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Abstract

In this paper, we propose a double robust truncation based ranked set sampling (DRTBRSS) for estimating
population mean and median. It provides unbiased estimator of population mean under symmetric
population and its efficiency dominates the efficiency of conventional estimators based on ranked set
sampling (RSS), truncation based rank set sampling (TBRSS) and simple random sampling (SRS). Monte
Carlo simulation, based on perfect ranking and ranking based on auxiliary variable, is used under
symmetric and asymmetric distributions to evaluate effectiveness of the proposed sampling method.
Further, a real data set is used to illustrate the proposed sampling design.
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Keywords: Simple random sample, Ranked set sampling, Truncation based ranked set
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1. Introduction

Rank set sampling (RSS) was suggested by Mcintyre (1952) for estimating mean pasture
and forage yield. Thereafter, many modifications were made in the basic RSS to make it
more efficient. For instance, Al-Saleh and Al-Kadiri (2000) suggested double ranked set
sampling design for estimating population mean. Samawi et al. (1996) suggested extreme
ranked set sampling (ERSS). Al-Omari (2011) introduced double robust extreme ranked
set sampling (DRERSS) for efficient estimation of population mean, Al-Nasser (2007)
proposed L-ranked set sampling (LRSS) for estimating population mean, Al-Omari and
Ragab (2013) introduced truncation based rank set sampling (TBRSS) for estimating
population mean and median. Dell and Clutter (1972) showed that even in case of
ranking errors, mean estimator based on RSS sampling is at least efficient than its
conventional estimator based on SRS. Stokes (1977) presented a simple linear model and
showed that an auxiliary variable can be used to rank the study variable. Zamanzade and
Al-Omari (2016) introduced neoteric ranked set sampling (NRSS) and compared its
efficiency with ordinary RSS and SRS.

In this paper, we proposed a double robust truncation based ranked set sampling
(DRTBRSS) for estimating population mean and median. The proposed sampling design
provides efficient estimators of population mean and median than conventional
estimators based on SRS, RSS and TBRSS. The rest of the paper is organized as follows:
In Section 2, RSS, TBRSS, DRSS and the proposed DRTBRSS are described. Estimation
of population mean is included in Section 3. Median estimation is considered in Section
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4. DRTBRSS with auxiliary variable is studied in Section 5. Illustration of proposed
DRTBRSS with a real data set is explained in Section 6. Finally, concluding remarks are
given Section 7.

2. Sampling Methods
In this Section we describe the RSS, TBRSS, DRSS and DRTBRSS methods.

2.1 Rank Set Sampling (RSS)

RSS can be described as: For selection of m units, identify m? units from target
population and arrange them into msamples each of size m and rank the units within
each sample with respect to variable of interest by any cost free method. From the ith
(i=1,2,3,...,m) sample, select the ith smallest ranked unit for actual measurement. The

whole procedure can be repeated r times, if needed, to get a RSS sample of size mr.

2.2 Truncation Based Ranked Set Sampling (TBRSS)

TBRSS can be described as: draw m simple random samples each of size m from target
population and rank the units within each sample with respect to variable of interest by
any cost free method. Define a coefficient k = [a m] where 0<a<0.5 and [t] is the

largest integer less than equal to t. From first k samples , select the smallest rank unit and
from the last k samples select the largest rank units and from the remaining (m-2Kk)

samples, select the ith unit of the ith (i=k+1,k+2,...,m-k) sample.

2.3 Double ranked set sampling (DRSS)

The DRSS can be described as: Identify m® units from the target population and divide

these units into m sets each of size m? units. Apply RSS procedure on each set to obtain
m ranked set samples each of size m. Apply again RSS procedure on m ranked set
samples each of size m to obtain a DRSS of size m.

2.4 The Proposed Sampling Design
The DRTBRSS is delineated as follows:

Step-1: Identify m* units from the target population and partition them into m sets each
of size m? units.

Step-2: Define a coefficient k = [a m] where 0<a<0.5 and [t] is the largest integer
less than equal to t.

Step-3: From first k samples of ith set, select the kth smallest ranked units and from
the last k samples of ith set, select the (m-k+1)th smallest ranked units. From
the remaining (m-2k) samples of ith (i=1,2,3,...,m) set, select the jth
(=k+1,k+2,...,m-k) sample. This step finally yields m samples each of size
m.

Step-4: From m samples each of size m obtained in step-3 above, select from first k
samples the kth smallest ranked units and from the last k samples the
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(m-k+1)th smallest ranked units. From the remaining (m-2k) samples,
select the jth unit of the jth (j=k+1,k+2,...,m-Kk) sample to get a
DRTBRSS of size m.

This completes one cycle for selection of a sample of size m units under DRTBRSS. The
above stepsl-4 can be repeated r times, if needed, to obtain a sample of size mr units. It
may be noted that the above proposed sampling design is called robust in the sense that it
also works better than ordinary TBRSS when underlying population is skewed.

