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Abstract 

Gamma and log-logistic distributions are two popular distributions for analyzing lifetime data. In this 

paper, the problem of discriminating between these two distribution functions is considered in case of 

progressive type II censoring. The ratio of the maximized likelihood test (RML) is used to discriminate 

between them. Some simulation experiments were performed to see how the probability of correct selection 

(PCS) under each model work for small sample sizes. Real data life is analyzed to see how the proposed 

method works in practice. As a special case of progressive type II censoring, the problem of discriminating 

between gamma and log-logistic in case of complete samples is considered. The RML and the ratio of 

Minimized Kullback-Leibler Divergence (RMKLD) tests are used to discriminate between them. The 

asymptotic results are used to estimate the PCS which is used to calculate the minimum sample size 

required for discriminating between two distributions. Two real life data are analyzed. 

Keywords: Gamma distribution; Log-logistic distribution; Progressive type II censoring; 

Likelihood ratio; the ratio of minimized Kullback-Leibler divergence. 

1. Introduction 

Choosing the correct or best-fitting distribution for a given data set is an important issue. 

Most of the times distribution functions may provide a similar data fit but still it is 

desirable to select the correct or more nearly correct model.  The effect of choosing the 

wrong model has been attempted by many researchers as Cox (1961), Wiens (1999) and 

Pascual (2005). 

 

Special attention has been given to discriminate some specific distribution functions, due 

to the increase of their applications. Cox (1962) suggested tests of separate families of 

hypotheses and applied his test to discriminate between lognormal and exponential 

distribution. Atkinson (1970) combined Cox's two hypotheses in a general model and 

applied his test to discriminate between lognormal and exponential distribution. The ratio 

of the maximized likelihood (RML) procedure has been applied in discriminating 

between distributions by many authors as Dumonceaux et al. (1973), Dumonceaux and 

Antle (1973), Pereira (1977), Bain and Engelhardt (1980), Kappenman (1982), Firth 
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(1988),. Pandey et al. (1991), Fearn and Nebenzahl (1991), Gupta et al. (2001). Gupta 

and Kundu (2003), Gupta and Kundu (2004), Kundu and Manglick (2005), Kundu and 

Raqab (2007), Bedar (2009), Dey and Kundu (2010), Ashkar and Aucion (2012), Raqab 

(2013), Elsherpieny et al. (2013), Rao and Kantam (2014). 

 

Bromideh (2012), Bromideh and Valizadeh (2013) found that the Kullback-Leibler 

divergence (KLD) method works better than RML, because it generates higher 

probability of correct selection (PCS) in particular for small sample size. In other words, 

the error type I for RMKLD is remarkably less, compared to the RML one. 

 

Some procedures for selecting between distributions for the cases of not only complete 

but also censored data in the cases of Type-I and Type-II censoring schemes have been 

paid attention by some authors, Siswadi and Quesenberry (1982), Kim et al. (2000), Cain 

(2002), Block and Leemis (2008), Kim and Yum (2008), Dey and Kundu (2009) and Dey 

and Kundu (2012). However, the conventional Type-I and Type-II censoring schemes do 

not have the flexibility of allowing removal of units at points other than the terminal 

point of the experiment. Because of this lack of flexibility, a more general censoring 

scheme called progressive Type-II right censoring has been introduced. Progressive 

censoring schemes are very useful in life-test experiments and in clinical studies. Some of 

the earlier work on progressive censoring and estimating  the unknown parameters for 

different distribution functions were conducted by Cohen (1965), Mann (1971), Thomas 

and Wilson (1972), Viveros and Balakrishnan (1994), Balakrishnan and Sandhu (1995), 

Balasooriya and Balakrishnan (2000), Balakrishnan and Aggarwala (2000), Balakrishnan 

and Kannan (2001), Balakrishnan et al. (2003, 2004), Mousa and Jaheen (2002) and 

Balakrishnan (2007). 

 

This paper consists of four Sections including this introduction, In Section 2 

discriminating between Gamma and log-logistic distributions is considered in case of 

progressive type II censoring. In Section 3 the problem of discriminating between 

Gamma and log-logistic distributions is considered in case of complete sample. Finally 

paper conclusion in Section 4. 

2.   Progressive Type II Censoring  

Under this scheme, n units are placed on a test at time zero, with m failures to be 

observed. When the first failure is observed, r1 of the surviving units are randomly 

selected and removed. At the second observed failure, r2 of the surviving units are 

randomly selected and removed. This experiment stops at the time when the m-th failure 

is observed and the remaining rm= n - r1– r2 - … - rm-1 – m surviving units are all 

removed.  

