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Abstract 

Cost-effective and efficient sampling methods are of main concern in many social, biological and 

environmental studies. In this article, an efficient sampling scheme, named manipulation-based ranked set 

sampling (MBRSS) scheme is introduced with its properties for estimating population mean and median. 

The MBRSS is a mixture of simple random sampling (SRS), ranked set sampling (RSS) and median ranked 

set sampling (MRSS) schemes and is applicable in the situation when ordinary RSS cannot be conducted. It 

is shown that the proposed scheme provides unbiased mean estimator provided underlying distribution is 

symmetric. For asymmetric distributions, a weighted mean is proposed, where optimal weights are 

computed using Shannon's entropy. Monte Carlo simulation is used to ascertain effectiveness of the 

proposed mean and median estimators in the presence of outliers. We also compared the efficiency of 

MBRSS and truncation-based ranked set sampling (TBRSS) scheme with respect to SRS under the 

situation of perfect and imperfect ranking i.e error in rankings with respect to variable of interest. It is 

observed, on the basis of theoretical and numerical studies that MBRSS is more efficient than SRS. Further, 

a real data set is used to illustrate the proposed MBRSS scheme. 
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Keywords: simple random sample, ranked set sampling, median ranked set sampling, 
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1.   Introduction 

In many social and natural sciences where sampling is used, an efficient sampling method 

is focused especially when the measurement of characteristics of interest is costly or 

time-consuming. In this connection, McIntyre(1952) suggested an efficient sampling 

method alternative to SRS, which later on called ranked set sampling (RSS) method, for 

estimating mean pasture and forage yield. Thereafter, many modifications were made in 

the basic RSS method to make it more economical or cost effective. For instance, 

Samawi et al. (1996) suggested extreme ranked set sampling (ERSS) for estimating 

population mean. Al-Nasser (2007) proposed L-ranked set sampling(LRSS) for 

estimating population mean. Al-Omari and Raqab (2013) introduced truncation based 

rank set sampling (TBRSS) for estimating population mean and median. Al-Nasser and 

Al-Omari (2015) introduced weighted TBRSS and showed that it is more efficient than 

ordinary TBRSS. Muttlak (1997) suggested median ranked set sampling (MRSS) for 

estimating mean and median of symmetric and asymmetric distributions. Dell and Clutter 

(1972) showed that under the situation of imperfect rankings, the sample mean remains 

an unbiased estimator of population mean, but ranking should be better than at least a 

random ordering. Stokes (1977) presented a simple linear model and showed that an 

concomitant variable can be used to rank the study variable. For more details about 
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ranking based on concomitant variable see Zamanzade and Mohammadi (2016), 

Zamanzade & Vock (2015) and references therein. 

 

In this paper, we proposed a manipulation-based ranked set sampling (MBRSS) scheme 

for estimating population mean and median. It provides flexibility to the experimenter in 

selecting more representative sample by adopting SRS, RSS and MRSS schemes. It 

consumes less units than truncation-based ranked set sampling (TBRSS) and provides 

efficient estimates than conventional SRS scheme. The rest of the paper is organized as 

follows: In  Section 2, RSS, MRSS, TBRSS and the proposed MBRSS are described. 

Estimation of population mean and its efficiency is investigated in Section 3. Median 

estimation with its efficiency is elaborated in Section 4. The weighted mean estimators 

for skewed distribution are included in Section 5. Monte Carlo simulation to ascertain 

effectiveness of the proposed mean estimator in the presence of outliers is given in 

Section 6. TBRSS and MBRSS with concomitant variable are studied in  Section 7. 

Illustration of proposed MBRSS with real data set and its comparison with TBRSS is 

given in Section 8. Finally, concluding remarks are included in Section 9. 

2.   Sampling Methods 

In this Section we describe the RSS, MRSS, TBRSS and MBRSS sampling methods. 

2.1  Rank Set Sampling (RSS) 

RSS can be described as: For selection of m units, identify 2m  units from target 

population and arrange them into m samples each of size m and rank the units within 

each sample with respect to variable of interest by any cost free method. From the ith  

(i =1,2,3,. . .,m)  sample, select the ith  smallest ranked unit for actual measurement. The 

whole procedure can be repeated r times, if needed, to get a RSS sample of size mr.  

2.2  Median rank Set Sampling (MRSS) 

MRSS is described as: draw m simple random samples each of size m from target 

population and rank the units within each sample with respect to variable of interest by 

any cost free method. If m is odd, select ((m +1) / 2)th  smallest ranked unit from each 

sample. If m is even, select from first (m / 2)  samples (m / 2)th  smallest ranked unit from 

the last (m / 2)  samples ((m + 2) / 2)th  smallest ranked unit. The whole procedure can be 

repeated r  times, if needed, to get a MRSS sample of size mr.  

2.3  Truncation Based Ranked Set Sampling (TBRSS) 

TBRSS can be described as: draw m simple random samples each of size m from target 

population and rank the units within each sample with respect to variable of interest by 

any cost free method. Define a coefficient  k = α m  where 0 α < 0.5  and  t  is the 

largest integer less than equal to t.  From first k  samples , select the smallest rank unit 

and from the last k  samples select the largest rank units and from the remaining (m - 2k)  

samples, select the ith unit of the ith  (i = k +1,k + 2,. . .,m - k)  sample. 
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2.4  The proposed MBRSS sampling scheme 

In many practical situation the ordinary RSS cannot be carried out due to scarcity of 

resources or lack of large population elements. In such situation MBRSS scheme 

provides opportunity to the experimenter to select a sample by applying SRS, RSS and 

MRSS schemes. Thus, MBRSS is more economical and flexible than ordinary RSS and 

TBRSS schemes. A manipulation-based ranked set sample of size m can be selected by 

adopting the following steps: 

Step-1:  Define a constant  1k = α m  where 0 α 0.5   and  t  is the largest integer 

less than equal to t.  If 1k =1, select 
1k  unit from the target population by SRS 

method. If 
1k 2 , select 

1k  units by RSS method. 

Step-2:  Select the remaining 
2 1k = (m - k )  units by applying MRSS defined in Section 

2.2.  

 

This completes one cycle for selection of a sample of size 
1 2m = k + k  units under 

MBRSS. The above steps 1 2  can be repeated r  times, if needed, to obtain a sample of 

size mr  units. It is pertinent to mention that MBRSS utilizes 
1 1

2 2(m - k ) + k  units, which 

are always less than equal to 2m  units consumed by ordinary RSS and TBRSS schemes, 

to get a sample of size m.  Note that for 
1k = 0 , MBRSS reduces to MRSS. 

3.   Estimation of Population Mean 

Let the variable of interest X  has probability density function (pdf) f(x)  and cumulative 

distribution function F(x)  with mean μ  and variance 2σ .  Let 1 2 3 mX ,X ,X ,. . .,X  be a SRS 

of size m from f(x) . The SRS estimator of population mean μ  if sampling is repeated r  

times, is defined as r m1
j=1 i=1SRS ijmr

X = X   with its variance 
2
Xσ2

X mrSRS
σ =  Let 

i1 i2 i3 imX ,X ,X ,. . .,X  (i =1,2,3,. . .,m)  denote m  SRS each of size m.  Suppose, 

i(1:m) i(2:m) i(m:m)X ,X ,. . .,X  denote order statistics of the ith  sample.Then, 

1(1:m) 2(2:m) m(m:m)X ,X ,. . .,X  is called RSS of size m.  

