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Abstract 

In this paper, we propose a double robust truncation based ranked set sampling (DRTBRSS) for estimating 

population mean and median. It provides unbiased estimator of population mean under symmetric 

population and its efficiency dominates the efficiency of conventional estimators based on ranked set 

sampling (RSS), truncation based rank set sampling (TBRSS) and simple random sampling (SRS). Monte 

Carlo simulation, based on perfect ranking and ranking based on auxiliary variable, is used under 

symmetric and asymmetric distributions to evaluate effectiveness of the proposed sampling method. 

Further, a real data set is used to illustrate the proposed sampling design. 

Subject Classification:  MSC2010-62D05 

Keywords:   Simple random sample, Ranked set sampling, Truncation based ranked set 
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1.   Introduction 

Rank set sampling (RSS) was suggested by McIntyre (1952) for estimating mean pasture 

and forage yield. Thereafter, many modifications were made in the basic RSS to make it 

more efficient. For instance, Al-Saleh and Al-Kadiri (2000) suggested double ranked set 

sampling design for estimating population mean. Samawi et al. (1996) suggested extreme 

ranked set sampling (ERSS). Al-Omari (2011) introduced double robust extreme ranked 

set sampling (DRERSS) for efficient estimation of population mean, Al-Nasser (2007) 

proposed L-ranked set sampling (LRSS) for estimating population mean, Al-Omari and 

Raqab (2013) introduced truncation based rank set sampling (TBRSS) for estimating 

population mean and median. Dell and Clutter (1972) showed that even in case of 

ranking errors, mean estimator based on RSS sampling is at least efficient than its 

conventional estimator based on SRS. Stokes (1977) presented a simple linear model and 

showed that an auxiliary variable can be used to rank the study variable. Zamanzade and 

Al-Omari (2016) introduced neoteric ranked set sampling (NRSS) and compared its 

efficiency with ordinary RSS and SRS. 

 

In this paper, we proposed a double robust truncation based ranked set sampling 

(DRTBRSS) for estimating population mean and median. The proposed sampling design 

provides efficient estimators of population mean and median than conventional 

estimators based on SRS, RSS and TBRSS. The rest of the paper is organized as follows: 

In Section 2, RSS, TBRSS, DRSS and the proposed DRTBRSS are described. Estimation 

of population mean is included in Section 3. Median estimation is considered in Section 



Azhar Mehmood Abbasi, Mohammad Yousaf Shad 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp379-394 380 

4. DRTBRSS with auxiliary variable is studied in Section 5. Illustration of proposed 

DRTBRSS with a real data set is explained in Section 6. Finally, concluding remarks are 

given Section 7.  

2.   Sampling Methods  

In this Section we describe the RSS, TBRSS, DRSS and DRTBRSS methods. 

2.1  Rank Set Sampling (RSS) 

RSS can be described as: For selection of m units, identify 2m  units from target 

population and arrange them into m samples each of size m and rank the units within 

each sample with respect to variable of interest by any cost free method. From the ith  

(i =1,2,3,. . .,m)  sample, select the ith  smallest ranked unit for actual measurement. The 

whole procedure can be repeated r times, if needed, to get a RSS sample of size mr. 

2.2 Truncation Based Ranked Set Sampling (TBRSS) 

TBRSS can be described as: draw m simple random samples each of size m from target 

population and rank the units within each sample with respect to variable of interest by 

any cost free method. Define a coefficient  k = α m  where 0 α < 0.5  and  t  is the 

largest integer less than equal to t. From first k samples , select the smallest rank unit and 

from the last k samples select the largest rank units and from the remaining (m - 2k)  

samples, select the ith unit of the ith  (i = k +1,k + 2,. . .,m - k)  sample. 

2.3 Double ranked set sampling (DRSS) 

The DRSS can be described as: Identify 3m  units from the target population and divide 

these units into m sets each of size 2m  units. Apply RSS procedure on each set to obtain 

m ranked set samples each of size m. Apply again RSS procedure on m ranked set 

samples each of size m to obtain a DRSS of size m. 

2.4 The Proposed Sampling Design 

The DRTBRSS is delineated as follows: 

Step-1:  Identify 3m  units from the target population and partition them into m sets each 

of size 2m  units. 

Step-2:  Define a coefficient  k = α m  where 0 α < 0.5  and  t  is the largest integer 

less than equal to t. 

Step-3:  From first k samples of ith  set, select the kth smallest ranked units and from 

the last k samples of ith set, select the (m- k +1)th   smallest ranked units. From 

the remaining (m - 2k)  samples of ith (i =1,2,3,. . .,m)  set, select the jth 

(j = k +1,k + 2,. . .,m - k)  sample. This step finally yields m samples each of size 

m. 

Step-4:  From m samples each of size m obtained in step-3 above, select from first k 

samples the kth smallest ranked units and from the last k samples the 



Estimation of Population Mean and Median using Double Robust Truncation based Ranked Set Sampling 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp379-394 381 

(m- k +1)th   smallest ranked units. From the remaining (m - 2k)  samples, 

select the jth unit of the jth  (j = k +1,k + 2,. . .,m - k)  sample to get a 

DRTBRSS of size m. 

 

This completes one cycle for selection of a sample of size m units under DRTBRSS. The 

above steps1-4 can be repeated r times, if needed, to obtain a sample of size mr units. It 

may be noted that the above proposed sampling design is called robust in the sense that it 

also works better than ordinary TBRSS when underlying population is skewed. 
 