Example 1. Suppose m=5 and k=1,2. In this case we need m®=125 units and layout
these units in m=5 sets each of size m? = 25. Let X', denotes jth ranked unit of the ith

sample of size m in Ith set. Then, after ranking the units with respect to variable of
interest by any cost free method, we have

X 11(1:5) Xlz(rs) Xl3(].'5) Xl4(x5) X15(1:5) W X 21(x5) X? 2(1:5) X? 3(1:5) X? 4(1:5) X? 5(1:5)
X 11(2:5) X l2(2:5) X l3(2:5) X14(2:5) X 15(2:5) X 21(2:5) X? 2(2:5) X? 3(25) X? 4(25) X? 5(2:5)
X 11(3:5) X 12(3:5) X13(3:5) X 14(3:5) X 15(3:5) X 21(3:5) X? 2(35) X? 3(35) X? 4(35) X?
X 11(4:5) X l2(4:5) X l3(4:5) X14(4:5) X 15(4:5) X 21(4:5) X? 2(4:5) X? 3(45) X? 4(4:5) X 5(4:5)

Xl1(5:5) Xl2(5:5) Xl3(5:5) X14(5:5) xl5(5:5) j _X 21(5:5) X? 2(55) X 23(5:5) X 24(5:5) X 25(5:5) ]

5(35)
2

X 31(15) X? 2(15) X 33(1:5) X 34(35) X 35(1:5) X 41(35) X* 2(15) X 43(35) X4 4(1:5) X 45(1:5) W
X 31(2:5) X 32(2:5) X 33(2:5) X 34(2:5) X 35(2:5) X 41(2:5) X 42(2;5) X 43(2:5) X 44(2:5) X 45(2:5)
X 31(3:5) X3 2(35) X 33(3:5) X 34(3:5) X 35(3:5) X 41(3:5) X! 2(35) X 43(3:5) X 44(3:5) X 45(3:5)
X 31(4:5) X 32(4:5) X 33(4:5) X 34(4:5) X 35(4:5) X 41(4:5) X 42(4:5) X 43(4:5) X 44(4:5) X 45(4:5)
X 31(5:5) X32(5:5) X 33(5:5) X 34(5:5) X 35(5:5) ) _X 41(5:5) X! 2(5:5) X 43(5:5) X 44(5:5) X 45(5:5) j

and

X 51(r5) X® 2(15) X 53(r5) X 54(r5) X 55(r5)

X 51(2:5) X 52(2:5) X 53(2:5) X 54(2:5) X 55(2:5)
X 51(3:5) X® 2(35) X 53(3:5) X?® 4(35) X?® 5(3:5)
X 51(4:5) X 52(4:5) X 53(4:5) X 54(4:5) X 55(4:5)
L X 51(5:5) X?® 2(55) X 53(5:5) X?® 4(55) X 55(5:5) |

Case 1: For k=1

From first k=1 sample of ith set, select kth smallest ranked unit and from last k=1 sample
of ith set, select (m-k+1)th smallest ranked units. From the remaining m-2k =3

samples of ith (i=1,2,3,...,5) set, select jth smallest unit of jth (j=2,3,4) sample.
Then, we have following 5 samples each of size m=5.

— 1 1 1 1 1 — 2 2 2 2 2

S1 - {X 1(L5) X 2(2:5)1 X 3(35)1 X 4(4:5) X 5(5:5) } ’ SZ - {X 1(15) X 2(2:5)’X 3(3:5) 1 X 4(4:5)1 X 5(5:5)}
— 3 3 3 3 3 — 4 4 4 4 4

83 - {X 1(15) X 2(2:5) 1 X 3(35) X 4(4:5) X 5(5:5) } ’ S4 - {X 1(15) 1 X 2(25)1 X 3(35) ! X 4(4:5) 1 X 5(5:5)}

— {5 5 5 5 5
Sg = {X 1(1:5)'X 2(2:5)vX 3(3:5)vX 4(4:5)1X 5(5:5)}
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Let Y, be the kth smallest unit of S;, Y, be the (k+1)th smallest unit of S,, Y, be the
(k+2)th smallest unit of S;, Y, be the (m-k)th smallest unit of S,and Y. be the
(m-k+1)th smallest unit of Sgthen{Y,,Y,,Y;,Y,,Ys}, whereY;is actually ith smallest
ranked unit of S; (i=1,2,3,...,5), is DRTBRSS of size 5.

Case 2: For k=2

From first k=2 samples of ith set, select kth smallest ranked unit and from last k=2
samples of ith set, select (m-k+21)th smallest ranked units. From the remaining

m -2k =1samples of ith (i =1,2,3,...,5) set, select jth smallest unit of jth (j = 3)sample.
Then, we have following 5 samples each of size m=5.