 

Let (i:m)g (x)  be pdf of ith  order statistic i.e. (i:m)X  (i =1,2,3,. . .,m) , then it can be shown 

that :   
m-1

i-1 m-i
(i:m)

i-1
g (x) = m (F(x)) (1- F(x)) f(x) - < x <

 
  

 
    (1) 

 

The mean and variance of (i:m)X  respectively are given by 

(i:m) (i:m)-
μ = xg (x)dx



  

and  
2 2
(i:m) (i:m) (i:m)-

σ = (x -μ ) g (x)dx


  

for detail see David and Nagaraja (2003).The RSS estimator of population mean, say μ , is 

defined as  
r m

RSS i(i:m)j
j=1i=1

1
X = X

mr
        (2) 
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and its variance is given by  
2

m m
X2 2

RSS (i:m) (i:m) X2 2
i=1 i=1

1 σ 1
Var(X ) = σ = - (μ - μ )

m r mr m r
      (3) 

 

The MRSS estimator of population mean for even m is defined as 
r m/2 r m

MRSSe i(m/2:m)j i((m+2)/2:m)j
j=1 i=1 j=1i=m/2+1

1
X = ( X + X )

mr
        (4) 

and its variance is given by  

 2 2
MRSSe (m/2:m) ((m+2)/2:m)

1
Var(X ) = (σ + σ )

2mr
     (5) 

 

The MRSS estimator of population mean for odd m  is defined as 
r m

MRSSo i((m+1)/2:m)j
j=1i=1

1
X = ( X )

mr
        (6) 

and its variance is given by  

 2
MRSSo ((m+1)/2:m)

1
Var(X ) = σ

mr
       (7) 

 

The TBRSS estimator of population mean is defined as 
r k r m-k r m

TBRSS i(1:m)j i(i:m)j i(m:m)j
j=1i=1 j=1i=k+1 j=1i=m-k+1

1
X = ( X + X + X )

mr
         (8) 

and its variance is given by  

 m-k
2 2 2

TBRSS (1:m) (m:m) (i:m)2
i=k+1

1
Var(X ) = k(σ + σ ) + σ

m r
      (9) 

3.1  Estimation of population mean using MBRSS 

The MBRSS estimator of population mean for even 2k  can be defined as 

1 2 2

1 2 2 2 2

2

kk k /2r r r

MBRSSe i(i:k )j i((k /2):k )j i((k +2)/2):k )j
j=1i=1 j=1 i=1 j=1i=(k +2)/2

1
X = ( X + X + X )

mr
       (10) 

and its variance is given by  

1
2

1 2 2 2 2

k
2 2 2

MBRSSe (i:k ) (k /2:k ) (k +2)/2:k )2
i=1

1 k
Var(X ) = σ + (σ + σ )

m r 2

 
 
 

   (11) 

 

The MBRSS estimator of population mean for odd 2k  can be defined as 

1 2

1 2 2

k kr r

MBRSSo i(i:k )j i(((k +1)/2):k )j
j=1i=1 j=1i=1

1
X = ( X + X )

mr
       (12) 

and its variance is given by  

 1

21 2 2

k
2 2

MBRSSo (i:k ) (((k +1)/2):k )2
i=1

1
Var(X ) = σ + k σ

m r
      (13) 

 

Lemma-1: If the underlying distribution is symmetric   

1.     MBRSSX  is unbiased estimator of population mean, Xμ   

2.     MBRSS SRSVar(X ) Var(X )   
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Proof.1 Let i(i:k )j (i:k )h h
E(X ) = μ  and 2

i(i:k )j (i:k )h h
Var(X ) = σ ,h =1,2 . Then, from Eq(10)  for 

even 2k , we have 

1 2 2

1 2 2 2 2

2

1 2 2

1 2 2 2 2

2

k k /2 kr r r

MBRSSe (i:k ) ((k /2):k ) ((k +2)/2):k )
j=1i=1 j=1 i=1 j=1i=(k +2)/2

k k /2 k

(i:k ) ((k /2):k ) ((k +2)/2):k )
i=1 i=1 i=(k +2)/2

1
E(X ) = ( μ + μ + μ )

mr
1

                  = ( μ + μ + μ )
m
1

                  =

    

  

1
2

1 2 2 2 2

k

(i:k ) ((k /2):k ) ((k +2)/2):k )
i=1

k
( μ + (μ + μ ))

m 2


 

 

For symmetric distribution, we have i n-i+1μ + μ = 2μ . Further,it is easy to write 
n
i=1 (i:m)μ = nμ  

  

1 2

1 2

MBRSSe

1
E(X ) = (k μ + k μ)

m
                   = μ k + k = mQ

 

 

Now considering Eq(12)  for odd 2k , we have  

1 2

1 2 2

1 2

1 2 2

1 2

k kr r

MBRSSo (i:k ) ((k +1)/2:k )
j=1i=1 j=1i=1

k k

(i:k ) ((k +1)/2:k )
i=1 i=1

1
E(X ) = ( μ + μ )

mr
1

                  = ( μ + μ )
m
1

                  = (k μ + k μ)
m

                  = μ

 

   

 

Proof.2 Consider Eq(11)   

1
2

1 2 2 2 2

k
2 2 2

MBRSSe (i:k ) (k /2:k ) (k +2)/2:k )2
i=1

1 k
Var(X ) = σ + (σ + σ )

m r 2

 
 
 

 

 

Note that t k t-k t2 2 2 2
i=1 i=1 i=k+1 i=t-k+1i i i iσ = σ + σ + σ     and t t2 2 2

i=1 i=1X i i Xtσ = σ + (μ -μ )  . Further, in 

case of symmetric distribution 2 2
i n-i+1σ = σ   

 

 
 

1

1 21 2 2

1

1 21

1

1

k
2 2 2

MBRSSe X (i:k ) X (k /2:k )2
i=1

k
2 2 2 2 2
X (i:k ) X X X(j:n) X2

i=1
2 k
X 2

(i:k ) X2
i=1

1
Var(X ) = k σ - (μ - μ ) + k σ

m r
1

                    k σ - (μ - μ ) + k σ σ σ
m r
σ 1

                    - (μ - μ )
mr m r



 

 

Q       

Since the second term on right hand side is non negative and 
2
X

SRS

σ
Var(X ) =

mr
. Hence, 

MBRSSe SRSVar(X ) Var(X )  
 

Similarly, considering Eq(13) , we have  

 1

1 21 2 2

k
2 2

MBRSSo X (i:k ) X (((k +1)/2):k )2
i=1

1
Var(X ) = k σ - (μ - μ ) + k σ

m r
  
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             1

1 21

k
2 2 2 2 2
X (i:k ) X X X(j:n) X2

i=1

1
k σ - (μ -μ ) + k σ σ σ

m r
  Q  

            
1

1

2 k
X 2

(i:k ) X2
i=1

σ 1
- (μ -μ )

mr m r
   

Since the second term on right hand side is non-negative and 
2
X

SRS

σ
Var(X ) =

mr
. This 

completes the proof.  

 

If the underlying distribution is asymmetric, the mean square error (MSE) of the mean 

estimators based on MBRSS and TBRSS, are given by 

1
2

1 2 2 2 2

k
2 2 2 2

MBRSSe (i:k ) (k /2:k ) (k +2)/2:k ) MBRSSe2
i=1

1 k
MSE(X ) = σ + (σ + σ ) + E(X - μ)

m r 2

 
 
   

(14) 

 1

1 2 2

k
2 2 2

MBRSSo (i:k ) 2 ((k +1)/2:k ) MBRSSo2
i=1

1
MSE(X ) = σ + k σ + E(X - μ)

m r


   
(15) 

 m-k
2 2 2 2

TBRSS (1:m) (m:m) (i:m) TBRSS2
i=k+1

1
MSE(X ) = k(σ + σ ) + σ + E(X - μ)

m r


  
(16) 

 

It may be noted that the MSE and Bias of any estimator T( )  of population parameter μ  

are defined as 2MSE(T( )) = Var(T( )) + (Bias)   and Bias = E(T( ) -μ)  

 

For symmetric distribution, the RE of MBRSSX  and TBRSSX  with respect to SRSX  is defined 

as 

SRS
J SRS

J

Var(X )
RE(X ,X ) = J = MBRSS,TBRSS

Var(X )
     (17) 

For asymmetric distribution, the RE of MBRSSX  and TBRSSX  with respect to SRSX  is given 

by  

SRS
J SRS

J

Var(X )
RE(X ,X ) = J = MBRSS,TBRSS

MSE(X )
     (18) 

 

The REs of mean estimators are reported in Tables1-3. Calculation were done using Eqs 

(17) and (18) for different values of 1k  and k  for MBRSS and TBRSS respectively with 

m = 4,5,6,7.  The results advocate the efficiency of MBRSS over SRS for estimating 

mean for symmetric and asymmetric distributions. RE of MBRSS increases as sample 

size increases for all considered values of 1k  under both symmetric and asymmetric 

distributions. While, the efficiency of MRSS has, generally, decreasing trend when 

sample size gets large for the cases of highly skewed distributions such as exponential(1), 

chisquare(1) and lognormal(0,1) distributions. For m 6 , MBRSS became superior to 

MRSS for estimating mean of chisquare(1) when 1k >1 . For instance, RE of MRSS for 

estimating mean of chisquare(1) is 1.7000 when m = 6 . While, it is 1.7885 under MBRSS 

with 1k = 2  and 2k = 4 . However, in most of the considered distributions, maximum 

efficiency is obtained when 1k = 0 . In this case, as mentioned earlier, the MBRSS is 

equivalent to MRSS. As regards TBRSS, it is less efficient than MBRSS for estimating 

population mean under all considered skewed distributions except weibull(2,1) but it is 
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superior to MBRSS in most of the considered symmetric distributions, except 

logistc(0,1). But this loss in efficiency decreases as m increases with minimum loss 

occurs when 1k =1.  Therefore, it can be concluded that in the situation of scarcity of 

resources the experimenter should prefer MBRSS. 