Example 1. Suppose m=5 and k=1,2. In this case we need 3m =125  units and layout 

these units in m=5 sets each of size 2m = 25.  Let l
i(j:m)X  denotes jth ranked unit of the ith 

sample of size m in lth set. Then, after ranking the units with respect to variable of 

interest by any cost free method, we have 
 

1 1 1 1 1
1(1:5) 2(1:5) 3(1:5) 4(1:5) 5(1:5)

1 1 1 1 1
1(2:5) 2(2:5) 3(2:5) 4(2:5) 5(2:5)

1 1 1 1 1
1(3:5) 2(3:5) 3(3:5) 4(3:5) 5(3:5)

1 1 1 1 1
1(4:5) 2(4:5) 3(4:5) 4(4:5) 5(4:5)

1 1 1 1 1
1(5:5) 2(5:5) 3(5:5) 4(5:5) 5(5:5)

X X X X X

X X X X X

X X X X X

X X X X X

X X X X X

2 2 2 2 2
1(1:5) 2(1:5) 3(1:5) 4(1:5) 5(1:5)

2 2 2 2 2
1(2:5) 2(2:5) 3(2:5) 4(2:5) 5(2:5)

2 2 2 2 2
1(3:5) 2(3:5) 3(3:5) 4(3:5) 5(3:5)

2 2 2 2 2
1(4:5) 2(4:5) 3(4:5) 4(4:5) 5(4:5)

2 2 2
1(5:5) 2(5:5) 3(5:5)

X X X X X

X X X X X

  X X X X X

X X X X X

X X X

 
 
 
 
 
  

2 2
4(5:5) 5(5:5)

3 3 3 3 3
1(1:5) 2(1:5) 3(1:5) 4(1:5) 5(1:5)

3 3 3 3 3
1(2:5) 2(2:5) 3(2:5) 4(2:5) 5(2:5)

3 3 3 3 3
1(3:5) 2(3:5) 3(3:5) 4(3:5) 5(3:5)

3 3 3 3 3
1(4:5) 2(4:5) 3(4:5) 4(4:5) 5(4:5)

3 3
1(5:5)

X X

X X X X X

X X X X X

X X X X X

X X X X X

X X

 
 
 
 
 
  

4 4 4 4 4
1(1:5) 2(1:5) 3(1:5) 4(1:5) 5(1:5)

4 4 4 4 4
1(2:5) 2(2:5) 3(2:5) 4(2:5) 5(2:5)

4 4 4 4 4
1(3:5) 2(3:5) 3(3:5) 4(3:5) 5(3:5)

4 4 4 4 4
1(4:5) 2(4:5) 3(4:5) 4(4:5)

3 3 3
2(5:5) 3(5:5) 4(5:5) 5(5:5)

X X X X X

X X X X X

  X X X X X

X X X X X

X X X

 
 
 
 
 
  

5(4:5)
4 4 4 4 4

1(5:5) 2(5:5) 3(5:5) 4(5:5) 5(5:5)

5 5 5 5 5
1(1:5) 2(1:5) 3(1:5) 4(1:5) 5(1:5)

5 5 5 5 5
1(2:5) 2(2:5) 3(2:5) 4(2:5) 5(2:5)

5 5 5
1(3:5) 2(3:5) 3(3:5

X X X X X

and

X X X X X

X X X X X

                                  X X X

 
 
 
 
 
  

5 5
) 4(3:5) 5(3:5)

5 5 5 5 5
1(4:5) 2(4:5) 3(4:5) 4(4:5) 5(4:5)

5 5 5 5 5
1(5:5) 2(5:5) 3(5:5) 4(5:5) 5(5:5)

X X   

X X X X X

X X X X X

 
 
 
 
 
  

 

Case 1: For k =1 

From first k=1 sample of ith set, select kth smallest ranked unit and from last k=1 sample 

of ith set, select (m- k +1)th  smallest ranked units. From the remaining m-2k = 3

samples of ith  (i =1,2,3,. . .,5)  set, select jth smallest unit of jth (j = 2,3,4)  sample. 

Then, we have following 5 samples each of size m=5. 

   

   

1 1 1 1 1 2 2 2 2 2
1 1(1:5) 2(2:5) 3(3:5) 4(4:5) 5(5:5) 2 1(1:5) 2(2:5) 3(3:5) 4(4:5) 5(5:5)

3 3 3 3 3 4 4 4 4 4
3 1(1:5) 2(2:5) 3(3:5) 4(4:5) 5(5:5) 4 1(1:5) 2(2:5) 3(3:5) 4(4:5) 5(5:5)

S = X , X , X , X , X , S = X , X , X , X , X

S = X , X , X , X , X , S = X , X , X , X , X

         5 5 5 5 5
5 1(1:5) 2(2:5) 3(3:5) 4(4:5) 5(5:5)                          S = X , X , X , X , X
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Let 1Y  be the kth smallest unit of 1S , 2Y  be the  k +1 th  smallest unit of 2S , 3Y  be the 

 k + 2 th  smallest unit of 3S , 4Y  be the  m - k th  smallest unit of 4S and 5Y  be the 

 m- k +1 th  smallest unit of 5S then 1 2 3 4 5Y ,Y ,Y ,Y ,Y , where iY is actually ith smallest 

ranked unit of iS (i =1,2,3,. . .,5),  is DRTBRSS of size 5. 

Case 2: For k = 2  

From first k=2 samples of ith set, select kth smallest ranked unit and from last k=2 

samples of ith set, select (m- k +1)th  smallest ranked units. From the remaining 

m - 2k =1samples of ith (i =1,2,3,. . .,5) set, select jth smallest unit of jth (j = 3) sample. 

Then, we have following 5 samples each of size m=5. 

