395 0.0500
200 0.2817 0.5000 0.2000 0.0183 1.8257 0.0500
300 0.2876 0.5000 0.2000 0.0124 1.8221 0.0500
400 0.2907 0.5000 0.2000 0.0093 1.8205 0.0500
500 0.2925 0.5000 0.2000 0.0075 1.8196 0.0500
600 0.2938 0.5000 0.2000 0.0063 1.8190 0.0500
700 0.2946 0.5000 0.2000 0.0054 1.8186 0.0500
800 0.2953 0.5000 0.2000 0.0047 1.8183 0.0500
900 0.2958 0.5000 0.2000 0.0042 1.8181 0.0500
1000 0.2962 0.5000 0.2000 0.0038 1.8180 0.0500
2000 0.2981 0.5000 0.2000 0.0019 1.8172 0.0500
3000 0.2987 0.5000 0.2000 0.0013 1.8170 0.0500
4000 0.2991 0.5000 0.2000 0.0009 1.8169 0.0500
5000 0.2992 0.5000 0.2000 0.0008 1.8168 0.0500
6000 0.2994 0.5000 0.2000 0.0006 1.8168 0.0500
7000 0.2995 0.5000 0.2000 0.0005 1.8168 0.0500
8000 0.2995 0.5000 0.2000 0.0005 1.8167 0.0500
9000 0.2996 0.5000 0.2000 0.0004 1.8167 0.0500

11. Graphical Study

Figures 1, 2 and 3 show the effect of retrial rate σ over the Mean number of customers in
the orbit. The following figures show that the mean number of customers in the orbit
decreases as retrial rate σ increases and this model becomes single server classical
queueing system with vacation interruptions under pre-emptive priority service if σ is
large.

Figure 1: Mean number of low priority customers in the orbit for λ1 = 10,   λ2 = 5, μ1 = 20,
μ2 = 25, α = 100, k = 6 and σ various from 10 to 90
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Figure 2: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, μ1 = 20,
μ2 = 25, α = 100, k = 4 and σ various from 100 to 900

Figure 3: Mean number of low priority customers in the orbit for λ1 = 10,  λ2 = 5, μ1 = 20,
μ2 = 25, α = 100, k = 4 and σ various from 1000 to 9000

Figures 4, 5 and 6 show the effect of vacation rate α over system. The following figures
show that the mean number of customers in the orbit decreases as vacation rate α
increases and this model becomes single server Retrial queueing system with pre-emptive
priority service if  α is large.

Figure 4: Mean number of low priority customers in the orbit for λ1 = 10,   λ2 = 5, μ1 = 20,
μ2 = 25, σ = 100, k = 6 and α various from 10 to 90
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Figure 5: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, μ1 = 20,
μ2 = 25, σ = 100, k = 6 and α various from 100 to 900

Figure 6: Mean number of low priority customers in the orbit for λ1 = 10,   λ2 = 5, μ1 = 20,
μ2 = 25, σ = 100, k = 6 and α various from 1000 to 9000

12. Conclusion
It is observed from numerical study that Mean number of low priority customers
in the orbit decreases as the retrial rate increases, the probabilities for the server
being busy with low and high priority customers are independent on retrial rate.
The impact of vacation rate over the system implies that as the vacation rate
increases this model becomes retrial queueing system with pre-emptive priority
service. This paper can further be extended by introducing various parameters
like different types of vacation policies and finite source input.
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