Table 1:   RE of MBRSS vs SRS for estimating population mean for m = 4,5  

    m=4    m=5   

MRSS MBRSS MBRSS MRSS MBRSS MBRSS 

 

Distribution 
1

2

k = 0
k = 4

 1

2

k = 1
k = 3

 1

2

k = 2
k = 2

 
 

1

2

k = 0
k = 5

 1

2

k = 1
k = 4

 1

2

k = 2
k = 3

 

Normal(0,1) 2.8000 1.7160 1.5000  3.5063 2.0557 1.8242 

Logistics(0,1) 3.1680 1.8136 1.4343  4.1903 2.2191 1.9657 

Uniform(0,1) 2.0894 1.4245 1.5025 2.2876 1.7087 1.6128 

Beta(3,3) 2.5000 1.6144 1.5094  3.0000 1.8960 1.7254 

Exponential(1) 2.3751 1.7000 1.3496 2.2354 1.9165 1.7777 

Weibull(2,1) 2.5348 1.6549 1.4860 3.0000 1.9577 1.8010 

Gamma(2,3) 2.5593 1.7037 1.4000 2.6143 1.9259 1.8000 

Student T(5) 3.6000 2.0000 1.4198  4.6853 2.3575 2.0000 

Chi square(1) 2.3753 1.7276 1.2357 1.9000 1.8795 1.7584 

Log Normal(0,1) 3.2091 2.2177 1.2309  2.7809 2.3147 1.8651 

Table 2:   RE of MBRSS vs SRS for estimating population mean for m = 6,7  

   m=6        m=7    

MRSS MBRSS MBRSS MBRSS MRSS MBRSS MBRSS MBRSS 

 

Distribution 

1

2

k = 0
k = 6

 1

2

k = 1
k = 5

 1

2

k = 2
k = 4

 1

2

k = 3
k = 3

 
 

1

2

k = 0
k = 7

 1

2

k = 1
k = 6

 1

2

k = 2
k = 5

 1

2

k = 3
k = 4

 

Normal(0,1) 4.1183 2.5191 2.1141 2.0547  4.8350 2.8485 2.4904 2.3375 

Logistics(0,1) 4.8853 2.7000 2.2801 2.1372  5.8401 3.1580 2.7223 2.4480 

Uniform(0,1) 2.7306 1.8844 1.8402 1.8113  3.0298 2.1968 2.0111 2.0397 

Beta(3,3) 3.4843 2.2420 2.0100 1.9543  3.9481 2.5294 2.3364 2.2374 

Exponential(1) 2.1339 1.8662 1.8759 1.9045  1.7867 1.8710 1.8585 2.0000 

Weibull(2,1) 3.3780 2.2356 2.0518 1.9509  3.5276 2.4855 2.3376 2.2240 

Gamma(2,3) 2.6835 2.0327 1.9846 1.9598  2.4831 2.1368 2.1093 2.1148 

Student T(5) 5.6015 2.9321 2.3432 2.1941  6.7000 3.3638 2.8000 2.5000 

Chi square(1) 1.7000 1.6408 1.7885 1.8513  1.3471 1.5402 1.6640 1.9000 

Log 

Normal(0,1) 

2.4740 2.1128 2.1331 2.0000  2.0683 2.1062 2.0001 2.0341 
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Table 3:   RE of TBRSS vs SRS for estimating population mean for m = 4,5,6,7  

 

 

Distribution 

m=4    m=5   m=6     m=7   

RSS 

k = 0,1  

RSS 

k = 0,1  

TBRSS 

k = 2  

RSS 

k = 0,1  

TBRSS 

k = 2  

RSS 

k = 0,1  

TBRSS 

k = 2  

TBRSS 

k = 3  

Normal(0,1) 2.3177  2.7856 2.4097  3.1801 2.7459  3.5298 3.1596 2.7562 

Logistics(0,1) 2.2251  2.5802 2.0250  2.9121 2.2734  3.2446 2.6555 2.0394 

Uniform(0,1) 2.4635  3.0000 3.6197  3.5351 3.9994  3.9805 4.5041 5.8385 

Beta(3,3) 2.4550  2.8824 2.9078  3.4297 3.3353  3.8322 3.8033 3.7007 

Exponential(1) 1.9255  2.1929 1.3066  2.3893 1.4560  2.7124 1.6637 0.8287 

Weibull(2,1) 2.3399  2.7490 2.3397  3.1611 2.6666  3.5947 3.0866 2.2623 

Gamma(2,3) 2.2003  2.4501 1.6522  2.6005 1.8678  3.0681 2.1185 1.1952 

Student T(5) 2.1096  2.4325 1.6544  2.6177 1.9037  2.8785 2.0941 1.5848 

Chi square(1) 1.6635  1.8652 1.0394  2.0580 1.1135  2.3053 1.2444 0.5711 

Log 

Normal(0,1) 

1.6180  1.6294 0.7947  1.6113 0.9052  1.8193 0.8624 0.4845 

4.   Estimation of population median 

Median is reliable measure of center tendency when underlying distribution is 

asymmetric or highly skewed. We define median estimators based on SRS, TBRSS and 

MBRSS. An extensive simulation study is also conducted to compare the efficiency of 

the median estimators based on TBRSS and MBRSS relative to conventional estimator 

based on SRS. Let 1 2 3 mX ,X ,X ,. . .,X  be a SRS of size m.  Then SRS estimator of 

population median, say , is defined as 

((m+1)/2:m)

((m/2):m) (((m+2)/2):m)SRS

X if m is odd

X + Xθ =
if m is even

2

ˆ



  

 

The population median estimator under TBRSS is defined by 

i(1:k)

i(i:m-k)TBRSS

i((m:m)

X
i =1,2,. . .,k

X i = k +1,k + 2,. . .,m - 2kθ = Median

X i = m - 2k +1,. . .,m

ˆ







 

 

Similarly, Suppose that 2k  is even and 

k k k k2 2 2 21 1 1 1 1 2 2 22 2 2 2
1(1:k ) 2(2:k ) k (k :k ) 1( :k ) 2( :k ) ( :k )

X ,X ,. . .,X ,X ,X ,. . .,X ,  
2 2 2 2 2 2(k +2)/2((k +2)/2:k ) k ((k +2)/2:k )X ,. . .,X be 

MBRSSe of size m.  Then the population median estimator is given by 

1
1

2

2 2

2 2

22 2

i(i:k )

k
i(k /2:k ) 2MBRSSe

k k

i((k +2)/2:k ) 2 2

X
i =1,2,. . .,k

X i =1,2,. . .,θ = Median

X i = ( ) +1+ ( ) + 2,. . .,k

ˆ







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Suppose that 2k  is odd and 
1 1 1 1 11(1:k ) 2(2:k ) k (k :k )X ,X ,. . .,X ,

2 2 2 2 22((k +1)/2:k ) k ((k +1)/2:k )X ,. . .,X be 

MBRSSo of size m.  Then the population median estimator is given by 

                 

1

1

22 2

i(i:k )

MBRSSo i((k +1)/2:k )

i =1,2,. . .,k
X

θ = Median X i =1,2,. . .,kˆ






 

The REs of MBRSSθ̂  and TBRSSθ̂ with respect to SRSθ̂  are defined as 

 SRS
MBRSS SRS

MBRSS

SRS
TBRSS SRS

TBRSS

MSE(θ )
eff(θ ,θ ) =                                                                           19

MSE(θ )

MSE(θ )
eff(θ ,θ ) =                                           

MSE(θ )

ˆ
ˆ ˆ

ˆ

ˆ
ˆ ˆ

ˆ
                                   20

 

REs of the median based on MBRSS and TBRSS with respect to the median estimator 

based on SRS are presented in Tables 4 6  under both symmetric and asymmetric 

distributions. REs are calculated using Eq(19)  and Eq(20) . The simulated median and its 

MSE based on 44×10  simulation are defined as:  

40000 40000
2

S S,i S S,i
i=1 i=1

1 1
θ = θ MSE(θ ) = (θ - θ) S = SRS,TBRSS,MBRSS

40000 40000
ˆ ˆ ˆ ˆ   

 

We can see from Tables 4 5  that a substantial gain in efficiency is obtained by using 

MBRSS relative to SRS for estimating median for symmetric and asymmetric 

distributions. RE increases with increase in m. However, maximum gain in efficiency is 

obtained at 1k = 0 . The Table6 reflects efficiency of TBRSS for estimating population 

median. It can be seen from Tables4-6 that the proposed MBRSS is superior to TBRSS 

for estimating population median for both symmetric and asymmetric distributions. For 

instance, RE of median estimator under MBRSS for m=5 at 1k =1 is 2.1640, while it is 

1.5330 under TBRSS for the case of normal distribution (0,1). Therefore, the results 

suggest that MBRSS is economical and efficient alternative to TBRSS for estimating 

population median. 