 

In this scheme, r1, r2, …, rm are pre-determined. Thus, here the censoring times (Ti’s) are 

random, but the numbers of items to fail before each censoring time are fixed. The 

resulting m ordered values which are obtained are referred to as progressively type II 

right censored order statistics. [Balakrishnan and Aggarwala (2000)]. 
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2.1  Maximum Likelihood Estimation for Gamma Distribution 

The probability density function of the gamma distribution, denoted by GA(λ,α), with 

scale parameter λ > 0 and shape parameter α > 0 is given by  

          > 0          > 0.  

 

Let X1:m:n ,…, Xm:m:n be progressively type II censored sample from a two parameter 

Gamma distribution, with censoring scheme ),...,( 1 mrrr  .The likelihood function is 

given by  
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Where 

 
 

Differentiating Equation (2.1) with respect to α and putting the derivative equal to zero 

we get 
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Therefore ̂  and ̂  can be obtained as a solutions of Equations (2.2) and (2.3). 

2.2   Maximum Likelihood Estimation for Log-logistic Distribution 

The probability density function of the log-logistic distribution, denoted by LL(ε,σ), with 

scale parameter ε > 0 and shape parameter   σ > 0 is given by 

                > 0             > 0.  

 

Let X1:m:n ,…, Xm:m:n be progressively type II censored sample from a two parameter log-

logistic distribution, with censoring scheme  ),...,( 1 mrrr  . The likelihood function is 
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The logarithm of the likelihood function is given as 
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Therefore ̂  and ̂  can be obtained as a solutions of Equations (2.7) and (2.8). 
 

2.3 The Ratio of the Maximized Likelihood (RML) 

The ratio of the maximized likelihood (RML) is defined as 
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2.4   Numerical Experiment 

In this section, the RML procedures are using for selecting between the Gamma and log-

logistic distributions. A censoring scheme called progressive type II censoring is 

considered. The PCS’s involved in the discrimination between the gamma and the log-

logistic distributions based on likelihood ratio can be determined with more accuracy 

through simulated samples. For simplicities, the scale and shape parameters of the 

Gamma and log-logistic distributions can be fixed to some specific values without any 

loss of generality in assessing the relative performance of the RML procedure.  

 

i. Firstly, when the true distribution is Gamma distribution computation of the PCS 

is performed as follows: By using the algorithm given by Balakrishna and 

Aggarwala (2000). The following steps are used to generate progressively Type-II 

right censored order statistics from Gamma distribution. 

1.  Generate m independent uniform U(0,1), random variables W1, W2, ...,Wm. 

2.  For given values of the progressive censoring scheme R1, R2, ..., Rm. Set    

 
 

3.  Set Ui = 1−VmVm−1...Vm−i+1 for i = 1,2,..., m. Then U1:m:n, U2:m:n,....,Um:m:n is a 

progressively Type-II right censored sample of size m from U(0,1). 

4.  For a given values of the two parameters  

 

Where  

 

is a progressively Type-II right censored sample of size m from the Gamma 

distribution. 

5.  After maximum likelihood estimation, both the Gamma and the log-logistic 

distributions have fitted to the sample, and a realization t of the statistic 
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6.  Steps 4 and 5 are repeated many times (in this study, the repetition was done 100 

times). 

7.  The approximate PCS under the assumption that the true distribution is Gamma is 

PCSGA=Pr[T>0]≈ (number of t values in step 5 > 0)/100. The result are given in 

Table1. 

ii. Secondly, when the true distribution is log-logistic distribution computation of the 

PCS is performed as follows 

1.  The same steps in (1), (2), (3) are used. 
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4. For a given values of the two parameters ε and σ  

 

is a progressively Type-II right censored sample of size m from the log-logistic 

dist. 

5.  After maximum likelihood estimation, both the Gamma and the log-logistic   

distributions have fitted to the sample, and a realization t of the statistic 

LL

GA

L

L
T ln  is calculated and stored. 

6.  Steps 4 and 5 are repeated many times (in this study, the repetition was done 100 

times). 

7.  The approximate PCS under the assumption that the true distribution is log-

logistic is PCSLL=Pr[ T<0]≈ (number of t values in step 5 < 0)/100.The result is 

given in Table (2) 