— [yl 1 1 1 1 — 2 2 2 2 2
S = {X 1(2:5)nX 2(2:5)1X 3(3:5)7X 4(4:5)ax 5(4:5)}782 = {X 1(2:5)7X 2(2:5),X 3(3:5)ax 4(4:5)1X 5(4:5)}
—fy3 3 3 3 3 —f\a 4 4 4 4
S; = {X 1(2:5)yx 2(2:5)’X 3(3:5)’X 4(4:5)ax 5(4:5)}as4 - {X 1(2:5)ax 2(2:5)yx 3(3:5)'X 4(4:5)aX 5(4:5)}
— {5 5 5 5 5
Sg = {X 1(2:5):X 2(2:5)’X 3(3:5):X 4(4:5)’X 5(4:5)}

Let Y, be the kth smallest unit of S;, Y, be the kth smallest unit of S,, Y, be the
(k+1)th smallest unit of S;, Y, be the (m-k+1)th smallest unit of S, and Y, be the
(m-k+1th smallest unit of S then {VY,,Y,,Y3,Y,,Ys}, where Y;,Y, are actually
second smallest ranked units of S; (i=1,2), Y; is third smallest ranked unit of S; and
Y,,Ys are fourth smallest ranked units of S; (j=4,5), is DRTBRSS of size 5.

3. Estimation of population mean

Let the variable of interest X has probability density function (pdf) f(x) and cumulative

distribution function F(x) with mean p and variance o®. Let X,,X,,X,,....,X,, be a SRS
of size mfrom f(x). The SRS estimator of population meanp if sampling is repeated r

times, is defined as Xgs=1¥1,31mX; with its variance cs;SRS:i. Let
Xip, Xign Xigreo 0 Xiy - ((=1,2,3,...,m) denote m SRS each of size m. Suppose,
Xiamy Ximy - Ximmy ~ denote  order  statistics of the ith  sample.Then,

Xamy 1 Xa@my -+ Xmemmy 1S Called RSS of size m.

Let g4m(X) be pdf of ith order statistic i.e. X, (i=1,2,3,...,m), then it can be shown
that:

9m (X) = m(r?llj (F())"™(1- F(x)) ™ f(x) -0 < x < 0 1)
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The mean and variance of X, respectively are given by
Rimy = JoX8 (im) (x)dx
and  Ghm = (X~ Km )€ em (X)X
(i:m) -0 “(l:m) g(l:m)

for detail see David and Nagaraja (2003). The RSS estimator of population mean, say
is defined as

XRSS - ZZXI(I m)j (2)
mr j=ti=
and its variance is glven by
('5
Var(X rss) = Z O (im) = = Z(M(. m) " Hy)? (3)
mr m2ris

3.1 Estimation of population mean using TBRSS

Let X, X, Xis,.... X;,, be the ith (i=1,2,3,...,m) SRS of size m, then the TBRSS
estimator of population mean pand its variance are defined as
The TBRSS estimator of population mean is given by
XTBRSS - _(Xile(lm)j + Z Z X|(| ‘m)j + Zl Z}( 1X|(m m)J) (4)
j=1i j=li=m-k+

with its variance

— 1 m-k
Var(XTBRSS) = _2{k(0(2]_'m) + G(zm:m))+_ Z G(Zi:m)} (5)
mr i=k+1

3.2 Estimation of population mean using DRTBRSS

Let X.1(k:m)’X.Z(k:m)""’x.k(k:m)' x.(k+1)((k+1):m)"'"x.(m-k)(m-k:m)’ X.(m-k+l)((m-k+1):m)""’
X mmkszm 0€ @ DRTBRSS of size m. The DRTBRSS estimator of population mean p is
defined as

>_<DRTBRSS (lex i(k:m)j + Z Z X i(i:m)j + Z::L Z%( 1X i(m- k+]_m)j) (6)
j=1i j=li=m-k+:
with variance
< 1 . . mk
Var(X prrarss) = mer k(G(Zk:m) +G(2m-k+].'m)) + __%F(zi:m) (7)

Remarks 1: It may be noted that the DRTBRSS estimator given by Eq(6) reduces to the
mean estimator based on DRSS for k = 0,1, which shows that DRSS is a special case of

DRTBRSS.