Table 4:   RE of MBRSS vs SRS for estimating population median for = 4,5m  

    m=4    m=5   

MRSS MBRSS MBRSS MRSS MBRSS MBRSS 

 

Distribution 
1

2

k = 0
k = 4

 1

2

k = 1
k = 3

 1

2

k = 2
k = 2

 
 

1

2

k = 0
k = 5

 1

2

k = 1
k = 4

 1

2

k = 2
k = 3

 

Normal(0,1) 2.7218 1.8307 1.4004  3.4565 2.1640 1.9019 

Logistics(0,1) 2.9106 1.9598 1.4424  3.7102 2.2321 1.9394 

Uniform(0,1) 2.2222 1.6140 1.3870 2.9565 1.8899 1.6944 

Beta(3,3) 2.5547 1.7800 1.4031  3.3204 2.0850 1.8048 

Exponential(1) 3.2580 2.0646 1.4061 4.0571 2.3748 2.0345 

Weibull(2,1) 2.6284 1.8388 1.4035 3.5132 2.1184 1.8738 

Gamma(2,3) 2.8860 1.9246 1.4207 3.7487 2.2507 1.9615 

Student T(5) 3.0245 2.0007 1.4722  3.6789 2.2673 1.9304 

Chi square(1) 3.8056 2.5000 1.4188 4.9024 2.6796 2.3289 

Log Normal(0,1) 4.1002 2.6145 1.4863  5.0000 2.9251 2.3896 
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Table 5:   RE of MBRSS vs SRS for estimating population median for m = 6,7  

   m=6        m=7    

MRSS MBRSS MBRSS MBRSS MRSS MBRSS MBRSS MBRSS 

 

Distribution 
1

2

k = 0
k = 6

 1

2

k = 1
k = 5

 1

2

k = 2
k = 4

 1

2

k = 3
k = 3

 
 

1

2

k = 0
k = 7

 1

2

k = 1
k = 6

 1

2

k = 2
k = 5

 1

2

k = 3
k = 4

 

Normal(0,1) 3.9390 2.9164 2.2003 2.0000  4.8015 3.2880 2.8320 2.1802 

Logistics(0,1) 4.2070 3.1102 2.3127 2.0738  4.9291 3.4024 2.9062 2.2209 

Uniform(0,1) 3.2025 2.5413 2.0000 1.7734  4.1077 3.1529 2.5168 1.9402 

Beta(3,3) 3.7632 2.8272 2.1373 1.9280  4.6801 3.1529 2.7414 2.0899 

Exponential(1) 4.4332 3.3616 2.4662 2.0975  5.3431 3.5213 3.0988 2.3082 

Weibull(2,1) 3.8301 2.9109 2.1884 1.9605  4.7363 3.3082 2.8206 2.1361 

Gamma(2,3) 4.1718 3.1203 2.3289 2.0763  5.0996 3.3678 2.9633 2.2360 

Student T(5) 4.2221 3.1761 2.3337 2.1435  5.1011 3.4352 2.9765 2.2024 

Chi square(1) 5.4867 3.9447 2.8293 2.3731  6.3631 4.2803 3.4676 2.6501 

Log 

Normal(0,1) 

5.7350 4.0005 2.7871 2.5228  6.2606 4.2740 3.5711 2.6076 

Table 6:   RE of TBRSS vs SRS for estimating population median for m = 4,5,6,7  

 

 

Distribution 

m=4    m=5   m=6     m=7   

RSS 

k = 0,1  

RSS 

k = 0,1  

TBRSS 

k = 2  

RSS 

k = 0,1  

TBRSS 

k = 2  

RSS 

k = 0,1  

TBRSS 

k = 2  

TBRSS 

k = 3  

Normal(0,1) 2.1963  2.0775 1.5330  2.7458 2.2223  2.5118 2.1181 1.3169 

Logistics(0,1) 2.2450  2.1804 1.5555  2.8337 2.3288  2.5905 2.2001 1.3184 

Uniform(0,1) 1.9933  1.8778 1.4129  2.4304 2.1036  2.2164 1.9441 1.2532 

Beta(3,3) 2.1335  2.0048 1.6021  2.6048 2.3500  2.4562 2.0521 1.5021 

Exponential(1) 2.3033  2.3185 1.6350  2.9416 2.2449  2.6840 2.3080 1.3609 

Weibull(2,1) 2.1986  2.0819 1.5059  2.5761 2.2387  2.4261 2.1567 1.3116 

Gamma(2,3) 2.2174  2.1531 1.7526  2.4321 2.1427  2.5868 2.2331 1.3021 

Student T(5) 2.3249  2.1971 1.5695  2.8289 2.2796  2.5331 2.2219 1.3300 

Chi square(1) 2.4542  2.6091 1.7705  2.1814 2.3845  3.1269 2.6386 1.4534 

Log 

Normal(0,1) 

2.6950  2.6776 1.7754  3.2401 2.4455  3.1572 2.6809 1.4262 

5.   Weighted MBRSS for skewed distribution 

To improve the efficiency of MBRSS scheme in estimating population mean when 

underlying distribution is asymmetric, a weighted MBRSS for even 2k  is defined as 
k2

1 2 2

ki1 11 2121 2 222
2

k k

wMBRSSe i(i:k ) i((k +2)/2):k )i( :k )
i=1 i=1 i=(k +2)/2

X = ( w X + w X + w X )       (21) 

 

Similarly, a weighted MBRSS for odd 2k  is defined as 

1 2

i2 121 2 2

k k

wMBRSSo i(i:k ) i(((k +1)/2):k )
i=1 i=1

X = ( w X +  w X )       (22) 

 

First, we find estimated weights for the estimator wMBRSSeX  defined above. where 
11w ,

21w  

and i1 1w ,i =1,2,. . .,k  are non negative weights to be chosen such that wMBRSSeX  is unbiased 
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estimator. The optimal weights, which provide a measure of uncertainty, can be found by 

using entropy measure from information theory. Entropy is considered as a measure of 

uncertainty. A simple choice of this measure is Shannon's entropy: 

m

i1 i1
i=1

H(w) = - w ln(w )         (23) 

where m
i=1 i1 i1 i1w ln(w ) = 0 w = 0   and H(w)  reaches at maximum when 

11 21 31 m1

1
w = w = w = = w =

m
L . Then maximizing Eq(23) subject to the constraints 

m
i=1 i1w =1  leads to optimal solution. This problem can be expressed as a nonlinear system 

m

i1 i1
i=1

Maximize - w ln(w )   

subject to the constraints 

1.    21
ki1 11 212 2
2

k
i ((k +2)/2)i=1 ( )

k
w μ + (w μ + w μ ) = μ

2
    

2.    m
i=1 i1w =1   

 

where  
2

j1 11

2 2

j1 21

k

2

k k

22 2

w = w  j = 1,2,3,. . .,

w = w  j = ( ) +1,( ) + 2,. . ., k

  

  

 

 

To find weights, the Lagrange function is formulated as 
1

2

i1 i1 i1 11 21 i12 2

km m
*

1 i (k /2) ((k +2)/2) 2
i=1 i=1 i=1

k
L = - w ln(w ) + λ (μ - w μ - (w μ + w μ )) + λ (1- w )

2
     

 