Table 1: PCS based on simulations when the data are from Gamma distribution 

n m censoring scheme (R) α PCSGA 

25 10 [4 0 0 2 0 0 4 2 0 3] 1.2 0.72 

1.5 0.74 

2.2 0.77 

2.5 0.81 

3 0.84 

20 8 [1 2 0 2 3 2 0 2] 1.2 0.69 

1.5 0.72 

2.2 0.73 

2.5 0.78 

3 0.82 

15 6 [2 0 2 0 3 2] 1.2 0.68 

1.5 0.72 

2.2 0.76 

2.5 0.79 

3 0.81 

10 4 [2 0 2 2] 1.2 0.65 

1.5 0.69 

2.2 0.71 

2.5 0.74 

3 0.78 
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Table 2: PCS based on simulations when the data are from log-logistic distribution 

n m censoring scheme (R) σ PCSLL 

25 10 [4 0 0 2 0 0 4 2 0 3] 2.2 0.54 

2.5 0.58 

3 0.59 

3.5 0.63 

4 0.66 

20 8 [1 2 0 2 3 2 0 2] 2.2 0.51 

2.5 0.56 

3 0.60 

3.5 0.61 

4 0.64 

15 6 [2 0 2 0 3 2] 2.2 0.49 

2.5 0.51 

3 0.52 

3.5 0.57 

4 0.60 

10 4 [2 0 2 2] 2.2 0.47 

2.5 0.50 

3 0.54 

3.5 0.56 

4 0.60 

2.5   Data Analysis 

Nelson [1982, p.105] presented data on the time (in minutes) to breakdown of an 

insulating fluid in an accelerated test at 34 kilovolts. This data is given in Table 3. 

Table 3   Nelson's Data 

0.19    0.78    0.96    1.31      2.78      3.16    4.15    4.67    4.85    6.50    7.35    8.01    

8.27    12.06    31.75    32.52    33.91    36.71    72.89   

Using Nelson data, the generation of progressively Type-II censored order statistics was 

illustrated by the example given in Balakrishnan and Aggarwala [2000]. Consider m=8 

and the censoring scheme R= (0,0,3,0,3,0,0,5). The observations and censoring scheme 

are reported in Table 4. 

Table 4: Progressively type II censored sample generated from the times to 

breakdown data 

i 1 2 3 4 5 6 7 8 

xi 0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35 

Ln xi -1.660 -0.248 -0.040 0.27 1.022 1.578 1.87 1.994 

ri 0 0 3 0 3 0 0 5 
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From the formula described in (4.1,4.2), we obtain the MLEs of Gamma distribution   ̂

= 0.67, ̂ = 0.54  , then ln LGA = -36.8346,  Also we obtain the MLEs of log-logistic 

distribution to be  ̂  = 0.9027  and   ̂ = 1.233, then ln LLL = -39.3475. 

 

Now using the following formula derived in (4.3) we calculate T. 

     
T= 2.5129  

 

Therefore, by using the RML test to discriminate between the two distributions in case of 

progressive censoring Type II, the gamma model is chosen for this data set. 

3.   In Case of Complete Samples 

As special case of progressive censoring, the problem of discriminating between Gamma 

and log-logistic distribution functions in case of complete samples when censoring 

scheme Ri =0 is considered in this section. 

3.1 Likelihood Ratio Test 

Put Ri =0 in (2.1) and (2.4) we get the following log likelihood functions for complete 

samples  
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Here  and  are the maximum likelihood estimators of  and 

respectively. 

 

In this discrimination procedure, choose 

(a) Gamma distribution if  T > 0, 

i.e., if ),(ln GAL  > ),(ln


LLL . 

Or 

(b) Log-logistic distribution if  T< 0, 

i.e., if  ),(ln


LLL > )ˆ,ˆ(ln GAL . 

3.2  Asymptotic Properties of the RML under Null Hypotheses 

In this section, the asymptotic distributions of the RML statistics will be obtained under 

null hypotheses in two different cases. From now on the almost sure convergence will be 

denoted by a.s. 

 

For any Borel measurable function h(.), EGA(h(U)) and VGA(h(U)) denote mean and 

variance of h(U) under the assumption that U follows GA(.,.). Similarly define 

ELL(h(U)) and VLL(h(U)) as mean and variance of h(U) under the assumption that U 

follows LL(.,.). Also if g(.) and h(.) are two Borel measurable functions, define along the 

same line  

 

CovgA(g(U),h(U)) = EGA(g(U).h(U))– EGAg(U).EGAh(U), and similarly 

CovLL(g(U),h(U)) =  ELL(g(U) h(U)) – ELLg(U).ELLh(U),  

Lemma 1. Under the assumption that the data are from GA(α, λ), we have the following 

results as n            ∞ 

a.     where  
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c.  )(
1

TET
n

GA Asymptotically equivalent to  )(
1   TET
n

GA
 

Proof of Lemma 1. The proof follows using similar arguments as of White 

(1982.theorem 1) and therefore it is omitted. 

Lemma 2. Under the assumption that the data are from LL (ε, σ), we have the following 

results as n          ∞ 

a.    where 

)),;((lnmax)),;((ln
,
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XfEXfE LLLLLLLL   

b. , a.s, where 
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Theorem 1. Under the assumption that the data are from a Gamma distribution, the 

distribution of T is approximately normally distributed with mean EGA(T) and variance 

VGA(T).     