If the wunderlying distribution is symmetric about its mean, sayp, we have
Ol = O(minm» TOr details see David and Nagaraja (2003). Therefore, Eq(7) further
reduces to

1
Var(X prrarss) = {ch(k m T Z 0(. m)} (8)
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If the underlying distribution is asymmetric, the mean square error (MSE) of the
proposed estimator is given by

1

Var()_< DRTBRSS) = ——5—

. . nk . Y
(6 3 T O fmkcrzm ) T 2 G(zi:m)}-i-(BlaS) 9)
m-r i=k+1

Where Bias = E(Xpgrgrss -1t). It may be noted that MSE and Bias of any estimator T(-)

of population parameter p are defined as MSE(T(-) = Var(T()) +(Bias)?> and
Bias = E(T()-p)

For symmetric distribution, the relative efficiency of the TBRSS and DRTBRSS with
respect to SRS is defined as

Var()_(SRS)

RE(X;, Xcse) = S
( J SRS) Var(XJ)

J=TBRSS, DRTBRSS (10)

For asymmetric distribution, the RE of TBRSS and DRTBRSS with respect to SRS is
given by

RE(X,, Xers) = VarXses) ;- TBRSS, DRTBRSS (11
MSE(X,)
Lemma-1: If the underlying distribution is symmetric, X qrarss IS Unbiased estimator of

population mean p.
Proof: From Eq(6), we have

— 1 r k . r m-k . r..m .
E(X DRTBRSS) = H(EEF (X i(:m)j ) + ngi:%lE(X i) ) + ngi:ngkﬂE (X i(m-k+Lm)j ))
1 . mk .
= —(ku kem T 2 Wi TKu (m-k+J_'m))
{n i=k+1 o
=—(k(u ., +u ) + o
m( (X e 1 oz ) i=%+1“' (..m>)

For symmetric distribution, we have ', +p’,.., =21 Further, it is easy to write
Zinzllu.(i:m) =mp= Zikzlu'(i:m) + Zirz—kkﬂu.(i:m) + Zin;m—kﬂ“-(i:m)-

S 1
E(XDRTBRSS) =—
1
= —(2kp +mu - 2kp)

m

=p

(ZKM +mu - z:(:ﬂl.(i:m) - Zin:]m-kﬂ“.(i:m) )

Lemma-2: For symmetric distribution, DRTBRSS is more efficient than SRS.
Proof: Consider the Eq(8)

S 1 . mk .
Var(X prrerss) = —5= {ch(zk:m) + 2 G(zi:m)}
mer i=k+1
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De
Note that Zirglc(i:m) z|-16(| :m) +z| k+1G(| :m) +z| =t- k+10(| m)*

—_— 1 . m . k . m .
- VarXorresss) = m(ZkG%k:m) + ;G(zi:m) - Zic(zi:m) - Z_}(ﬂc%:m))
e A
= ir 2ot * Bl 2500
1 m 2
:m_gc(”’n) (ZG(”“) kG(km))

Here, the first term on the right hand side is variance of population mean estimator based
on DRSS. Further, we know the relationship between variances of mean estimators based
on SRS and DRSS as given by

1 m 1 m
2 = 2 g2 4T C )2
X mizzl (izm) mizzl(u (izm) )

_ 1 2 (x .. ) Im |
Var(X pererss) = G>2< - (Zc(zi:m) _kc(zk:m) _"_Z(l-L (im) ~ M)z)
mr mer \li=1 2i=1

Note that for symmetric distribution the variance decreases as i increases with minimum
H- + H 2o e . . . .
value occurs at |—[m71], which means 6, <o, Vi=j and js[mT”], for details see

2
Al-Nasser (2007). So the second term becomes positive and Var(f(SRS):G—. This
mr

completes the proof.

Lemma-3: if underlying distribution is symmetric, the X jzrerss iS more efficient than
>_(RSS if

m 5 5 m-k 2
Zc(i:m) 2 2k0(k:m) + > G (i:m)
i=1 i=k+1

Proof: X prrerss Will be more efficient than X pgs if Var (Xgss ) > Var (X pgrarss ) i-€.

1 m 1 m-k
— o 2—{2k02'. + Y o
mzl’izl (i:m) m2r (k:m) L (izm)
or

no, 9 m-k 2

ZG(i:m) 2 ZkG(k:m) + > G (i:m)

i=1 i=k+1
Which completes the proof.

Lemma-4: If underlying distribution is symmetric, the X xrerss i More efficient than
XTBRSS If

2 2e m-k 2e m-k 2
Zk(c(l:m) '(5(k:m))2 > O (im) - > G (i:m)
i=k+1 i=k+1
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Proof: X prrerss Will be more efficient than X gees if Var(Xqggss ) > Var (X prrgrss )
ie.

1 { m-k 1 m-k
— k(6 Hm T Oimm) T X Ofom ¢ = ——12ko e + 2 O
mzr (Zm) (m:m) Lo (izm) mzr (k:m) ) (ixm)
2 mk , 2 mk . e 2 _ 2
2kc(xm) + 2z O im) = 2k6(k:m) + )Y G (i:m) < 6j =O0nqin
i=k+1 i=k+1
or

5 2 m-k 2 m-k 5
2k(0(l'm) =G0 (km) ) 2 i=%rlc(i:m) - i=%rlﬁ(i:m)
Which completes the proof.