Solving the first order conditions, the solution leads to  

1
2

11
1

1 12 1 i2 2

1
2

21
1

1 12 1 i2 2

1 j

1
1 12 1 i2 2

-λ μ(k /2)

k-λ μ -λ μk -λ μ(k /2) ((k +2)/2)

2
i=1

-λ μ((k +2)/2)

k-λ μ -λ μk -λ μ(k /2) ((k +2)/2)

2
i=1

-λ μ

i1 1k-λ μ -λ μk -λ μ(k /2) ((k +2)/2)

2
i=1

e
w =

(e + e ) + e

e
w =

(e + e ) + e

e
w = , j =1,2,. . .,k

(e + e ) + e

ˆ

ˆ

ˆ











 

where 1λ  is Lagrangian multiplier. Then the unbiased estimator will be recovered 

through the estimated weights by 

1 2 2

i1 11 211 2 2 2

2

k k /2 k

wMBRSSe i(i:k ) i((k /2):k ) i((k +2)/2):k )2
i=1 i=1 i=(k +2)/2

X = ( w X + w X + w X )ˆ ˆ ˆ     

and its associated weighted variance is given by 

1
2

i1 11 211 2 2 2 2

k
2 2 2

wMBRSSe (i:k ) (k /2:k ) (k +2)/2:k )2 2
i=1

1 k
Var(X ) = w σ + (w σ + w σ )

m 2m
   
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We, now, find weights for the estimator wMBRSSoX  defined above. where 
12w  and 

i2 1w ,i =1,2,. . .,k  are non negative weights to be chosen such that wMBRSSoX  is unbiased 

estimator. In this case, the problem can be expressed as a nonlinear system 

m

i2 i2
i=1

Maximize - w ln(w )   

subject to the constraints 

1.    1
i2 2 12 2

k
i ((k +1)/2)i=1w μ + k w μ = μ   

2.    
i2

m
i=1w =1   

where 
j2 12 2w = w  j =1,2,. . .,k    

 

To find weights, the Lagrange function is formulated as 

1

i2 i2 1 i2 2 12 2 i22

km m
*

i ((k +1)/2)
i=1 i=1 i=1

L = - w ln(w ) + λ (μ - w μ - k w μ ) + λ (1- w )  &  

 

Solving the first order conditions, the solution leads to  

1
2

12
1

1 +1 1 i2

1

1
1 +1 1 i2

-λ μ(k +1/2)

k-λ μ -λ μ(k /2)
k 2

i=1
-λ μi

i2 1k-λ μ -λ μ(k /2)
k 2

i=1

e
w =

e + e

e
w = , i =1,2,. . .,k

e + e

ˆ

ˆ







 

where 1λ  is Lagrangian multiplier. Then the unbiased estimator will be recovered 

through the estimated weights by 

1 2

i2 12 2 2

k k

wMBRSSo i(i:k ) i(((k +1)/2):k )1
i=1 i=1

X = ( w X + w X )ˆ ˆ    

and its associated weighted variance is given by 

1
2

121 2 2

k
2 2

wMBRSSo i2 (i:k ) (((k +1)/2):k )2 2
i=1

1 k
Var(X ) = w σ + w σ

m m
ˆ ˆ   

5.1  Weighted TBRSS for skewed distribution 

The population mean estimator based on weighted TBRSS (wTBRSS) is defined by  

 

m-k

wTBRSS 1 (1:m) j (j:m) m m:m
i=k+1

X = (kw X + w X + kw X )ˆ ˆ ˆ     (24) 

and its associated weighted variance is given by 

m-k
2 2 2

wTBRSS 1 (1:m) m (m:m) j (j:m)
i=k+1

k 1
Var(X ) = (w σ + w σ ) + w σ

m m
ˆ ˆ ˆ  
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The weights jw (j =1,2,3,. . .,m)  are estimated using Shannon's entropy, for details see Al-

Nasser and Al-Omari (2015), and given by 
 

 

 

 

1 1:m

1 1(1:m) (m:m) 1 i:m

1 m:m

1 1(1:m) (m:m) 1 i:m

-λ μ

1 m-κ-λ κμ -λ κμ -λ μ

i=κ+1
-λ μ

m m-κ-λ κμ -λ κμ -λ μ

i=κ+1

e
w =

κ(e + e ) + e

e
w =

κ(e + e ) + e

ˆ

ˆ





 

and  
 

 

j m:m

1 1(1:m) (m:m) 1 i:m

-λ μ

j m-k-λ kμ -λ kμ -λ μ

i=k+1

e
w = , j = k +1,k + 2,. . .,m - k

k(e + e ) + e

 

 

The REs of wMBRSS and wTBRSS with respect to SRS for estimating mean are given 

by  

SRS
wMBRSS SRS

wMBRSS

Var(X )
RE(X ,X ) =

Var(X )
      (25) 

and  

SRS
wTBRSS SRS

wTBRSS

Var(X )
RE(X ,X ) =

Var(X )
      (26) 

 

The numerical values of REs of wMBRSS and wTBRSS with respect to SRS are reported 

in Tables7-10 for different asymmetric distributions, assuming 1k = 2  and k = 2,  for 

wMBRSS and wTBRSS respectively and sample size m = 4,5,6.  The results indicate 

significant improvement in the efficiency of mean estimator by using wMBRSS. 

Moreover, RE increases as m gets large. For instance, REs of unweighted MBRSS for 

m = 4,5  at 1k = 2  are 1.3496 and 1.7777 respectively, as given in Table1 for the case of 

exponential(1) distribution. While, these are 5.3333 and 7.2246  under wMBRSS as given 

in Table7. A gain in efficiency is also obtained by using wTBRSS. For example, REs of 

unweighted TBRSS for m = 5  at k = 2  are 1.3066 and for the case of exponential(1) 

distribution. While, it is 2.7111 under wTBRSS as indicated in Tables 9 . However, a 

substantial gain in efficiency of mean estimator is obtained by using wMBRSS instead of 

wTBRSS as indicated for the case of exponential (1) distribution.   

Table 7:  Optimal weights and RE of wMBRSS vs SRS for estimating mean of 

asymmetric population for m = 4,5  

 

Distribution 

m=4         m=5    

 i1w ,i =1,3   i1w ,i = 2,4  RE
 

12w  22w  
12w

         RE 
 

Exponentia(1) 0.250000 0.250000 5.3333  0.131214 0.315600 0.184402    7.2246 

Weibull(2,1) 0.249997 0.250003 5.8317  0.245521 0.297510 0.152321 8.0235 

Gamma(2,3) 0.250003 0.249997 5.5650  0.182654 0.303214 0.171440 7.5747 

Chi square(1) 0.250000 0.250000 5.0166  0.062997 0.340050 0.198886 7.4161 

Log 

Normal(0,1) 

0.250000 0.250000 4.7487  0.063900 0.339714 0.198832 6.8124 
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Table 8:  Optimal weights and RE of wMBRSS vs SRS for estimating mean of 

asymmetric population for m = 6  

 

Distribution 

       m=6      

11w  21w  11w
     21w  RE 

Exponentia(1) 0.500000 0.500000 0.000000 0.000000 8.0000 

Weibull(2,1) 0.500006 0.499994 0.000000 0.000000 8.7465 

Gamma(2,3) 0.500000 0.500000 0.000000 0.000000 8.3468 

Chi square(1) 0.500000 0.481383 0.259308 0.000000 8.0434 

Log 

Normal(0,1) 

0.500000 0.430505 0.000000 0.284747 8.8792 

Table 9:  Optimal weights and RE of wTBRSS vs SRS for estimating mean of 

asymmetric population for m = 4,5  

 

Distribution 

m=4         m=5    

1w  4w
 

RE 
1w  3w

 5w
 

RE 

Exponentia(1) 0.295451 0.204542 1.6147  0.107040 0.558210 0.113854 2.7111 

Weibull(2,1) 0.265641 0.234345 2.1205  0.093912 0.611774 0.100233 2.8000 

Gamma(2,3) 0.282100 0.217927 1.7790  0.101222 0.579425 0.109165 2.4456 

Chi square(1) 0.312914 0.187140 1.4266  0.114632 0.536312 0.117324 1.8378 

Log 

Normal(0,1) 

0.377238 0.122800 1.5536  0.137000 0.514632 0.105653 1.7567 

Table 10:  Optimal weights and RE of wTBRSS vs SRS for estimating mean of 

asymmetric population for m = 6  

 