 

   

   

1 1 1 1 1 2 2 2 2 2
1 1(2:5) 2(2:5) 3(3:5) 4(4:5) 5(4:5) 2 1(2:5) 2(2:5) 3(3:5) 4(4:5) 5(4:5)

3 3 3 3 3 4 4 4 4 4
3 1(2:5) 2(2:5) 3(3:5) 4(4:5) 5(4:5) 4 1(2:5) 2(2:5) 3(3:5) 4(4:5) 5(4:5)

S = X , X , X , X , X , S = X , X , X , X , X

S = X , X , X , X , X , S = X , X , X , X , X

         5 5 5 5 5
5 1(2:5) 2(2:5) 3(3:5) 4(4:5) 5(4:5)                          S = X , X , X , X , X

 

Let 1Y  be the kth smallest unit of 1S , 2Y  be the kth smallest unit of 2S , 3Y  be the 

 k +1 th  smallest unit of 3S , 4Y  be the  m- k +1 th  smallest unit of 4S  and 5Y  be the 

 m- k +1 th  smallest unit of 5S  then  1 2 3 4 5Y ,Y ,Y ,Y ,Y ,
 
where 1 2Y , Y  are actually 

second smallest ranked units of iS (i =1,2), 3Y  is third smallest ranked unit of 3S  and 

4 5Y ,Y  are fourth smallest ranked units of jS (j = 4,5),  is DRTBRSS of size 5. 

3.   Estimation of population mean 

Let the variable of interest X  has probability density function (pdf) f(x)  and cumulative 

distribution function F(x)  with mean μ  and variance 2σ .  Let 1 2 3 mX ,X ,X ,. . .,X  be a SRS 

of size m from f(x) . The SRS estimator of population mean μ  if sampling is repeated r 

times, is defined as r m1
j=1 i=1SRS ijmr

X = X   with its variance 
2
Xσ2

X mrSRS
σ = .  Let 

i1 i2 i3 imX ,X ,X ,. . .,X  (i =1,2,3,. . .,m)  denote m  SRS each of size m . Suppose, 

i(1:m) i(2:m) i(m:m)X ,X ,. . .,X  denote order statistics of the ith sample.Then, 

1(1:m) 2(2:m) m(m:m)X ,X ,. . .,X  is called RSS of size m. 

 

Let (i:m)g (x)  be pdf of ith order statistic i.e. (i:m)X  (i =1,2,3,. . .,m) , then it can be shown 

that:  
m-1

i-1 m-i
(i:m)

i-1
g (x) = m (F(x)) (1- F(x)) f(x) - < x <

 
  

 
   (1) 
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The mean and variance of (i:m)X  respectively are given by 

(i:m) (i:m)-
μ = xg (x)dx



  

and  2 2
(i:m) (i:m) (i:m)-

σ = (x -μ ) g (x)dx


  

for detail see David and Nagaraja (2003). The RSS estimator of population mean, sayμ , 

is defined as  

 
r m

RSS i(i:m)j
j=1i=1

1
X = X

mr
         (2) 

 and its variance is given by  
2

m m
X2 2

RSS (i:m) (i:m) X2 2
i=1 i=1

1 σ 1
Var(X ) = σ = - (μ -μ )

m r mr m r
      (3) 

3.1  Estimation of population mean using TBRSS 

Let i1 i2 i3 imX ,X ,X ,. . .,X  be the ith (i =1,2,3,. . .,m)  SRS of size m, then the TBRSS 

estimator of population mean μ and its variance are defined as 

The TBRSS estimator of population mean is given by 

r k r m-k r m

TBRSS i(1:m)j i(i:m)j i(m:m)j
j=1i=1 j=1i=k+1 j=1i=m-k+1

1
X = ( X + X + X )

mr
        (4) 

with its variance  

  m-k
2 2 2

TBRSS (1:m) (m:m) (i:m)2
i=k+1

1
Var(X ) = k(σ + σ ) + σ

m r
     (5) 

3.2 Estimation of population mean using DRTBRSS 

Let • • •
1(k:m) 2(k:m) k(k:m)X ,X ,. . .,X ,    

• •
k+1 ((k+1):m) m-k (m-k:m)X ,. . .,X ,

  
•

m-k+1 ((m-k+1):m)X ,. . .,  

•
m(m-k+1:m)X  be a DRTBRSS of size m. The DRTBRSS estimator of population mean μ  is 

defined as   

 
r k r m-k r m

• • •
DRTBRSS i(k:m)j i(i:m)j i(m-k+1:m)j

j=1i=1 j=1i=k+1 j=1i=m-k+1

1
X = ( X + X + X )                   6

mr
    

 
with variance 

   
m-k

2• 2• 2•
DRTBRSS (k:m) (m-k+1:m) (i:m)2

i=k+1

1
Var(X ) = k(σ + σ ) + σ                                          7

m r
  

 

Remarks 1: It may be noted that the DRTBRSS estimator given by Eq(6) reduces to the 

mean estimator based on DRSS for k = 0,1,  which shows that DRSS is a special case of 

DRTBRSS. 
 

If the underlying distribution is symmetric about its mean, say μ,  we have 

   
2• 2•
i:m m-i+1:mσ = σ ,  for details see David and Nagaraja (2003). Therefore, Eq(7) further 

reduces to 

   
m-k

2• 2•
DRTBRSS (k:m) (i:m)2

i=k+1

1
Var(X ) = 2kσ + σ                                                  8

m r
  
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If the underlying distribution is asymmetric, the mean square error (MSE) of the 

proposed estimator is given by 

     
m-k 22• 2• 2•

DRTBRSS (k:m) (m-k+1:m) (i:m)2
i=k+1

1
Var(X ) = k(σ + σ ) + σ  + Bias                  9

m r
  

Where  DRTBRSSBias = E X -μ .  It may be noted that MSE and Bias of any estimator T( )  

of population parameter μ  are defined as 2MSE(T( )) = Var(T( )) + (Bias)   and 

Bias = E(T( ) -μ)   

 

For symmetric distribution, the relative efficiency of the TBRSS and DRTBRSS with 

respect to SRS is defined as 

 SRS
J SRS

J

Var(X )
RE(X , X ) =  J = TBRSS, DRTBRSS                                     10

Var(X )
 

 

For asymmetric distribution, the RE of TBRSS and DRTBRSS with respect to SRS is 

given by  

 SRS
J SRS

J

Var(X )
RE(X , X ) =    J = TBRSS, DRTBRSS                                 11

MSE(X )
 

 

Lemma-1: If the underlying distribution is symmetric, DRTBRSSX  is unbiased estimator of 

population mean μ.     