Proof: Using the central limit theorem and using (iii) of Lemma 1, one can easily shows 

that  )(
1   TET
n

GA
 is asymptotically normally distributed. 

Theorem 2. Under the assumption that the data are from log-logistic distribution, the 

distribution of T is approximately normally distributed with mean ELL(T) and variance 

VLL(T). The proof follows along the same line as of Theorem 1.                        

Case (1): The data are coming from a gamma distribution and the alternative is a log-

logistic distribution. 

Assumed that n data points x1,x2,…,xn are obtained from GA(λ, α) with scale parameter λ  

and shape parameter α.  
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Now to obtain and  as defined in Lemma 1, let us define 

      

  (3.2) 

Where y ~ gamma distribution (1,α) 

Differentiating Equation (3.2) with respect to ε,σ and equating to zero. Therefore, 
~

 and 
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 can be obtained as solutions of the following equations 
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From these equations it is clear that 
~

  and 
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  are both functions of    and . 
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Case (2): The data are coming from a log-logistic distribution and the alternative is a 

Gamma distribution. 

 

Assumed that n data points x1,x2,…,xn are obtained from LL(ε, σ) with scale parameter ε 

and shape parameter σ. Now to obtain 
~

 , 
~

  let us define 
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From these equations it is clear that  
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Where ),1(L~ Ly  

Different values of 
~

 , 
~

 , ),( GAAM , ),( GAAV ,
~

  and 
~

 , ),( LLAM  ),( LLAV  

are computed numerically by using Equations (3.3), (3.4), (3.5), (3.6), (3.8), (3.9), 

(3.10),(3.11) and reported in Table 5 , Table 6. 
 

Table 5: Different Values of AMGA (α), AVGA(α), 
~

  and 
~

  for different α when 

λ=1 

α AMGA AVGA 
~

  
~

  
1.2 -0.179 0.476 0.161 375.432 

1.5 -0.102 0.472 0.168 394.131 

2 0.027 0.447 0.178 424.43 

2.2 0.076 0.428 0.181 429.509 

2.5 0.076 0.428 0.186 431.661 

3 0.076 0.428 0.192 457.002 
 

Table 6 Different Values of AMLL (σ), AVLL(σ), 
~

  and 
~

  for different σ when 

ε=1 

σ AMLL AVLL 
~

  

~

  
2.2 -0.109 5.397 0.956 1.509 

2.5 -0.087 2.326 0.679 1.945 

3 -0.064 2.058 0.434 2.788 

3.2 -0.058 2.253 0.373 3.166 

3.5 -0.051 2.681 0.304 3.78 

4 -0.042 3.635 0.226 4.922 

3.3   Determination of Sample Size 

In this Section, we propose a method to determine the minimum sample size needed to 

discriminate between Gamma and log-logistic distributions, for a given user specified 

probability of correct selection (PCS). Intuitively, it is clear that if two distributions are 

very close, one needs a very large sample size to discriminate between them for a given 

probability of correct selection. On the other hand if two distribution functions are quite 

different, then one may not need very large sample size to discriminate between two 

distribution functions. It is also true that if two distribution functions are very close to 

each other, then one may not need to differentiate the two distributions. 
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It is expected that the user will specify beforehand the PCS and tolerance limit in terms of 

the distance between two distribution functions in terms of the distance between two 

distribution functions. Based on the PCS, the required minimum sample size can be 

determined. The tolerance limit simply indicates that the user does not want to make the 

distinction between two distribution functions if their distance is less than the tolerance 

limit. Based on the PCS and the tolerance limit, the required minimum sample size can be 

determined.  

 

In section 3.2 the RML statistics follow normal distribution approximately for large n 

will be observed. Now it will be used with the help of K–S distance to determine the 

required sample size n. 

 

Using Theorem 1 and since it is assumed that the data are coming from GA . In this 

case the probability of correct selection PCSGA is given by  

PCSGA( )= Pr (T > 0)  

                     1-   

                    = . 

 

Also using Theorem 2 and since it is assumed that the data are coming from LL(ε, σ). In 

this case, the PCSLL is given by  

 

PCSLL = Pr (T < 0) 

                       =  

                  =1- . 

 

Where AM and AV denote the asymptotic mean and variance respectively, and Ф is the 

distribution function of the standard normal random variable. 