The relative efficiencies (REs) of the considered sampling designs are calculated using
Eqgs(10) and (11) against different sample sizes for both symmetric and asymmetric
distributions and reported in Tables 1-2. we also calculated absolute bias and put it in
parenthesis below the respective REs. The simulated mean, absolute bias and MSE based
on 40,000 replications are defined as

40000 40000

fisg = r(lmo E Us; Abs(bias(ﬁs)) = m .:21 |}15,i 'H|
MSE (fis) = sk 2. (fis; -1)° S=SRS, TBRSS, DRTBRSS

i=1

Table 1: REs of TBRSS and DRTBRSS vs SRS in estimating population mean for

m=5,6
m=5 m=6

RSS TBRSS DRSS  DRTBRSS RSS TBRSS DRSS  DRTBRSS
Distribution k=0,1 k=2 k=0,1 k=2 k=0,1 k=2 k=0,1 k=2
Uniform(0,1) 2.9941  3.6197 5.7198 5.5620 35351  3.9994 7.1813 7.0750

(0.002)  (0.001) (0.001) (0.040) (0.000)  (0.001) (0.000) (0.001)
Normal(0,1) 2.7856  2.4097 44211 8.3305 3.1801  2.7459 5.3741 10.1156

(0.002)  (0.002) (0.001) (0.095) (0.001)  (0.001) (0.002) (0.003)
Logistic(0,1) 25802  2.0250 3.7911 10.2189 29121  2.2734 4.4673 11.5800

(0.003)  (0.004) (0.003) (0.150) (0.002)  (0.002) (0.001) (0.004)
Exponential(1) 21787  1.2762 3.0175 2.8089 24741 15024 3.4530 2.8905

(0.002)  (0.154) (0.001) (0.232) (0.000)  (0.133) (0.000) (0.210)
Weibull(1,3) 21641  1.3218 3.0266 2.8039 24107  1.4858 3.5638 2.7948

(0.003)  (0.443) (0.002) (0.695) (0.007)  (0.408) (0.001) (0.634)
Gamma(2,3) 24208  1.6547 3.6064 3.9052 27271  1.8760 4.1140 4.1092

(0.001)  (0.053) (0.001) (0.081) (0.000)  (0.046) (0.001) (0.074)
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Table 2: REs of TBRSS and DRTBRSS vs SRS in estimating population mean for

m=7
m=7
RSS TBRSS TBRSS DRSS DRTBRSS DRTBRSS

Distribution k=0,1 k=2 k=3 k=0,1 k=2 k=3
Uniform(0,1) 3.9805 4.5041 5.8385 8.8077 8.6027 10.8710

(0.000) (0.001) (0.002) (0.000) (0.001) (0.003)
Normal(0,1) 3.5298 3.1596 2.7562 6.3801 11.3620 18.2154

(0.000) (0.001) (0.001) (0.000) (0.000) (0.002)
Logistic(0,1) 3.2446 2.6555 2.0394 5.2040 12.7913 22.4060

(0.000) (0.001) (0.002) (0.000) (0.001) (0.004)
Exponential(1) 2.6809 1.6487 0.8100 4.0078 2.9570 1.7326

(0.001) (0.119) (0.282) (0.001) (0.191) (0.277)
Weibull(1,3) 2.7094 1.6482 0.8167 3.9485 2.9634 1.7410

(0.002) (0.362) (0.846) (0.002) (0.575) (0.829)
Gamma(2,3) 2.7225 1.6504 0.7992 49011 45504 2.8714

(0.000) (0.039) (0.094) (0.000) (0.067) (0.097)

The following remarks based on Tables1-2:

1. A substantial gain in efficiency is obtained using DRTBRSS for estimating
population mean.

2. DRTBRSS is more efficient than TBRSS for all values of k.

3. When underlying distribution is asymmetric, DRTBRSS remains at least efficient
than TBRSS and SRS for all values of k. This supports robustness of the proposed
mean estimator.

4. DRTBRSS is also more efficient than RSS for k=2.

For asymmetric distributions, biasedness increases as k gets large with minimum
biasness occurs at k=0,1.

4. Estimation of population median

Median is reliable measure of center tendency when underlying distribution is
asymmetric or highly skewed. We define median estimators based on SRS, RSS, TBRSS
and DRTBRSS. An extensive simulation study is also conducted to compare the
efficiency of the median estimators based on RSS, TBRSS and DRTBRSS relative to
conventional estimator based on SRS. Let X, X,,X,,...,X,, be a SRS of size m. Then, the
SRS estimator of population median, say 0, is defined as

) X (m+1y/2:m) if misodd

Osrs = X((m/2):m) + X(((m+2)/2):m)