 

Proof: From Eq(6), we have 

       

      
    

r k r m-k r m
• • •

DRTBRSS i(k:m)j i(i:m)j i(m-k+1:m)j
j=1i=1 j=1i=k+1 j=1i=m-k+1

m-k
• • •

k:m i:m m-k+1:m
i=k+1

m-k
• •

k:m m-k+1:m
i=k+1

1
E X = E X + E X + E X

mr
1

                      = kμ + μ + kμ
m
1

                     = k μ + μ +
m

      
 



   •
i:mμ

 

 

For symmetric distribution, we have • •
i m-i+1μ + μ = 2μ. Further, it is easy to write 

m k m-k m• • • •
i=1 i=1 i=k+1 i=m-k+1(i:m) (i:m) (i:m) (i:m)μ = mμ = μ + μ + μ .      

   

 

k m• •
i=1 i=m-k+1DRTBRSS (i:m) (i:m)

1
E X = 2kμ + mu - μ - μ

m
1

                        = 2kμ + mu - 2kμ
m

                        = μ

  

 

Lemma-2: For symmetric distribution, DRTBRSS is more efficient than SRS. 

 

Proof: Consider the Eq(8) 

 m-k
2• 2•

DRTBRSS (k:m) (i:m)2
i=k+1

1
Var(X ) = 2kσ + σ

m r
  
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 m m-k
2 2• 2•
(i:m) (k:m) (i:m)2 2

i=1 i=k+1

m m-k
2 2• 2•
(i:m) (k:m) (i:m)

i=1 i=k+1

1 1
σ 2kσ + σ

m r m r

or

σ 2kσ + σ  

 

        

 

          

Note that        
m k t-k t2• 2• 2• 2•
i=1 i=1 i=k+1 i=t-k+1i:m i:m i:m i:mσ = σ + σ + σ .     

 
 

m k m
2• 2• 2• 2•

DRTBRSS (k:m) (i:m) (i:m) (i:m)2
i=1 i=1 i=m-k+1

m k
2• 2• 2•
(k:m) (i:m) (i:m)2

i=1 i=1

m k
2•
(i:m)2 2

i=1 i=1

1
Var(X ) = 2kσ + σ - σ - σ

m r
1

                          = 2kσ + σ - 2 σ
m r

1 2
                          = σ - σ

m r m r

   

 

  2• 2•
(i:m) (k:m)- kσ

 

 

Here, the first term on the right hand side is variance of population mean estimator based 

on DRSS. Further, we know the relationship between variances of mean estimators based 

on SRS and DRSS as given by 

m m
2 2• • 2
X (i:m) (i:m)

i=1 i=1

1 1
σ = σ + (μ -μ)

m m
    

k m
2 2• 2• • 2

DRTBRSS X (i:m) (k:m) (i:m)2
i=1 i=1

1 2 1
Var(X ) = σ - σ - kσ + (μ - μ)

mr m r 2
 
 
 
 

 

 

Note that for symmetric distribution the variance decreases as i  increases with minimum 

value occurs at  m+1

2
i = ,  which means 2• 2•

(i:m) (j:m)σ σ i j    and m+1
2

j ,     for details see 

Al-Nasser (2007). So the second term becomes positive and  
2

SRS

σ
Var X = .

mr
 This 

completes the proof. 

 

Lemma-3: if underlying distribution is symmetric, the DRTBRSSX  is more efficient than 

RSSX  if 

m m-k
2 2• 2•
(i:m) (k:m) (i:m)

i=1 i=k+1

σ 2kσ + σ   

 

Proof:  DRTBRSSX  will be  more efficient than RSSX   if    RSS DRTBRSSVar X Var X i.e.  

 

 

Which completes the proof. 

 

Lemma-4: If underlying distribution is symmetric, the DRTBRSSX  is more efficient than 

TBRSSX  if 

 
m-k m-k

2 2• 2• 2
(1:m) (k:m) (i:m) (i:m)

i=k+1 i=k+1

2k σ - σ σ - σ    
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Proof:  DRTBRSSX  will be more efficient than TBRSSX  if    TBRSS DRTBRSSVar X Var X
 

i.e.  

   m-k m-k
2 2 2 2• 2•
(1:m) (m:m) (i:m) (k:m) (i:m)2 2

i=k+1 i=k+1

m-k m-k
2 2 2• 2• 2 2
(1:m) (i:m) (k:m) (i:m) i m-i+1

i=k+1 i=k+1

1 1
k(σ + σ ) + σ 2kσ + σ

m r m r

2kσ + σ 2kσ + σ        σ = σ

or

 

                          

                            
m-k m-k

2 2• 2• 2
(1:m) (k:m) (i:m) (i:m)

i=k+1 i=k+1

2k σ - σ σ - σ           

 

Which completes the proof. 

