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Abstract
The maximum likelihood equations of IDB distribution can’t be solved analytically. Solutions of the
MLE equations can be obtained numerically. But the problem is to detect the initial value of the
parameters to solve the nonlinear MLE equations. A technique is developed for formulating the
initial value of the parameter to solve the MLE equations of IDB distribution. Considering all the
facts, though IDB distribution is not suitable for graduating mortality data but the model can
graduate mortality data of Bangladesh in the age range of 0-8 very well.
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Introduction
In general, mortality data shows very high frequency at and near zero age group
with a sharp decline within a few years of life, then becoming more or less
constant for a couple of years and again rises steadily resulting to a more or less
bathtub shaped curve. The exponential power life testing, and increasing,
decreasing and bathtub shaped failure rate (IDB) distribution both belonging to
the mixed failure rate group have the property to produce bathtub shaped
hazards as well as frequency distribution under certain conditions. The primary
aim of the study is to fit mortality data from different sources including
Bangladesh to IDB model and to verify the degree of fitness.

Fitting probability distributions to data faces problems for estimating parameters
when the underlying distribution is IDB. There are several statistical methods that
can give estimation of model parameters (method of moments, quantile or
percentile, least squares (Zhang et al., 2006), SCEM-UA algorithm (Gong, 2006),
etc). However, in general, these methods are not as efficient as the MLE (Zhang
and Xie, 2007). Two problems are encountered here with this method. The first is
that all the mortality data are grouped into age interval. The second is the choice
of initial solution. The pattern of maximum likelihood function and maximum
likelihood estimation are different with group data from that of ungrouped one
(Lawless, 1982) as can be seen in the Methodology and materials section.
Improper selection of the initial values may not help solving the iterative nature of
likelihood parameters. Aim of the study is to search for an appropriate primary
initial solution to solve the maximum likelihood equations for group data.
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There are a number of studies dealing with models for bathtub-shaped failure
rate. For example, Gaver and Acar (1979) proposed a model that has a broad
range of flexibility-constant hazard to bathtub hazard under different conditions, a
flexible bathtub hazard model for non-repairable systems with uncensored data
(Jaisingh et al., 1987), a lifetime distribution with an upside-down bathtub-shaped
hazard function (Dimitrakopoulou et al., 2007) and so on. Mudholkar and
Srivastava (1993) introduced an exponentiated Weibull distribution. Xie and Lai
(1996) gave another additive model with bathtub-shaped failure rate. The
parameters of this model can be estimated using graphical method. An additive
Burr XII model of four parameters is studied in Wang (2000). There are also
several other studies that investigated the combination of two Weibull
distributions for bathtub shape failure rate function, such as the competing risk
model, multiplicate model, and sectional model given in Chen (2000). Graphical
methods and representations of the mixed Weibull distributions were discussed
in Jiang and Murthy (1995, 1999), Jiang and Kececioglu (1992) and recently Lai,
et.al (2001).

Increasing, Decreasing, Constant and Bathtub-shaped failure rate
distribution (IDB)

In a study of how estimation errors and model assumptions affect the costs in the
optimal preventive maintenance problem, it soon became evident that for this
purpose the established distributions were not always feasible. Distributions with
one or two parameters like Weibull distribution impose very strong restrictions on
the data. This is well illustrated by their inability to produce bathtub curves. On
the other hand, more flexible distributions usually have five or more parameters
(Jaisingh et al., 1987), which seem to make the study of estimation and
optimization from small samples a rather hopeless numerical task (Hjorth, 1980).

A second idea leading towards the distribution was the lack of physical
motivation for various bathtub models. While the Weibull distribution, the extreme
value distribution, the normal distribution, and the whole class of IFR (increasing
failure rate) distributions have some sort of physical motivations, the burn in
argument of bathtub does not seem to have much relevance in many situations
where such distributions arise. The reason for this seems to be that a
probabilistic selection argument, and not a physical one, is the most relevant
explanation of the bathtub curve. For practical interest with lifetime data subject
to increasing age, an increasing failure rate of each individual was the natural
starting point. These arguments, together with considerations of mathematical
simplicity, led us to search for a new distribution, and with capacity to also
describe bathtub curves. The distribution to be studied is defined by the survival
function
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The hazard function can be written as
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where,  = 1/ and  = / and , ,  > 0

Special cases of the IDB distribution (relation to other distribution):

  = 0; the Rayleigh distribution
  =  = 0; the Exponential distribution
  = 0; decreasing failure rate
   ; increasing failure rate
 0<< ; bathtub curve