 

Therefore, to determine the minimum sample size required to achieve at least α* 

protection level, equate PCSGA( )   by   PCSLL  i.e., Let  
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From previous equations give n1 and n2 as  

          (3.12),        2

2

2
)),((

),(





LL

LL

AM

AVZ
n




  

(3.13) 

 

Here zα is the α-th percentile point of a standard normal distribution. reported n1, with the 

help of Table(5) for different  when the protection level α=0.7 in Table(7), reported n2, 

with the help of Table(6) for different  when the protection level α=0.7, in Table(8).  

 

Therefore, the minimum sample size n required to discriminate between Gamma and log-

logistic distribution can be taken as max (n1; n2). 

 

The distance between two distribution functions is defined by the K–S distance. The K–S 

distance between two distribution functions, say F(x) and G(x) is defined as 

 

K-S distance between GA(1,α) and LL( , ) reported with the help of Table(5) for 

different values of α, in Table(7). Similarly K-S distance between LL(1,σ) and GA( ,  

) reported with the help of Table(6) for different values of σ, in Table(8). 

 

If one knows the range of the shape parameter of the null distribution and for a given 

PCS that achieves a certain protection level P*, then the minimum sample size can be 

obtained by taking the maximum n obtained from Equations (3.12) and (3.13).  

 

But unfortunately in practice the shape parameter may be completely unknown; therefore, 

the K-S distances can replace the unknown parameters in taking the decision. That is, for 

a given protection level P* and a given pre-specified tolerance limit D*, the minimum 

sample size can be obtained by taking the maximum n obtained from Equations (3.12) 

and (3.13). For example, suppose that for a given P*= 0.7 and for α = 2.2 and σ= 2.2, 

then from Tables 7 and 8 the minimum sample size required to discriminate between 

Weibull and log-logistic distributions is max (21, 125) =125.  

 

On the other hand if   and σ are unknown and suppose that the practitioner wants to 

discriminate between  Gamma and  log-logistic distribution functions only when the 

distance between them is greater than or equal 0.217, i.e., D* ≥ 0.217 and with P* = 0.7. 

Then from Tables 7 and 8, it is clear that, D* ≥ 0.217 if   ≥ 1.2 and σ ≥ 2.2. Also, when 

the null distribution is Gamma, then for the tolerance limit D* ≥ 0.217, one needs n=5 to 

meet the PCS, P*= 0.7. Similarly when the null distribution is log-logistic then one needs 

n=125 to meet the same protection level. Finally, the minimum sample size required to 

discriminate between Gamma and log-logistic distributions with P*= 0.7 and D* ≥ 0.217 

is max(5, 125) = 125 . 
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Table 7: The minimum sample size n for P*=0.7, when the null distribution is 

gamma distribution is presented. The K-S distance between GA(1,α) 

and LL(
~

 ,
~

 )for different values of α is reported 

α 1.2 1.5 2 2.2 2.5 3 

n 5 13 169 21 21 21 

K-S 0.217 0.230 0.230 0.227 0.227 0.227 

Table 8: The minimum sample size n for P*=0.7, when the null distribution is 

log-logistic distribution is presented. The K-S distance between LL(1 ,

 ) and GA(
~

 , 
~

 ) for different values of   is reported.  

σ 2.2 2.5 3 3.2 3.5 4 

n 125 85 137 183 283 565 

K-S 0.351 0.310 0. 265 0.240 0.232 0.220 

 

Notice that, Tables 7 and 8 are obtained for the protection level 0.7 but for other 

protection levels the tables can be easily modified. For example, if we need a sample size 

corresponding to protection level P*=0.9, then all the entries corresponding to the row of 

n, must be multiplied by 2

7.0

2

9.0 / ZZ . 

3.4  Numerical Experiments 

In this section some experimental results is presented to examine how the asymptotic 

results derived in Section 3.2 behave for finite sample sizes. Moreover when the sample 

size is not sufficiently large, the PCS’s involved in the discrimination between the 

gamma and the log-logistic distributions based on likelihood ratio can be determined with 

more accuracy through MC simulations sample. The PCSs obtained using simulations 

and based on the asymptotic results derived in Section 3.2 are compared.  

 

Different sample sizes and different shape parameters of the null distributions are 

considered. The details are explained below. First case when the null distribution is 

gamma and the alternative is log-logistic. In this case consider n=20, 40, 60, 80, 100 and   

α=1.2, 1.5, 2, 2.2, 2.5 and 3. Computation of the PCS is performed as follows 

1.  For a sample size n, a random sample {x1,x2,……,xn} is generated from a 

GA(1,α) distribution. 
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2.  By maximum likelihood, both the gamma and the log-logistic distributions are 

fitted to the sample {x1,x2,……,xn}, and a realization, t, of the statistic 

LL

GA

L

L
T ln ,  is calculated and stored. 

3.  Steps 1 and 2 are repeated many times (in this study, the repetition was done 

10,000 times). 