Distribution 

       m=6      

1w  3w  4w  
    6w  RE 

Exponentia(1) 0.000000 0.000000 0.966712 0.016667 3.5326 

Weibull(2,1) 0.048940 0.000000 0.912116 0.000000 3.6948 

Gamma(2,3) 0.011433 0.000000 0.977144 0.000000 3.9280 

Chi square(1) 0.000000 0.000000 0.913191 0.000000 2.7896 

Log Normal(0,1) 0.000000 0.000000 0.913190 0.043412 2.5766 

6.   Simulation study 

In this section, effectiveness of the proposed MBRSS scheme relative to the traditional 

SRS scheme is ascertained in the presence of outlier for m equal to 4,5,6 and 7 with 

1k =1,2 .The idea is to replace minimum value of the first sample in one of the two data 

sets 1k  and 2k  with an outlier and ascertain its effects on the performance of the 

considered estimators. This is done by setting (1) 1X = Q + 5*IQR , where 1Q  is first 
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quartile and IQR is the interquartile range. For 1k =1 , minimum value in the first sample 

of second data set 2k  is replaced with (1)X . For 1 = 2k , the minimum value in first 

sample of the first data set 1k  is replaced with (1)X .The simulation study is carried out 

for different symmetric and asymmetric distributions such as normal(0,1), logistic(0,1), 

uniform(0,1),  beta(3,3), exponential(1), weibull(2,1), gamma(2,3) and student t(5). The 

performance of the estimators is investigated by comparing simulated mean square 

error(MSE) as a criteria of robustness of the mean and median estimators. The MSE 

based on 40,000 simulation is defined as:  

40,000
2

h h,i
i=1

1
MSE(μ ) = (μ - μ) h = SRS,MBRSS

40,000
ˆ ˆ  

 

The estimated REs of MBRSS vs SRS based on MSEs for estimating mean and median 

of considered distributions are depicted in Figures1- 2. The Figure1 indicates that the RE 

of MBRSS vs SRS, for estimating mean, is increasing with increase in m except some 

skewed distributions such as exponential(1) and gamma(2,3) wherein RE decreases as m

increases when one unit ( 1k =1 ) is chosen by SRS and remaining by MRSS. For the 

choice 1k = 2  i.e. two units are selected by RSS and remaining by MRSS, RE increases 

when m gets large under all considered distributions. However, it is observed that 

maximum gain in efficiency is obtained when one unit of a sample is taken by SRS i.e. 
1k =1  and remaining 2 1(k = m - k )  units by MRSS scheme.The Figure.2 also indicates 

that MBRSS is superior to the traditional SRS for estimating median of a population even 

in the presence of outliers. The choice 1k =1  also remains optimum in case of median 

estimation. 

 

 

 
 

Figure 1:   REs of mean estimators based on MBRSS vs SRS  

in presence of outliers for symmetric and asymmetric distribution 
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Figure 2:   REs of median estimators based on MBRSS vs SRS in presence of 

outliers for symmetric and asymmetric distributions 

7.   Ranking with concomitant variable 

In many practical problems the variable of interest, X, is hard to measure and difficult to 

rank as well but a concomitant variable, Y, correlated with, X, can easily be measured. 

Then the concomitant variable can be used for the ranking of the sampling units. For 

instance, the assessment of the status of hazard waste sites is usually costly. But, often, a 

great deal of knowledge about hazard waste sites can be obtained from records, photos 

etc. and then be used to rank the hazard waste sites. In this section, we follow Stokes 

(1977) idea in which ranking is performed using concomitant variable,say Y , that can be 

measured easily. Stokes (1977) proposed the following model with the assumptions (1)  

the regression of X  on Y  is linear (2)  the underlying distributions of standardized 

variables Y

Y





Y
 and X

X





X
 are same. 

X
i[i:m]j X i(i:m)j Y ij

Y

σ
X = μ + ρ (Y - μ ) + ε ,i =1,2,. . .,m; j =1,2,. . ., r

σ
    (27) 

 

Here, i(i:m)Y  and   are independent and   has mean zero and variance 2 2 2
ε Xσ = σ (1-ρ ) . 

And i[i:m]jX  is the ith  smallest value of X  corresponding to ith smallest value of Y  i.e. 

i(i:m)Y  in jth  replication  

7.1  Estimation under imperfect ranking 

In this section, we estimate population mean and median under the situation when 

ranking is performed on the concomitant variable Y to rank the study variable X using 

model given by the Eq(27) . Suppose (X,Y)  follow bivariate normal distribution. Then, 
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MBRSSe estimator of population mean using concomitant variable Y  i.e. MBRSSCeX  is 

defined as 
1 2 2

2 2 2 2

2

k k /2 kr r r

MBRSSCe i[i:k ]j i[k /2:k ]j i[(k +2)/2:k ]j1
j=1i=1 j=1 i=1 j=1i=(k /2)+1

1
X = ( X + X + X )

mr
    

  
(28) 

 

It is easy to show that MBRSSCeX  is unbiased estimator of Xμ  and its variance is given by  

1

1 2 2

2 k
X2 2 2 2 2

MBRSSCe X Y(i:k ) 2 Y(k /2:k )2 2
i=1Y

1 σ
Var(X ) = mσ (1- ρ ) + ρ ( σ + k σ )

m r σ

 
 

    

(29) 

 

Similarly, the estimator MBRSSCoX  is defined as  

1 2

1 2 2

k kr r

MBRSSCo i[i:k ]j i[(k +1)/2:k ]j
j=1i=1 j=1i=1

1
X = ( X + X )

mr
        (30) 

 

It is also easy to show that MBRSSCoX  is unbiased estimator of Xμ  and its variance is given 

by  

1

21 2 2

2 k
X2 2 2 2 2

MBRSSCo X Y(i:k ) Y((k +1)/2:k )2 2
i=1Y

1 σ
Var(X ) = mσ (1- ρ ) + ρ ( σ + k σ )

m r σ

 
 

    

(31) 

 

The estimator TBRSSCX  is defined as  

r k r m-k r m

TBRSSC i[1:m]j i[i:m]j i[m:m]j
j=1i=1 j=1i=k+1 j=1i=(m-k+1

1
X = ( X + X + X )

mr
    

   
(32) 

and its variance is given by  
2

m-k
X2 2 2 2 2

TBRSSC X Y(1:m) Y(i:m)2 2
i=k+1Y

1 σ
Var(X ) = mσ (1- ρ ) + ρ (2kσ + σ )

m r σ

 
 

    (33)

 

 

Lemma-2: The estimator MBRSSCX  is more efficient than SRSX  i.e.   

MBRSSC SRSVar(X ) Var(X )  

 

Proof: From Eq(29) , we have      

  

1

21 2 2

1

21 2 2

2 k
X2 2 2 2 2

MBRSSCe X Y(i:k ) Y(k /2:k )2 2
i=1Y

2 k
X2 2 2 2 2 2

X 1 Y Y(i:k ) Y Y(k /2:k )2 2
i=1Y

1 σ
Var(X )  = mσ (1- ρ ) + ρ ( σ + k σ )

m r σ

1 σ
                         = mσ (1- ρ ) + ρ (k σ - (μ - μ ) + k σ )

m r σ

                         

 
 

 
 

 
 

1

1 21

1

1

1

2 k
X2 2 2 2 2 2 2 2

X Y Y(i:k ) Y Y T(j:m) T2 2
i=1Y

2 k
X2 2 2 2 2

X Y Y(i:k ) Y2 2
i=1Y

2 2 k
X X2

MBRSSCe 2 2
i=1Y

1 σ
mσ (1- ρ ) + ρ (k σ - (μ - μ ) + k σ )  σ σ

m r σ

1 σ
                         mσ (1- ρ ) + ρ (mσ - (μ - μ ) )

m r σ

σ σ
Var(X ) - ρ (μ

mr m rσ

 
  

 
 

  
 

 

Q

1

2
Y(i:k ) Y- μ )       

 

 

Note that the second term on right hand side is non negative. Hence, 

MBRSSCe SRSVar(X ) Var(X )  
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Now, from Eq(31) , we have  

 

1

1 2 2

1

1 21 2 2

2 k
X2 2 2 2 2

MBRSSCo X Y(i:k ) 2 Y((k +1)/2:k )2 2
i=1Y

2 k
X2 2 2 2 2 2

X Y Y(i:k ) Y Y((k +1)/2:k )2 2
i=1Y

1 σ
Var(X )  = mσ (1- ρ ) + ρ ( σ + k σ )

m r σ

1 σ
                         = mσ (1- ρ ) + ρ (k σ - (μ - μ ) + k σ )

m r σ

                 