 

The relative efficiencies (REs) of the considered sampling designs are calculated using 

Eqs(10) and (11) against different sample sizes for both symmetric and asymmetric 

distributions and reported in Tables 1-2. we also calculated absolute bias and put it in 

parenthesis below the respective REs. The simulated mean, absolute bias and MSE based 

on 40,000 replications are defined as 

  

   

40000 40000
1 1

S S,i S S,i40000 40000
i=1 i=1

40000 21
S S,i40000

i=1

μ = μ             Abs bias μ = μ -μ

MSE μ = μ -μ     S = SRS, TBRSS, DRTBRSS

ˆ ˆ ˆ ˆ

ˆ ˆ

 



 

Table 1:  REs of TBRSS and DRTBRSS vs SRS in estimating population mean for 

m=5,6 

   m=5      m=6   

 RSS TBRSS  DRSS DRTBRSS RSS TBRSS  DRSS DRTBRSS 

Distribution k=0,1 k=2  k=0,1 k=2  k=0,1 k=2  k=0,1 k=2 

Uniform(0,1) 2.9941 

(0.002) 

3.6197 

(0.001) 

 5.7198 

(0.001) 

5.5620 

(0.040) 

 3.5351 

(0.000) 

3.9994 

(0.001) 

 7.1813 

(0.000) 

7.0750 

(0.001) 

Normal(0,1) 2.7856 

(0.002) 

2.4097 

(0.002) 

 4.4211 

(0.001) 

8.3305 

(0.095) 

 3.1801 

(0.001) 

2.7459 

(0.001) 

 5.3741 

(0.002) 

10.1156 

(0.003) 

Logistic(0,1) 2.5802 

(0.003) 

2.0250 

(0.004) 

 3.7911 

(0.003) 

10.2189 

(0.150) 

 2.9121 

(0.002) 

2.2734 

(0.002) 

 4.4673 

(0.001) 

11.5800 

(0.004) 

Exponential(1) 2.1787 

(0.002) 

1.2762 

(0.154) 

 3.0175 

(0.001) 

2.8089 

(0.232) 

 2.4741 

(0.000) 

1.5024 

(0.133) 

 3.4530 

(0.000) 

2.8905 

(0.210) 

Weibull(1,3) 2.1641 

(0.003) 

1.3218 

(0.443) 

 3.0266 

(0.002) 

2.8039 

(0.695) 

 2.4107 

(0.007) 

1.4858 

(0.408) 

 3.5638 

(0.001) 

2.7948 

(0.634) 

Gamma(2,3) 2.4208 

(0.001) 

1.6547 

(0.053) 

 3.6064 

(0.001) 

3.9052 

(0.081) 

 2.7271 

(0.000) 

1.8760 

(0.046) 

 4.1140 

(0.001) 

4.1092 

(0.074) 
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Table 2:  REs of TBRSS and DRTBRSS vs SRS in estimating population mean for 

m=7 

   m=7     

 RSS TBRSS TBRSS  DRSS DRTBRSS DRTBRSS 

Distribution k=0,1 k=2 k=3  k=0,1 k=2 k=3 

Uniform(0,1) 3.9805 

(0.000) 

4.5041 

(0.001) 

5.8385 

(0.002) 

 8.8077 

(0.000) 

8.6027 

(0.001) 

10.8710 

(0.003) 

Normal(0,1) 3.5298 

(0.000) 

3.1596 

(0.001) 

2.7562 

(0.001) 

 6.3801 

(0.000) 

11.3620 

(0.000) 

18.2154 

(0.002) 

 

Logistic(0,1) 3.2446 

(0.000) 

2.6555 

(0.001) 

2.0394 

(0.002) 

 5.2040 

(0.000) 

12.7913 

(0.001) 

22.4060 

(0.004) 

 

Exponential(1) 2.6809 

(0.001) 

1.6487 

(0.119) 

0.8100 

(0.282) 

 4.0078 

(0.001) 

2.9570 

(0.191) 

1.7326 

(0.277) 

 

Weibull(1,3) 2.7094 

(0.002) 

1.6482 

(0.362) 

0.8167 

(0.846) 

 3.9485 

(0.002) 

2.9634 

(0.575) 

1.7410 

(0.829) 

 

Gamma(2,3) 2.7225 

(0.000) 

1.6504 

(0.039) 

0.7992 

(0.094) 

 4.9011 

(0.000) 

4.5504 

(0.067) 

2.8714 

(0.097) 

 

The following remarks based on Tables1-2: 

1. A substantial gain in efficiency is obtained using DRTBRSS for estimating 

population mean. 

2. DRTBRSS is more efficient than TBRSS for all values of k. 

3. When underlying distribution is asymmetric, DRTBRSS remains at least efficient 

than TBRSS and SRS for all values of k. This supports robustness of the proposed 

mean estimator. 

4. DRTBRSS is also more efficient than RSS for k=2.  

5. For asymmetric distributions, biasedness increases as k gets large with minimum 

biasness occurs at k=0,1. 

4.   Estimation of population median 

Median is reliable measure of center tendency when underlying distribution is 

asymmetric or highly skewed. We define median estimators based on SRS, RSS, TBRSS 

and DRTBRSS. An extensive simulation study is also conducted to compare the 

efficiency of the median estimators based on RSS, TBRSS and DRTBRSS relative to 

conventional estimator based on SRS. Let 1 2 3 mX ,X ,X ,. . .,X  be a SRS of size m. Then, the 

SRS estimator of population median, say  , is defined as 

((m+1)/2:m)

SRS ((m/2):m) (((m+2)/2):m)

X if m is odd

θ = X + X
if m is even

2

ˆ



  
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Suppose the measured RSS units are 1(1:m) 2(2:m) m(m:m)X ,X ,. . .,X .Then, the RSS estimator of 

population median is given by 

RSS i(i:m)θ = Median X      i = 1,2,. . .,mˆ  

 

The population median estimator under TBRSS is defined by 

i(1:k)

i(i:m-k)TBRSS

i((m:m)

X
i = 1,2,. . ., k

X i = k +1,k + 2,. . .,m - 2kθ = Median

X i = m - 2k +1,. . .,m

ˆ







 

 

Similarly, Let  • • •
1(k:m) 2(k:m) k(k:m)X ,X ,. . .,X ,      

• • •
k+1 ((k+1):m) m-k (m-k:m) m-k+1 ((m-k+1):m)X ,. . .,X ,X ,. . .,

 
•
m(m-k+1:m)X  be DRTBRSS of size m. Then, the median estimator of population median is 

defined as  

•
i(k:m)

•
i(i:m)DRTBRSS
•
i((m-k+1:m)

X
i = 1,2,. . ., k

X i = k +1,k + 2,. . .,m - kθ = Median

X i = m - k +1,m - k + 2,. . .,m

ˆ





  

 

The REs of the above median estimators with respect to SRSθ̂ are defined as  

 SRS
J SRS

J

MSE(θ )
eff(θ ,θ ) =  J = TBRSS, DRTBRSS                                     12

MSE(θ )

ˆ
ˆ ˆ

ˆ
 

 

REs of the median estimators are calculated using Eq(12) for different sample sizes from 

both symmetric and asymmetric distributions and reported in Tables 3-4.  