4.  The approximate PCS under the assumption that the true distribution is gamma, 

is: PCSGA=Pr[ T>0] ≈ (number of t values in step 2 >0)/10,000 . 

Also the PCS’s obtained by using the asymptotic results as given in section 3.2 are 

computed. The results are reported in Table 9 in section 3.5.  

 

Similarly, the results when the null distribution is log-logistic and the alternative is 

gamma are obtained. In this case considered the same set of n and σ= 2.2, 2.5, 3, 3.2, 3.5 

and 4. The results are reported in Table 10 in section 3.5. 

3.5  PCS of RMKLD 

In probability and information theory, the Kullback-Leibler divergence (also information 

discrepancy, information gain, relative entropy, or KLD) is a non-symmetric measure of 

the difference (dissimilarity) between two probability distributions )(1 xf  and )(2 xf  it 

denotes the "information lost when )(2 xf  is used to approximate )(1 xf  or the distance 

from )(1 xf  to )(2 xf ". In other words, KLD is a measure of inefficiency of assuming that 

the distribution is )(2 xf   when the true distribution is )(1 xf . Since the measure from 

)(1 xf  to )(2 xf  is not the same as the measure from )(2 xf  to )(1 xf , then it can be 

conceptualized as a "directed/oriented distance" between the two models.  

 

The KLD is a natural distance function between models. It is usually used as a logical 

basis for model selection in conjunction with likelihood inference. Values of KLD are not 

based on only the mean and variance of the distributions; rather, the distributions in their 

entirety are the subject of comparison. The later is regarded an advantage of the KLD as a 

test statistic. The KLD is defined as follow 

dxxfxfdxxfxf

dx
xf

xf
xfxfxhKLD












0
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1
1

))(ln()())(ln()(

)
)(

)(
ln()())(),((

 



On Discriminating between Gamma and Log-logistic Distributions in Case of Progressive Type II Censoring 

Pak.j.stat.oper.res.  Vol.XIII  No.1 2017  pp157-183 175 

It is well known that 

1. KLD( )(1 xf , )(2 xf )  KLD( )(2 xf , )(1 xf ) 

2. KLD( )(1 xf , )(2 xf ) ≥ 0 and the equality holds if and only if )(1 xf  = )(2 xf .   

 

The smaller KLD( )(1 xf , )(2 xf ) means that " )(1 xf " is preferred and large values of KLD 

favor " )(2 xf ". However, the KLD (based test statistic) is considered as a ruler to 

measure the similarity between the two hypotheses / distributions.  

 

The test statistic is defined as the natural logarithm of two ratios of KLDs. The idea is 

similar to RML, in which our interested to select a model maximizing the likelihood. But 

in KLD method our interested to select a model minimizing the KLD, That's why it 

named as ratio of minimized KLD (RMKLD) which is defined as follow 











)(),((

)(),((
ln

12

21

xfxfKLD

xfxfKLD
RMKLD . 

In this Section how the proposed RMKLD test statistic work for different parameters and 

sample sizes is presented.  

 

First considered case 1 when the null distribution is gamma. The RMKLD testing 

procedure is introduced as follows 

1.  For a sample size n, a random sample {x1,x2,……,xn} is generated from a 

GA(1,α) distribution. 

2.  Calculate )(),(( 21 xfxfKLD and )(),(( 12 xfxfKLD . 











)(),((

)(),((
ln

12

21

xfxfKLD

xfxfKLD
RMKLD   

is calculated and stored. 

3. Select )(1 xf  if KLD < 0. 

4. Steps 2 and 3 are repeated many times (in this study, the repetition was done 

10,000 times). 

5. Compute the percentage of the times if RMKLD < 0 as the PCS of gamma 

distribution. 

PCSGA = (number of RMKLD values in step 2 < 0)/10,000  

The results are reported in Table 9.  

 

Similarly, the PCSLL when the null distribution is log-logistic and the alternative is 

gamma are obtained. Results are reported in Table 10. 


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Table 9: The Probability of Correct Selection Based on Simulations and also 

Based on Asymptotic Results When the Null Distribution is Gamma 

distribution 

  n 

α              PCS 20 40 60 80 100 

1.2 RMLS 0.77 

 

0.83 0.89 0.91 0.92 

RMLAR (0.75) (0.77) (0.78) (0.86) (0.89) 

 RMKLD 0.83 0.86 0.92 0.94 0.95 

1.5 RMLS 0.79 0.84 0.88 0.90 0.93 

RMLAR (0.76) (0.80) (0.83) (0.85) (0.90) 

 RMKLD 0.85 0.87 0.92 0.93 0.96 

2.0 RMLS 0.80 0.84 0.89 0.92 0.93 

RMLAR (0.76) (0.79) (0.83) (0.86) (0.92) 