2

if miseven
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Suppose the measured RSS units are X, ;. Xogmyr-- 0 X Then, the RSS estimator of

population median is given by

m(m:m) *

éRSS = Median {Xi(i:m) 1=1,2,....m

The population median estimator under TBRSS is defined by
Xi(l:k)

n i=1,2,...,k
01grss = Median Xi(i:m-k) i=k+1,k+2,...,m-2k
Ximmy 1=mM-2k+1,...m

Similarly, Let X'y X opemy s X kgemys X eniesnym o0 X maomeem » X (moced(@n-kstymy 1+
X kim0 DRTBRSS of size m. Then, the median estimator of population median is
defined as

X.i(k:m) i=1,2,...,k
Ximkszmy 1=M-k+1,m-k+2,..,.m

The REs of the above median estimators with respect to éSRS are defined as
MSE(©szs)

eff(f,,0r) = ———F5 J = TBRSS, DRTBRSS (12)
MSE(®,)

REs of the median estimators are calculated using Eq(12) for different sample sizes from
both symmetric and asymmetric distributions and reported in Tables 3-4.

Table 3: REs of TBRSS and DRTBRSS vs SRS in estimating population median

for m=5,6
m=5 m=6

RSS TBRSS DRSS DRTBRSS RSS TBRSS DRSS DRTBRSS
Distribution k=0,1 k=2 k=0,1 k=2 k=0,1 k=2 k=0,1 k=2
Uniform(0,1) 1.8778  1.4129 2.8297 4.7655 2.4304  2.1036 4.4992 6.5409

(0.001)  (0.002) (0.001) (0.045) (0.000)  (0.000) (0.001) (0.001)
Normal(0,1) 2.0775 1.5330 3.3636 5.6215 2.7458 2.2223 4.9685 7.7842

(0.003)  (0.003) (0.002) (0.117) (0.001)  (0.000) (0.002) (0.001)
Logistic(0,1) 2.184 1.5555 3.6035 5.9365 2.8337  2.3288 4.4336 8.2111

(0.003)  (0.004) (0.003) (0.190) (0.004)  (0.004) (0.001) (0.003)
Exponential(1) 2.3378 1.5957 3.7591 8.7077 2.8789 2.3091 5.5119 8.6203

(0.045)  (0.062) (0.029) (0.067) (0.048)  (0.065) (0.036) (0.019)
Weibull(1,3) 2.3186  1.5906 3.8483 8.9325 2.8706  2.2653 5.4210 8.5390

(0.122)  (0.184) (0.083) (0.205) (0.146)  (0.199) (0.104) (0.062)
Gamma(2,3) 22865  1.5967 3.4832 7.4066 22900  2.2356 5.3478 8.0653

(0.014)  (0.021) (0.010) (0.040) (0.016)  (0.022) (0.012) (0.008)
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Table 4: REs of TBRSS and DRTBRSS vs SRS in estimating population median

for m=7
m=7
RSS TBRSS TBRSS DRSS DRTBRSS DRTBRSS
Distribution k=0,1 k=2 k=3 k=0,1 k=2 k=3
Uniform(0,1) 22164 1.9441  1.2532 3.7198 4.8847 12.2802

(0.001)  (0.001)  (0.000) (0.000)  (0.001)  (0.000)
Normal(0,1) 25118 2.1181  1.3169 42633 57649  14.6161
(0.002) (0.001)  (0.001) (0.001)  (0.001)  (0.002)
Logistic(0,1)  2.5905 2.2001  1.3184 45161  6.0171  15.2504
(0.000)  (0.002)  (0.002) (0.003)  (0.002)  (0.000)

Exponential(1) 2.7723 2.3210 1.3572 4.7733 6.4496 16.3636
(0.027) (0.033) (0.051) (0.015) (0.012) (0.005)

Weibull(1,3)  2.7156 2.2585  1.3624 47319 63991  16.4053
(0.086) (0.098) (0.147) (0.046)  (0.043) (0.012)

Gamma(2,3)  2.6290 2.1847  1.3215 44769 60733 152879
(0.010) (0.011)  (0.019) (0.006)  (0.005)  (0.002)

Tables3-4 describe the following:

1. DRTBRSS is more efficient than TBRSS and RSS for estimating population
median.

2. The efficiency of DRTBRSS increases as k gets large for all considered sample
sizes. For example, for m=7 and k=2, the efficiency of DRTBRSS is 4.8847 and
it is 12.2802 for k=3 in estimating median of standard uniform distribution.