Table 3:  REs of TBRSS and DRTBRSS vs SRS in estimating population median 

for m=5,6 

   m=5      m=6   

 

Distribution 

RSS TBRSS  DRSS DRTBRSS RSS TBRSS  DRSS DRTBRSS 

k=0,1 k=2  k=0,1 k=2  k=0,1 k=2  k=0,1 k=2 

Uniform(0,1) 1.8778 
(0.001) 

1.4129 
(0.002) 

 2.8297 
(0.001) 

4.7655 
(0.045) 

 2.4304 
(0.000) 

2.1036 
(0.000) 

 4.4992 
(0.001) 

6.5409 
(0.001) 

Normal(0,1) 2.0775 

(0.003) 

1.5330 

(0.003) 

 3.3636 

(0.002) 

5.6215 

(0.117) 

 2.7458 

(0.001) 

2.2223 

(0.000) 

 4.9685 

(0.002) 

7.7842 

(0.001) 

Logistic(0,1) 2.184 

(0.003) 

1.5555 

(0.004) 

 3.6035 

(0.003) 

5.9365 

(0.190) 

 2.8337 

(0.004) 

2.3288 

(0.004) 

 4.4336 

(0.001) 

8.2111 

(0.003) 

Exponential(1) 2.3378 

(0.045) 

1.5957 

(0.062) 

 3.7591 

(0.029) 

8.7077 

(0.067) 

 2.8789 

(0.048) 

2.3091 

(0.065) 

 5.5119 

(0.036) 

8.6203 

(0.019) 

Weibull(1,3) 2.3186 
(0.122) 

1.5906 
(0.184) 

 3.8483 
(0.083) 

8.9325 
(0.205) 

 2.8706 
(0.146) 

2.2653 
(0.199) 

 5.4210 
(0.104) 

8.5390 
(0.062) 

Gamma(2,3) 2.2865 
(0.014) 

1.5967 
(0.021) 

 3.4832 
(0.010) 

7.4066 
(0.040) 

 2.2900 
(0.016) 

2.2356 
(0.022) 

 5.3478 
(0.012) 

8.0653 
(0.008) 
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Table 4:  REs of TBRSS and DRTBRSS vs SRS in estimating population median 

for m=7 

   m=7     

 RSS TBRSS TBRSS  DRSS DRTBRSS DRTBRSS 

Distribution k=0,1 k=2 k=3  k=0,1 k=2 k=3 

Uniform(0,1) 2.2164 

(0.001) 

1.9441 

(0.001) 

1.2532 

(0.000) 

 3.7198 

(0.000) 

4.8847 

(0.001) 

12.2802 

(0.000) 

Normal(0,1) 2.5118 

(0.002) 

2.1181 

(0.001) 

1.3169 

(0.001) 

 4.2633 

(0.001) 

5.7649 

(0.001) 

14.6161 

(0.002) 

 

Logistic(0,1) 2.5905 

(0.000) 

2.2001 

(0.002) 

1.3184 

(0.002) 

 4.5161 

(0.003) 

6.0171 

(0.002) 

15.2504 

(0.000) 

 

Exponential(1) 2.7723 

(0.027) 

2.3210 

(0.033) 

1.3572 

(0.051) 

 4.7733 

(0.015) 

6.4496 

(0.012) 

16.3636 

(0.005) 

 

Weibull(1,3) 2.7156 

(0.086) 

2.2585 

(0.098) 

1.3624 

(0.147) 

 4.7319 

(0.046) 

6.3991 

(0.043) 

16.4053 

(0.012) 

 

Gamma(2,3) 2.6290 

(0.010) 

2.1847 

(0.011) 

1.3215 

(0.019) 

 4.4769 

(0.006) 

6.0733 

(0.005) 

15.2879 

(0.002) 

 

Tables3-4 describe the following: 

1. DRTBRSS is more efficient than TBRSS and RSS for estimating population 

median. 

2. The efficiency of DRTBRSS increases as k gets large for all considered sample 

sizes.  For example, for m=7 and k=2, the efficiency of DRTBRSS is 4.8847 and 

it is 12.2802 for k=3 in estimating median of standard uniform distribution. 

3. Biasedness also decreases as m gets large. 

5.   Ranking with auxiliary variable 

In many practical problems the variable of interest, Y, is hard to measure and difficult to 

rank as well but a auxiliary variable, X, correlated with, Y, can easily be measured. Then 

the auxiliary variable can be used for the ranking of the sampling units. For instance, the 

assessment of the status of bomb blast sites is usually costly. But, often, a great deal of 

knowledge about bomb blast sites can be obtained from video, photos etc. and then be 

used to rank the bomb blast sites. In this section, we follow Stokes (1977) idea in which 

ranking is performed using auxiliary variable,say X , that can be measured easily. Stokes 

(1977) proposed the following model with the assumptions (1)  the regression of Y on X 

is linear (2)  the underlying distributions of standardized variables Y

Y

Y -μ

σ
 and X

X

X -μ

σ
 are 

same. 