 RMKLD 0.85 0.88 0.92 0.95 0.96 

2.2 RMLS 0.82 0.86 0.90 0.91 0.94 

RMLAR (0.78) (0.82) (0.84) (0.88) (0.93) 

 RMKLD 0.86 0.89 0.94 0.96 0.97 

2.5 RMLS 0.83 0.86 0.91 0.93 0.94 

RMLAR (0.80) (0.83) (0.86) (0.92) (0.93) 

 RMKLD 0.88 0.90 0.95 0.96 0.98 

3.00 RMLS 0.85 0.89 0.93 0.94 0.95 

RMLAR (0.83) (0.86) (0.90) (0.91) (0.94) 

 RMKLD 0.90 0.92 0.96 0.97 0.98 

 

The element in the first row in each box represents the results based on Simulations 

(10,000 replications) in case of ratio of the maximum likelihood functions denoted by 

RMLS and the number in bracket immediately below represents the result obtained by 
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using asymptotic results in case of ratio of the maximum likelihood functions denoted by 

RMLAC. The element in third row represent the RMKLD. 

Table 10: The Probability of Correct Selection Based on Simulations and also 

Based on Asymptotic Results When the Null Distribution is log-logistic 

distribution 

  n 

σ PCS 20 40 60 80 100 

2.2 RMLS 0.51 0.56 0.64 0.67 0.70 

RMLAR (0.47) (0.53) (0.57) (0.62) (0.66) 

 RMKLD 0.57 0.62 0.68 0.73 0.75 

2.5 RMLS 0.53 0.58 0.65 0.69 0.72 

RMLAR (0.48) (0.53) (0.58) (0.63) (0.68) 

 RMKLD 0.58 0.64 0.68 0.74 0.77 

3.0 RMLS 0.54 0.59 0.66 0.70 0.74 

RMLAR (0.51) (0.55) (0.58) (0.64) (0.69) 

 RMKLD 0.61 0.64 0.70 0.73 0.78 

3.2 RMLS 0.55 0.61 0.67 0.73 0.75 

RMLAR (0.54) (0.57) (0.61) (0.69) (0.73) 

 RMKLD 0.62 0.68 0.72 0.77 0.80 

3.5 RMLS 0.57 0.64 0.70 0.76 0.77 

RMLAR (0.57) (0.62) (0.66) (0.69) (0.75) 

 RMKLD 0.65 0.70 0.74 0.79 0.82 

4.00 RMLS 0.59 0.66 0.73 0.78 0.81 

RMLAR (0.61) (0.63) (0.67) (0.71) (0.78) 

 RMKLD 0.69 0.71 0.77 0.81 0.83 
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The element in the first row in each box represents the results based on Simulations 

(10,000 replications) in case of ratio of the maximum likelihood functions denoted by 

RMLS and the number in bracket immediately below represents the result obtained by 

using asymptotic results in case of ratio of the maximum likelihood functions denoted by 

RMLAC. The element in third row represent the RMKLD. 

 

It is quite clear from Tables 9 and 10 that as the sample size increases the PCS increases 

as expected. It is also clear that as the shape parameter moves away from 1, the PCS 

increases. Even when the sample size is 20. 

 

Interestingly, when the null distribution is gamma distribution, then the PCS based on 

MC simulation, AR and RMKLD is found to be significantly higher than the other case 

particularly for small sample sizes. For example, when the sample size is 20, and null 

distribution is gamma, the PCS for MC, AR and RMKLD are 0.77, 0.75 and 0.83 

respectively. But when the null distribution is log-logistic, for the same sample size the 

PCS for MC, AR and RMKLD are 0.51, 0.47 and 0.57 respectively.  

 

The asymptotic results work reasonable well for both the distributions and for all possible 

ranges of the parameters. From the simulation study it is recommended that the 

asymptotic results can be used quite effectively even when the sample size is as small as 

20 for all possible choices of the shape parameters. Moreover, as shape parameter 

increases, the PCS increases. 

 

Also from Tables 9 and 10 notice that, the RMKLD works better than RML, because it 

generates higher PCS (about 3-9 %) in particular for small sample size. In other words, 

the error type I for RMKLD is remarkably less, compared to the RML one. For instance, 

consider in table 9 the case at α= 1.2. The PCS for RMKLD is 83% and 77% for RML 

which indicates the error type I equals to 17% for RMKLD and 23% for RML. also 

consider in table 10 the case σ= 2.2 The PCS for RMKLD is 57% and 51% for RML 

which indicates the error type I equals to 43% for RMKLD and 49% for RML It also 

found that both methods behave similarly, for example, as sample size increases the PCS 

capture higher values, as expected.  
 