3. Biasedness also decreases as m gets large.

5. Ranking with auxiliary variable

In many practical problems the variable of interest, Y, is hard to measure and difficult to
rank as well but a auxiliary variable, X, correlated with, Y, can easily be measured. Then
the auxiliary variable can be used for the ranking of the sampling units. For instance, the
assessment of the status of bomb blast sites is usually costly. But, often, a great deal of
knowledge about bomb blast sites can be obtained from video, photos etc. and then be
used to rank the bomb blast sites. In this section, we follow Stokes (1977) idea in which
ranking is performed using auxiliary variable,say X, that can be measured easily. Stokes
(1977) proposed the following model with the assumptions (1) the regression of Y on X

- . C . . Y- X-
is linear (2) the underlying distributions of standardized variables — Y and Z_HX are
Oy Ox
same.
(¢ . .
Yi[i:m]j = My +pG_X(Xi(i:m)j -MY)+8ijal =12,...m; j=1,2,...r (13)

Y
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Here, X, and ¢ are independent and ¢ has mean zero and variance o? =3 (1-p?).
Let Y,
X

i 1S the ith smallest value of Y corresponding to ith smallest value of X i.e.

im; 1N jth replication.

5.1 Estimation using auxiliary variable

Let (Y;,X;),1=1,2,3,...,m be the bivariate SRS from bivariate normal distribution. The
RSS estimator of population mean using auxiliary variable X i.e. Yges, is defined as

YRSSA Z].ZYI [Lm]j (14)
I j=ti
with variance
= 1
Var(Ygssa) = _{mcv(l p?)+p? —Zc(u m)} (15)
Gy i=l

Similarly, the TBRSSA estimator of population mean is given by

vTBRSSA (ZZYI[].TTI]J + Z Z Y|[| ‘mJj + Z Z Y|[m m]J) (16)

j=li=(m-k+1

with variance

— 1 o2 m-k
Var(Yrgrssa) = m{mcé(l -p?)+p? G—:(ch(zkm) + iz%ﬂ“%i:m))} (17)

X

Analogous to estimators (14) and (16), the mean estimator under DRTBRSSA is given by

vDRTBRSSA (ZZY ifk:m]j +Z Z Y ifi:m]j "‘Z Z Y’ ifm- k+]_m]j) (18)

j=li= j=li=(m-k+1

It is easy to show that the proposed estimator is unbiased estimator of population mean
and it has variance given by

_ 1 ol ) mk o,
Var(Yprrerssa) = m{mci (1-p*)+p? G_:(zkc(zk:m) + iz%f?i:m))} (19)

X

The RE of Ygen With respectto Yes is given by
mo

RE(Yrssa: Yors) = m (20)
mci(l'Pz)JFPzZG?i:m)
i=1
The RE of Y gresa With respect to Yes is given by
- - Mo
RE(Yrgrssas Ysrs) = o (21)

m-k
m(Sf( (1 - pz) + pz(zkcé:m) + '—%ﬂcé:m))
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The RE of the proposed estimator Y prrgrssa With respect to Yegs is given by

_ _ mo?2
RE(Y prrerssar Ysrs) = X

(22)
m-k
mGi(l - pz) + pz(zkc(zl;:m) + i:%ﬂc%i:m))

In case of median estimation, the REs of the median estimators @)JA with respect to éans
is defined as

eff(6,5,05ps) = MSE@®ses) TBRSS, DRTBRSS (23)

MSE(6;,)

The REs of mean and median estimators, when ranking based on auxiliary variable, are
calculated for different sample sizes from standard bivariate normal distribution and
reported in Tables5-6. As expected, the performance of the estimators depend on value of
correlation coefficient. The estimators become more precise as correlation increases and
vice-versa. However, performance of the proposed mean and median estimators under
both perfect and imperfect rankings dominates as depicted in Tables5-6. For instance, if
p==0.25 and m=5, the REs of mean and median estimators based on TBRSS are

1.0465 and 1.0112 respectively, while these are 3.4180 and 2.8000 under DRTBRSS.
This shows robustness of the proposed mean and median estimators under imperfect
rankings.

Table5: REs of TBRSS and DRTBRSS vs SRS in estimating population mean
using bivariate normal distribution.

RSS TBRSS  TBRSS DRSS  DRTBRSS DRTBRSS
Sample k=01 k=2 ] k=01 k=2 ;
Size p
m=5 4025 10203  1.0465 ] 28207  3.4180 -
L050 12049 11634 ] 20646  3.9133 ]
15767  1.5324 ] 33862  4.9617 ;
+0.75
20695  1.9248 ; 38677 64791 ;
+0.90
m=6 4025 10463  1.0488 ; 32525  3.8583 ;
L050 11990 11088 ] 34825  4.3209 ]
16290  1.5754 ; 30543 56212 }
+0.75
22308  2.0804 ] 44867  7.3167 ]
+0.90
m=7 4025 10667 10446 10422 35602  4.4316 4.7670
L050 12168 12161 11550 38060  4.8675 5.7171
075 16805 lesol 15221 45700  6.2275 7.9375
e 23805 22575  2.0888 54541  8.2667 11.3578
+0.90
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Table 6: REs of TBRSS and DRTBRSS vs SRS in estimating population median using
bivariate normal distribution.