 
 

 
 

 
 

1

1 1

1

1

2 k
X2 2 2 2 2 2 2 2

X Y Y(i:k ) Y 2 Y T(j:m) T2 2
i=1Y

2 k
X2 2 2 2 2

X Y Y(i:k ) Y2 2
i=1Y

2 2 k
X X2

MBRSSCo 2 2
i=1Y

1 σ
       mσ (1- ρ ) + ρ (k σ - (μ - μ ) + k σ ) σ σ

m r σ

1 σ
                        mσ (1- ρ ) + ρ (mσ - (μ - μ ) )

m r σ

σ σ
Var(X ) - ρ

mr m rσ

 
  

 
 

  
 



Q

1

1

2
Y(i:k ) Y(μ - μ )

 

 

Here, we also note that the second term on right hand side is non negative. This 

completes the proof. The REs of MBRSSCX  and TBRSSCX  with respect to SRSX  are given by 

SRS
J SRS

J

Var(X )
RE(X ,X ) = ;J = MBRSSC,TBRSSC

Var(X )
 

        (34) 

 

The performance of MBRSSC and TBRSSC for estimating population mean and median 

are investigated when the study variable X  and auxiliary variable Y  follow standard 

bivariate normal distribution with pdf as given by  

2 2

22

1 (x - 2ρxy + y )
f(x, y) = exp - , - < x, y <

2(1- ρ )2π 1- ρ

 
  

 
 

 

The simulated REs of mean and median estimators for m = 4,5,6,7  with different values 

of correlation coefficient ρ = ±0.20,±0.40,±0.60,±0.80,±0.90  are calculated using Eq(34) 

after 44×10  replication and reported in Tables 11-16. As expected, the performance of 

the mean and median estimators depend on value of correlation coefficient. The 

estimators become more precise as correlation increases and vice-versa. The MBRSSC is 

less efficient than TBRSSC for estimating population mean. But this loss is not so large 

as we can see from Table11-16. For example, if m = 5  the RE of MBRSSC for estimating 

mean is 1.2255 for 1k =1 , ρ = ±0.60 . While, it is 1.5236 under TBRSSC for .k = 2  
However, MBRSSC performs better than TBRSSC in estimating population median for

1k =1, m 6 and ρ 0.80  . For instance, the RE of MBRSSC for estimating population 

median is 2.1023 for 1k =1,m = 6 and ρ = ±0.90 . While, it is 1.6641 under TBRSSC. 

Therefore, it is concluded that MBRSSC conditionally dominates the efficiency of 

TBRSSC for estimating population median but slightly less efficienct than TBRSSC for 

estimating population mean under imperfect rankings. But this loss in efficiency 

decreases as sample size increases. 
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Table 11:  RE of MBRSSC vs SRS for estimating mean for standard bivariate 

normal distribution for m = 4,5  

    m=4    m=5   

MRSS MBRSS MBRSS MRSS MBRSS MBRSS 

Correlation 

Coefficient
 

1

2

k = 0
k = 4

 1

2

k = 1
k = 3

 1

2

k = 2
k = 2

 
 

1

2

k = 0
k = 5

 1

2

k = 1
k = 4

 1

2

k = 2
k = 3

 

ρ = ±0.20  1.0306 1.0292 1.0186  1.0210 1.0217 1.0127 

ρ = ±0.40  1.1043 1.0787 1.0625  1.1240 1.0906 1.0650 

ρ = ±0.60  1.2847 1.1735 1.1320 1.3585 1.2255 1.2000 

ρ = ±0.80  1.6812 1.3498 1.2863  1.8471 1.5198 1.4330 

ρ = ±0.90  2.0609 1.5170 1.3704 2.3796 1.7384 1.5765 

Table 12:  RE of MBRSSC vs SRS for estimating mean for standard bivariate 

normal distribution for m = 6,7  

   m=6        m=7    

MRSS MBRSS MBRSS MBRSS MRSS MBRSS MBRSS MBRSS 

Correlation 

Coefficient 
1

2

k = 0
k = 6

 1

2

k = 1
k = 5

 1

2

k = 2
k = 4

 1

2

k = 3
k = 3

 
 

1

2

k = 0
k = 7

 1

2

k = 1
k = 6

 1

2

k = 2
k = 5

 1

2

k = 3
k = 4

 

ρ = ±0.20  1.0186 1.0272 1.0235 1.0054  1.0267 1.0261 1.0213 1.0494 

ρ = ±0.40  1.3353 1.1093 1.1083 1.0728  1.1641 1.1021 1.1096 1.1170 

ρ = ±0.60  1.3702 1.2837 1.2462 1.2391  1.3861 1.3222 1.2780 1.2633 

ρ = ±0.80  1.9310 1.6145 1.5071 1.5153  2.0280 1.7028 1.6233 1.5641 

ρ = ±0.90  2.6000 1.9341 1.7790 1.7097  2.8000 2.1170 1.9571 1.8583 

Table 13:  RE of MBRSSC vs SRS for estimating median for standard bivariate 

normal distribution for m = 4,5  

    m=4    m=5   

MRSS MBRSS MBRSS MRSS MBRSS MBRSS 

Correlation 

Coefficient
 

1

2

k = 0
k = 4

 1

2

k = 1
k = 3

 1

2

k = 2
k = 2

 
 

1

2

k = 0
k = 5

 1

2

k = 1
k = 4

 1

2

k = 2
k = 3

 

ρ = ±0.20  1.0271 1.0168 1.0242  1.0230 1.0240 1.0096 

ρ = ±0.40  1.1011 1.0683 1.0525  1.1345 1.0751 1.0898 

ρ = ±0.60  1.3000 1.1806 1.1046 1.3498 1.1915 1.1617 

ρ = ±0.80  1.6305 1.3902 1.2263  1.8727 1.3869 1.3849 

ρ = ±0.90  2.0027 1.5870 1.3000 2.3769 1.5861 1.5850 

Table 14:  RE of MBRSSC vs SRS for estimating median for standard bivariate 

normal distribution for m = 6,7  
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   m=6        m=7    

MRSS MBRSS MBRSS MBRSS MRSS MBRSS MBRSS MBRSS 

Correlation 

Coefficient 

1

2

k = 0
k = 6

 1

2

k = 1
k = 5

 1

2

k = 2
k = 4

 1

2

k = 3
k = 3

 
 

1

2

k = 0
k = 7

 1

2

k = 1
k = 6

 1

2

k = 2
k = 5

 1

2

k = 3
k = 4

 

ρ = ±0.20  1.0188 1.0006 1.0270 1.0180  1.0244 1.0228 1.0401 1.0221 

ρ = ±0.40  1.1438 1.1076 1.0911 1.0989  1.1309 1.1079 1.0969 1.0658 

ρ = ±0.60  1.3824 1.2598 1.2040 1.2001  1.3948 1.3205 1.2529 1.2183 

ρ = ±0.80  1.9478 1.6564 1.5000 1.4258  2.0355 1.7321 1.6287 1.4844 

ρ = ±0.90  2.5325 2.1023 1.7474 1.6594  2.8433 2.2178 2.0468 1.7106 

Table 15:  RE of TBRSSC vs SRS for estimating mean for standard bivariate 

normal distribution 

 

Correlation 

Coefficient 

m=4    m=5   m=6     m=7   

RSS 

k = 0,1  

RSS 

k = 0,1  

TBRSS 

k = 2  

RSS 

k = 0,1  

TBRSS 

k = 2  

RSS 

k = 0,1  

TBRSS 

k = 2  

TBRSS 

k = 3  

ρ = ±0.20  1.0177  1.0300 1.0234  1.0450 1.0384  1.0651 1.0455 1.0411 

ρ = ±0.40  1.2000  1.2094 1.1724  1.1955 1.1900  1.2100 1.1747 1.0995 

ρ = ±0.60  1.4036  1.6017 1.5236  1.6219 1.5122  1.6688 1.6472 1.5011 

ρ = ±0.80  1.5524  1.6601 1.5811  1.6871 1.6011  1.6984 1.6555 1.4773 

ρ = ±0.90  1.8866  2.0466 1.8821  2.2434 2.1014  2.4029 2.2663 2.1052 

Table 16: RE of TBRSSC vs SRS for estimating median for standard bivariate 

normal distribution. 