3.6  Data Analysis  

For illustrative purposes two data sets will be analyzed using RML method and some 

goodness of fit tests. 

Data Set1: ( Lawless, 1982, p. 228) it represents the number of revolution before failure 

of each of 23 ball bearings in the life tests and they are as follows: 17.88, 28.92, 33.00, 

41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64,68.88, 84.12, 

93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

In this case the two fitted distributions have the following MLEs: log-likelihood values 

are as follows. Gamma: =3.7138  , = 19.449, LLGA( , ) = -113.0274, Log-

Logistic: LLLL( ) = - 113.3662. 

 














  ,,3.0591 





 ,
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Therefore by using the method of the Maximized Likelihood Procedure 

3388.0lnln  LLGA LLT > 0 

 

Then gamma distribution is the preferred one. The closeness of results may be caused 

because the sample size is not very large.  

Moreover by computing the goodness of fit tests at 


 =3.7138, 


 = 19.449 and 

3.0591 , 60.639. 
 

   Therefore, it is nearly shows that the fitted gamma is much 

closer to the empirical distribution function than the log-logistic distribution. Results are 

reported in Table 11. 

Table 11: Goodness of Fit for Lawless Data Set   

# Distribution Kolmogorov Smirnov  Anderson Darling Chi-Squared  

1 Log-Logistic  0.10847 0.30294 0.93098 

2 Gamma  0.11878 0.20569 0.67705 

Data Set 2: (Linhart and Zucchini, 1986, p. 69) represent the failure times of 30 air 

conditions of an airplane (in hours):  23, 261, 87, 7, 120, 14, 62, 47, 225,71, 246, 21, 42, 

20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95. 

In this case the two fitted distributions have the following MLEs: log-likelihood values 

are as follows. Gamma: 


 =0.68741, 


 = 86.702, LLGA(


 ,


 ) = -151.706.  

Log-Logistic:   629.26,2024.1 


 , LLLL(


 , ) = - 152.3468.    

 

Therefore by using the method of the Maximized Likelihood Procedure 

9408.0lnln  LLGA LLT > 0 

 

Then gamma distribution is the preferred one. Moreover by computing the goodness of fit 

tests at 


 =0.68741, 


 = 86.702 and 1.2024 , 26.629. 
 

   Therefore, it is nearly 

shows that the fitted logistic is much closer to the empirical distribution function than the 

gamma distribution. Results are reported in Table 12. 

Table 12: Goodness of Fit for Linhart and Zucchini Data Set  

# Distribution Kolmogorov Smirnov  Anderson Darling Chi-Squared  

1 Log-Logistic  0.1234 0.49039 2.6152 

2 Gamma  0.13432 0.57009 1.7764 

 

unsaved://ThtmlViewer.htm/orderBy=Name|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=KS|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=AD|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=CS|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/#detailsId=3|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=2|Shows the details.
unsaved://ThtmlViewer.htm/orderBy=Name|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=KS|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=AD|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/orderBy=CS|Ranks%20the%20table.
unsaved://ThtmlViewer.htm/#detailsId=3|Shows the details.
unsaved://ThtmlViewer.htm/#detailsId=2|Shows the details.


Elsayed Ahmed Elsherpieny, Hiba Zeyada Muhammed, Noha Usama Mohamed Mohamed Radwan 

Pak.j.stat.oper.res.  Vol.XIII  No.1 2017  pp157-183 180 

4.   Conclusion 

The problem of discriminating gamma and log-logistic is considered in case of 

progressive type II censoring. The RML test is used to discriminate between them. Some 

simulation experiments were performed to see how the PCS under each model work for 

small sample sizes. It can be observed that the PCS works quite well even for small 

sample sizes. Interestingly, when Gamma is the true distribution, then the PCS based on 

simulation is found to be significantly higher than the other case particularly for small 

sample sizes. Also using real data life and applying RML test we found that gamma 

model is chosen for this data set.  

 

As a special case of progressive type II censoring when censoring scheme Ri= 0, The 

problem of discriminating between gamma and log-logistic in case of complete samples 

is considered. The RML and the RMKLD are used to discriminate between them. The 

asymptotic results are used to estimate the PCS which is used calculate the minimum 

sample size required for discriminating between two distributions. The PCS using 

simulations with the asymptotic results and RMKLD is compared and it is observed that 

even when the sample size is very small the asymptotic results work quite well for a wide 

range of the parameter space. Also it noticed that when the null distribution is gamma 

distribution, then the PCS is found to be significantly higher than the other case 

particularly for small sample sizes. Two Real data life are analyzed and applying RML 

test we found that gamma model is chosen for these two data sets. 
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