X
i[i:m]j X i(i:m)j Y ij

Y

σ
Y = μ + ρ (X -μ ) + ε ,i = 1,2,. . .,m; j = 1,2,. . ., r

σ   

(13) 



Azhar Mehmood Abbasi, Mohammad Yousaf Shad 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp379-394 390 

Here, i(i:m)X  and ε  are independent and ε  has mean zero and variance 2 2 2
ε Yσ = σ (1-ρ ) . 

Let i[i:m]jY  is the ith smallest value of Y  corresponding to ith smallest value of X  i.e. 

i(i:m)jX  in jth replication. 

5.1  Estimation using auxiliary variable 

Let i i(Y ,X ), i = 1, 2,3,..., m  be the bivariate SRS from bivariate normal distribution. The 

RSS estimator of population mean using auxiliary variable X  i.e. RSSAY  is defined as 

r m

RSSA i[1:m]j
j=1i=1

1
Y = Y

mr
         (14) 

with variance 

 
2

m
Y2 2 2 2

RSSA Y (i:m)2 2
i=1X

1 σ
Var(Y ) = mσ (1-ρ ) + ρ σ                                 15

m r σ

 
 

   

 

Similarly, the TBRSSA estimator of population mean is given by 

r k r m-k r m

TBRSSA i[1:m]j i[i:m]j i[m:m]j
j=1i=1 j=1i=k+1 j=1i=(m-k+1

1
Y = ( Y + Y + Y )

mr
        (16) 

with variance 

 
2

m-k
Y2 2 2 2 2

TBRSSA Y (1:m) (i:m)2 2
i=k+1X

1 σ
Var(Y ) = mσ (1-ρ ) + ρ (2kσ + σ )                17

m r σ

 
 

 
 

 

Analogous to estimators (14) and (16), the mean estimator under DRTBRSSA is given by 

 
r k r m-k r m

• • •
DRTBRSSA i[k:m]j i[i:m]j i[m-k+1:m]j

j=1i=1 j=1i=k+1 j=1i=(m-k+1

1
Y = ( Y + Y + Y )                18

mr
      

 

It is easy to show that the proposed estimator is unbiased estimator of population mean 

and it has variance given by 

 
2

m-k
Y2 2 2 2• 2•

DRTBRSSA Y (k:m) (i:m)2 2
i=k+1X

1 σ
Var(Y ) = mσ (1-ρ ) + ρ (2kσ + σ )             19

m r σ

 
 

 
 

 

The RE of RSSAY  with respect to SRSY   is given by 

 
2
X

RSSA SRS m
2 2 2 2
X (i:m)

i=1

mσ
RE(Y ,Y ) =                                             20

mσ (1-ρ ) + ρ σ
 

 

The RE of TBRSSAY  with respect to SRSY   is given by 

 
2
X

TBRSSA SRS m-k
2 2 2 2 2
X (1:m) (i:m)

i=k+1

mσ
RE(Y ,Y ) =                             21

mσ (1-ρ ) + ρ (2kσ + σ )
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The RE of the proposed estimator •
DRTBRSSAY  with respect to SRSY  is given by 

 
2
X

DRTBRSSA SRS m-k
2 2 2 2• 2•
X (k:m) (i:m)

i=k+1

mσ
RE(Y ,Y ) =                        22

mσ (1-ρ ) + ρ (2kσ + σ )
 

In case of median estimation, the REs of the median estimators JAθ̂  with respect to SRSθ̂  

is defined as 

 SRS
JA SRS

JA

MSE(θ )
eff(θ ,θ ) =  J = TBRSS, DRTBRSS                                    23

MSE(θ )

ˆ
ˆ ˆ

ˆ
 

 

The REs of mean and median estimators, when ranking based on auxiliary variable, are 

calculated for different sample sizes from standard bivariate normal distribution and 

reported in Tables5-6. As expected, the performance of the estimators depend on value of 

correlation coefficient. The estimators become more precise as correlation increases and 

vice-versa. However, performance of the proposed mean and median estimators under 

both perfect and imperfect rankings dominates as depicted in Tables5-6.  For instance, if 

ρ = ±0.25   and m=5, the REs of mean and median estimators based on TBRSS are 

1.0465 and 1.0112 respectively, while these are 3.4180 and 2.8000 under DRTBRSS. 

This shows robustness of the proposed mean and median estimators under imperfect 

rankings. 

Table 5:  REs of TBRSS and DRTBRSS vs SRS in estimating population mean 

using bivariate normal distribution. 

 

Sample 

size       

 

     

    
  

RSS TBRSS TBRSS  DRSS DRTBRSS DRTBRSS 

k=0,1 k=2 - k=0,1 k=2 - 

m=5 0.25
 

0.50
 

0.75
 

0.90  

1.0203 

1.2049 

1.5767 

2.0695 

1.0465 

1.1634 

1.5324 

1.9248 

- 

- 

- 

- 

 2.8207 

2.9646 

3.3862 

3.8677 

3.4180 

3.9133 

4.9617 

6.4791 

- 

- 

- 

- 

m=6 0.25
 

0.50
 

0.75
 

0.90  

1.0463 

1.1990 

1.6290 

2.2308 

1.0488 

1.1988 

1.5754 

2.0804 

- 

- 

- 

- 

 3.2525 

3.4825 

3.9543 

4.4867 

3.8583 

4.3209 

5.6212 

7.3167 

- 

- 

- 

- 

m=7 0.25
 

0.50
 

0.75
 

0.90  

1.0667 

1.2168 

1.6805 

2.3805 

1.0446 

1.2161 

1.6501 

2.2575 

1.0422 

1.1559 

1.5221 

2.0888 

 3.5602 

3.8060 

4.5700 

5.4541 

4.4316 

4.8675 

6.2275 

8.2667 

4.7670 

5.7171 

7.9375 

11.3578 
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Table 6:  REs of TBRSS and DRTBRSS vs SRS in estimating  population median using 

bivariate normal distribution. 