RSS TBRSS TBRSS DRSS DRTBRSS DRTBRSS
Sample k=0,1 k=2 - k=0,1 k=2 -
size Jo,
m=5 +0.25 10163 1.0112 - 2.1104  2.8000 -
+050 11050  1.0613 - 2.2457  3.1718 -
1075 13729 11478 - 24903  4.0071 -
L09p L6361 12756 - 2.8688  5.2314 -
m=6 +0.25 1.0317  1.0583 - 2.6860  3.3593 -
4050 11424 11075 - 2.9646  3.6768 -
1075 14446 13492 - 3.4836  4.6870 -
1090 20084 16645 - 41399  6.1109 -
m=7 +0.25 10344 1.0258  1.0136 2.5543  2.9870 4.1106
4050 11404 10811 1.0165 2.7033  3.2885 4.8828
1075 13910 12427  1.0241 3.0981  4.0540 6.7677
1090 18050 15627 10801 3.5981  4.8352 9.7443

8. Illlustration with real data

In this section we use a real data set to illustrate the efficiency of the proposed MBRSS
and TBRSS schemes with respect to SRS in estimating mean and median height of 399
conifer trees.The data based on two variables: X, the diameter in centimeters at breast
height, and Y, the entire height in feet, for more detail see Platt et al. (1988). The
summary statistics of the two variables are given by

1

Hx ™399

>IX; =21.09, 6% = glgzﬁff(xi -py)? =329.785, Medy =14.5, Skewnessy =1.05
Ly = %z?ﬁ;’x =52.34, 62 = %z?ﬁ;’(yi -1y )? =3262.6944, Med,, =29, Skewness, =1.63

p=0.876

Table 7: REs of TBRSS and DRTBRSS vs SRS in estimating mean height of 399 trees
(Y) under perfect and imperfect rankings

RSS TBRSS TBRSS DRSS DRTBRSS DRTBRSS
Sample k=01 k=2 - k=0,1 k=2 -
size Ranking
m=5 Imperfect 1.9872  1.4000 - 3.0853  1.8023 -
Perfect 22975 14217 - 3.2575 18113 -
m=6 Imperfect 2.1280  1.6404 - 3.6247  1.8531 -
Perfect 2.6083  1.6459 - 4.0559  1.8553 -
m=7 Imperfect 2.2985 1.8594  1.0078 41961  2.0922 1.0088
Perfect 2.9367 19298 1.0172 47693  2.1046 1.0190
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Table 8: REs of TBRSS and DRTBRSS vs SRS in estimating median height of 399 trees
(YY) under perfect and imperfect rankings

RSS TBRSS TBRSS DRSS DRTBRSS DRTBRSS
S_ample _ k=0,1 k=2 - k=0,1 k=2 -
size Ranking
m=5 Imperfect 2.6004  1.6387 - 57513  15.2948 -
Perfect 3.3216  1.8724 - 6.3082  17.5336 -
m=6 Imperfect 3.0695 2.0631 - 6.6287  15.0117 -
Perfect 3.6886  2.4811 - 7.4049  17.1767 -
m=7 Imperfect 3.5451 2.8232 1.3436 8.7427  12.6677 29.2857
Perfect 43411 3.3419 15022 9.3923  13.8288 35.2581

Since both variables have non-zero skewness so data is asymmetrically distributed. REs
of mean and median estimators for different sample sizes are reported in Tables7-8.
These tables support robustness of mean and median estimators based on DRTBRSS
design under both perfect and imperfect rankings relative to TBRSS. There is decay in
the efficiency of mean and median estimators under imperfect rankings as it expected due
to error in rankings. But the REs of estimators based on DRTBRSS give efficient
estimates as compare to TBRSS. RE of the median estimator based on proposed
DRTBRSS outperforms relative to ordinary RSS and TBRSS. For instance, REs of the
median estimators based on RSS and TBRSS, under imperfect rankings for m=5, are
2.6004 and 1.6387 respectively. While, it is 15.2948 in case of DRTBRSS.

7. Conclusion

In this paper, we suggested DRTBRSS scheme for estimating population mean and
median. It is observed that when underlying distribution is symmetric, the population
mean estimator based on DRTBRSS is unbiased and more efficient than the estimators
based on SRS, RSS and TBRSS for all values of k. As regards population median
estimation, the proposed sampling design outperforms among others considered sampling
designs. The performance of the mean and median estimators under imperfect rankings is
also studied. It is found that the DRTBRSS scheme is an efficient alternative to the
existing SRS, RSS and TBRSS schemes for estimating the mean and median of
symmetric population. The larger efficiency of the proposed estimators relative to
TBRSS estimators, under asymmetric populations, also supports its robustness. However,
biasness increases as k gets large when underlying population is asymmetric. Therefore,
it is recommended to use DRTBRSS in estimating population mean and median of
symmetric population. It can also be used to estimate mean and median of asymmetric
population subject to a compromise on biasness.
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