 

Correlation 

Coefficient 

m=4    m=5   m=6     m=7   

RSS 

k = 0,1  

RSS 

k = 0,1  

TBRSS 

k = 2  

RSS 

k = 0,1  

TBRSS 

k = 2  

RSS 

k = 0,1  

TBRSS 

k = 2  

TBRSS 

k = 3  

ρ = ±0.20  1.0090  1.0160 1.0127  1.0310 1.0215  1.0338 1.0250 1.0140 

ρ = ±0.40  1.1002  1.1048 1.0788  1.1151 1.0956  1.1500 1.0806 1.0165 

ρ = ±0.60  1.3024  1.3225 1.2500  1.4391 1.4030  1.4437 1.1229 1.0151 

ρ = ±0.80  1.5229  1.6099 1.5339  1.9856 1.6079  1.8751 1.2422 1.0241 

ρ = ±0.90  1.5620  1.6355 1.5355  2.0062 1.6641  1.9529 1.5627 1.0801 
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8.    Illustration with real data 

In this section we use a real data set to illustrate the efficiency of the proposed MBRSS 

and TBRSS schemes with respect to SRS in estimating mean and median height of 399 

conifer trees.The data based on two variables: X, the diameter in centimeters at breast 

height, and Y,  the entire height in feet, for more detail see Platt et al. (1988). The 

summary statistics of the two variables are given by 

399 3992 2
i=1 i=1X i X i X X X

399 3992 2
i=1 i=1Y i Y i Y Y Y

1 1
μ = X = 21.09,  σ = (x - μ ) = 329.785,  Med =14.5,  Skewness =1.05

399 399

1 1
μ = Y = 52.34,  σ = (y - μ ) = 3262.6944, Med = 29,  Skewness =1.63

399 399

ρ = 0.876

 

 

 
 

Since both variables have non zero skewness so data is asymmetrically distributed. REs 

of mean and median estimators based on MBRSS and TBRSS with respect to SRS are 

reported in Tables17-18 respectively. It is evident from the Table17 that under both 

perfect and imperfect rankings, the mean and median estimators based on MBRSS 

scheme gives efficient estimates as compare to its counterparts based on SRS for all 

values of 1k  and 2k . There is decay in RE under imperfect rankings, as expected, due to 

error in rankings. Further, the efficiency of MBRSS has, generally, increasing trend for 

m 6  as 1k  gets large in estimating population mean. Consequently, for m 6, MBRSS 

becomes superior to MRSS in estimating mean of the population under study. For 

example, RE of MRSS in estimating mean for m = 6  under perfect ranking is 1.5700. 

while, corresponding RE of MBRSS at 1k = 2,3  are 1.6938 and 1.7441 respectively. On 

the other hand, RE of TBRSS for estimating population mean is also increases as m  gets 

large. It is worth mentioning that at m = 5,  MBRSS becomes superior to TBRSS for 

estimating population mean. For m 6,  the efficiency of MBRSS at 1k = 3  is 

approximately equal to that of the TBRSS for k = 2.  As regards population median 

estimation, MBRSS outperforms relative to TBRSS under both perfect and imperfect 

rankings. For example, for m = 5, 1k =1 , RE of median estimator based on MBRSS, 

under perfect rankings, is 3.1439. While, it is 1.8724 in case of TBRSS. From above 

discussion, it can be concluded that MBRSS is superior alternative to SRS. It also works 

well in estimating population median as compare to TBRSS. 
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Table 17:  RE of MBRSS vs SRS for estimating  mean and median height of 399 

trees ( X ) under perfect and imperfect rankings 

   

  m 

 

Ranking 

 RE(Mean)    RE(Median)  

MRSS MBRSS MBRSS MBRSS MRSS MBRSS MBRSS MBRSS 

 1 24 k ,k
No. of  units

 
 4(0,4) 

16 

4(1,3) 

10 

4(2,2) 

08 

- 

- 

 4(0,4) 

16 

4(1,3) 

10 

4(2,2) 

08 

- 

- 

 Perfect 1.9523 1.5553 1.3358 -  4.0446 2.4482 1.3706 - 

 Imperfect 1.7664 1.4226 1.2982 -  3.1509 2.1145 1.3398 - 

 1 25 k ,k
No. of  units

 
 5(0,5) 

25 

5(1,4) 

17 

5(2,3) 

13 

- 

- 

 5(0,5) 

25 

5(1,4) 

17 

5(2,3) 

13 

- 

- 

 Perfect 1.6596 1.6590 1.5881 -  6.9171 3.1439 2.5826 - 

 Imperfect 1.6243 1.5098 1.4830 -  5.6760 2.6035 2.2305 - 

 1 26 k ,k
No. of  units

 
 6(0,6) 

36 

6(1,5) 

26 

6(2,4) 

20 

6(3,3) 

18 

 6(0,6) 

36 

6(1,5) 

26 

6(2,4) 

20 

6(3,3) 

18 

 Perfect 1.5700 1.4934 1.6938 1.7441  8.6656 5.1936 3.1136 2.6145 

 Imperfect 1.5525 1.4700 1.6000 1.5824  6.5462 4.3034 2.7552 2.2795 

 1 27 k ,k
No. of  units

 
 7(0,7) 

49 

7(1,6) 

37 

7(2,5) 

29 

7(3,4) 

25 

 7(0,7) 

49 

7(1,6) 

37 

7(2,5) 

29 

7(3,4) 

25 

 Perfect 1.3218 1.4591 1.5331 1.8000  12.0188 6.4967 4.9392 3.2164 

 Imperfect 1.3073 1.4492 1.5185 1.6417  8.8305 5.3000 4.1033 2.7825 

Table 18:  RE of TBRSSC vs SRS for estimating  mean and median  height of 399 

trees ( X ) under perfect and imperfect rankings 

   

 m 

 

Ranking 

 RE(Mean)   RE(Median) 

RSS TBRSS TBRSS RSS TBRSS TBRSS 

 4 k
No. of  units

 
 4(0,1) 

16 

- 

- 

- 

- 

 4(0,1) 

16 

- 

- 

- 

- 

 Perfect 1.9222 - -  2.4275 - - 

 Imperfect 1.8011 - -  1.9590 - - 

 5 k
No. of  units

 
 5(0,1) 

25 

5(2) 

25 

- 

- 

 5(0,1) 

25 

5(2) 

25 

- 

- 

 Perfect 2.2975 1.4217 -  3.3216 1.8724 - 

 Imperfect 1.9872 1.4000 -  2.6004 1.6387 - 

 6 k
No. of  units

 
 6(0,1) 

36 

6(2) 

36 

- 

- 

 6(0,1) 

36 

6(2) 

36 

- 

- 

 Perfect 2.6083 1.6459 -  3.6886 2.4811 - 

 Imperfect 2.1280 1.6404 -  3.0695 2.0631 - 

 7 k
No. of  units

 
 7(0,1) 

49 

7(2) 

49 

7(3) 

49 

 7(0,1) 

49 

7(2) 

49 

7(3) 

49 

 Perfect 2.9367 1.9298 1.0172  4.3411 3.3419 1.5022 

 Imperfect 2.2985 1.8594 1.0078  3.5451 2.8232 1.3436 
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9.   Concluding remarks 

In this paper, we suggested MBRSS scheme for estimating population mean and median. 

The population mean estimator based on MBRSS is unbiased subject to underlying 

distribution is symmetric. For asymmetric distributions, a weighted mean estimator based 

on MBRSS showed a significant improvement in its efficiency relative to SRS. Monte 

Carlo simulation results depicted in Figures.1 and 2 advocate the robustness of the 

proposed MBRSS relative to SRS for estimating population mean and median in the 

presence of outliers.The MBRSS performs well in estimating population median instead 

of TBRSS under the situation of both perfect and imperfect ranking i.e error in rankings. 

But the proposed MBRSS is, generally, less efficient than TBRSS for estiamting mean of 

symmetric population, but this loss in efficiency will decrease as sample size is increased. 

Using MBRSS will cut down number of sampling units to be identified to approximately 

2/3 to 1/2 of what is needed in TBRSS for selection of required units. Therefore, under 

the situation when there is less budget to conduct survey or lack of large number of 

sampling units, it is recommended to use MBRSS scheme being economical and efficient 

alternative to SRS in estimating population mean and median. 
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