 

Sample 

size       

 

     

   
  

RSS TBRSS TBRSS  DRSS DRTBRSS DRTBRSS 

k=0,1 k=2 - k=0,1 k=2 - 

m=5 0.25  
0.50  
0.75  
0.90  

1.0163 

1.1050 

1.3729 

1.6361 

1.0112 

1.0613 

1.1478 

1.2756 

- 

- 

- 

- 

 2.1104 

2.2457 

2.4903 

2.8688 

2.8000 

3.1718 

4.0071 

5.2314 

- 

- 

- 

- 

m=6 0.25  
0.50  
0.75  
0.90  

1.0317 

1.1424 

1.4446 

2.0084 

1.0583 

1.1075 

1.3492 

1.6645 

- 

- 

- 

- 

 2.6860 

2.9646 

3.4836 

4.1399 

3.3593 

3.6768 

4.6870 

6.1109 

- 

- 

- 

- 

m=7 0.25  
0.50  
0.75  
0.90  

1.0344 

1.1404 

1.3910 

1.8050 

1.0258 

1.0811 

1.2427 

1.5627 

1.0136 

1.0165 

1.0241 

1.0801 

 2.5543 

2.7033 

3.0981 

3.5981 

2.9870 

3.2885 

4.0540 

4.8352 

4.1106 

4.8828 

6.7677 

9.7443 

8.   Illustration with real data 

In this section we use a real data set to illustrate the efficiency of the proposed MBRSS 

and TBRSS schemes with respect to SRS in estimating mean and median height of 399 

conifer trees.The data based on two variables: X,  the diameter in centimeters at breast 

height, and Y, the entire height in feet, for more detail see Platt et al. (1988). The 

summary statistics of the two variables are given by 

399 3992 2
i=1 i=1X i X i X X X

399 3992 2
i=1 i=1Y i Y i Y Y Y

1 1
μ = X = 21.09,  σ = (x -μ ) = 329.785,  Med = 14.5,  Skewness = 1.05

399 399

1 1
μ = Y = 52.34,  σ = (y -μ ) = 3262.6944, Med = 29,  Skewness = 1.63

399 399

ρ = 0.876

 

 

 

Table 7:  REs of TBRSS and DRTBRSS vs SRS in estimating mean height of 399 trees 

(Y) under perfect and imperfect rankings 

 

Sample 

size       

 

  

Ranking
 

RSS TBRSS TBRSS  DRSS DRTBRSS DRTBRSS 

k=0,1 k=2 - k=0,1 k=2 - 

m=5 Imperfect 

Perfect 

1.9872 

2.2975 

1.4000 

1.4217 

- 

- 

 3.0853 

3.2575 

1.8023 

1.8113 

- 

- 

m=6 Imperfect 

Perfect 

2.1280 

2.6083 

1.6404 

1.6459 

- 

- 

 3.6247 

4.0559 

1.8531 

1.8553 

- 

- 

m=7 Imperfect 

Perfect 

2.2985 

2.9367 

1.8594 

1.9298 

1.0078 

1.0172 

 4.1961 

4.7693 

2.0922 

2.1046 

1.0088 

1.0190 

 



Estimation of Population Mean and Median using Double Robust Truncation based Ranked Set Sampling 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp379-394 393 

Table 8:  REs of TBRSS and DRTBRSS vs SRS in estimating  median height of 399 trees 

(Y) under perfect and imperfect  rankings 

 

Sample 

size       

 

  

Ranking
 

RSS TBRSS TBRSS  DRSS DRTBRSS DRTBRSS 

k=0,1 k=2 - k=0,1 k=2 - 

m=5 Imperfect 

Perfect 

2.6004 

3.3216 

1.6387 

1.8724 

- 

- 

 5.7513 

6.3082 

15.2948 

17.5336 

- 

- 

m=6 Imperfect 

Perfect 

3.0695 

3.6886 

2.0631 

2.4811 

- 

- 

 6.6287 

7.4049 

15.0117 

17.1767 

- 

- 

m=7 Imperfect 

Perfect 

3.5451 

4.3411 

2.8232 

3.3419 

1.3436 

1.5022 

 8.7427 

9.3923 

12.6677 

13.8288 

29.2857 

35.2581 

 

Since both variables have non-zero skewness so data is asymmetrically distributed. REs 

of mean and median estimators for different sample sizes are reported in Tables7-8. 

These tables support robustness of mean and median estimators based on DRTBRSS 

design under both perfect and imperfect rankings relative to TBRSS. There is decay in 

the efficiency of mean and median estimators under imperfect rankings as it expected due 

to error in rankings. But the REs of estimators based on DRTBRSS give efficient 

estimates as compare to TBRSS. RE of the median estimator based on proposed 

DRTBRSS outperforms relative to ordinary RSS and TBRSS. For instance, REs of the 

median estimators based on RSS and TBRSS, under imperfect rankings for m=5, are 

2.6004 and 1.6387 respectively. While, it is 15.2948 in case of DRTBRSS.     

7.   Conclusion 

In this paper, we suggested DRTBRSS scheme for estimating population mean and 

median. It is observed that when underlying distribution is symmetric, the population 

mean estimator based on DRTBRSS is unbiased and more efficient than the estimators 

based on SRS, RSS and TBRSS for all values of k. As regards population median 

estimation, the proposed sampling design outperforms among others considered sampling 

designs. The performance of the mean and median estimators under imperfect rankings is 

also studied. It is found that the DRTBRSS scheme is an efficient alternative to the 

existing SRS, RSS and TBRSS schemes for estimating the mean and median of 

symmetric population. The larger efficiency of the proposed estimators relative to 

TBRSS estimators, under asymmetric populations, also supports its robustness. However, 

biasness increases as k gets large when underlying population is asymmetric. Therefore, 

it is recommended to use DRTBRSS in estimating population mean and median of 

symmetric population. It can also be used to estimate mean and median of asymmetric 

population subject to a compromise on biasness. 
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