Methodology and materials
Primary aim of this research is to estimate the parameters of the desire
distribution. The genesis and the method of estimation involved in the research is
the subject matter of methodology, while a discussion about the data and the
computing aids constitutes the materials. The product limit estimate (Kaplan and
Meier, 1958) of the survival function S(t) is used to estimate the survival
probabilities for grouped data. For models in which some transformation of the
survivor function is linear in the parameters, least squares estimation can be
used to estimate the parameters. But the survival function of IDB distribution
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which is non linear and least squares method may not be used to estimate the
parameters. Since there exists no censoring expect the last interval, so the
likelihood function can be written as (Lawless, 1982);
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Putting the value of S(t) and taking log on both sides, we have
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Differentiating eq.(5) with respect to ,  and  and setting to zero we get three
non linear equations which are very difficult to solve analytically. The MLE
equations are as follows
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The survival or the cumulative hazard function of IDB distribution can’t be
expressed in a linear form and therefore, obtaining initial value of the parameters
to solve the maximum likelihood equations (6-8) is difficult. A simple model is
deduced from Kaplam-Meier non parametric method (Lawless, 1982) to search
the initial value of the parameters of IDB distribution as
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Where ci = S(ti), i = 1, 2, 3. S(t) is computed according to Kaplan-Meier method.
Using the positive root of , the later equations can be solved.
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Solution of the equations (9-11) for ,  and  are known as the initial value of the
parameter of the MLE equations. Mortality data of Japan, Canada and
Bangladesh have used for fitting the IDB model. In every case, data is taken from
secondary sources (Statistical Year Book and Demographic Year book). It is to
be noted that these data sets are not directly observed age-specific death figures
rather, these are synthesized from abridged life tables (Table 1-2).

Table 1: Observed and expected mortality indices of Bangladesh

Age Group Observed Death Expected Death

0 117 177

1 20 17

2 13 11

3 10 8

4 6 7

5-9 12 34

10-14 6 37

15-19 8 43

20-24 11 49

25-29 12 54

30-34 12 56

35-39 14 58

40-44 21 57

45-49 24 55

50-54 41 52

55-59 63 47

60-64 78 42

65-69 123 37

70-74 114 32

75+ 295 125
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Table 2: Observed and expected mortality indices of Canada and Japan

Age
Group

Canada Japan

Observed
Death

Expected
Death

Observed
Death

Expected
Death

1 1410 1925 9969 11503

1-4 292 524 3637 4442

5-9 187 1336 2326 12000

10-14 200 2127 1717 19256

15-19 455 2856 4102 25949

20-24 476 3494 4627 31829

25-29 585 4022 5262 36727

30-34 633 4426 8863 40531

35-39 832 4701 10236 43187

40-44 1091 4848 15438 44695

45-49 1488 4874 25069 45106

50-54 2492 4789 34761 44511

55-59 3851 4609 40866 43037

60-64 5052 4350 46916 40833

65-69 7022 4033 68729 38062

70-74 8838 3675 97355 34887

75-79 10347 3293 114097 31467

80-84 11389 2905 113553 27946

85+ 19719 13572 104360 135915

Result and discussion
The MLE equations of IDB distribution is very complex and difficult to solve
analytically. To overcome the situation a simple technique is proposed to find out
the initial value of the parameters of MLE. As a result, the positive real roots of 
can be found by solving eq.(9) and after that the value of β and δ is obtained by
solving equations (10-11). These values are known as initial value of the
parameters.



New solution and its impact on Increasing, Decreasing and Bathtub shaped failure rate model

Pak.j.stat.oper.res. Vol.V No.1 2009 pp19-29 25

The value of  can be found by solving eq.(6) using the initial values of β and δ.
After fixing the value of  (new value) and δ (initial value), the value of β can be
found by solving eq.(7). Lastly, fixing the values of β (new value) and  (new
value) then the value of δ can be obtained by solving eq.(8). Continue the
process until the convergence (less than 10-07) is obtained. Sometimes if the
equation for  is chosen first, after certain number of iterations, the value of t/λ
may becomes <-1 and then the MLE equations can’t be solved. To avoid this
situation better to choose either β or δ first and then solve for . Final estimation
of the parameters is shown in table 3.

Table 3: MLE estimation of the parameters and its significance

Source Parameter Chi-square
λ β δ

Bangladesh 0.0014183789 0.029576646 0.00062557 936

Japan 6.975279E-13 0.00057389 0.00045322 796920

Canada 3.753157E-13 0.000884407 0.0004701 75713

This process is easy to find out the initial value of the parameters for MLE if we
don’t have any idea about the approximate value of the parameters. As for
example, if we choose the initial value for λ= 100, β= 3.0 and δ= 1.5 to solve
equations (6-8), it takes a lot of time to reach the real value than that of the initial
value chosen under equations (10-12) as λ= 40.017, β= 0.7178 and δ= 0.0005
for Bangladeshi data. Comparing these two initial value data sets, the iteration
time for second set takes less time at least 30% than first set to solve the
maximum likelihood equations until the final approximated value reach to
λ= 0.0014183, β= 0.02957665 and δ = 0.0006255701. Five sets of mortality data
from Japan, Canada and Bangladesh are used to verify the acceptability of the
proposed technique and found almost same results (results of only three data
sets are shown in this study). This technique is also applied in Jaisingh’s (1987)
data set and found similar results.

A careful examination of the results shown in these tables and graphs, it is clear
that IDB distribution graduate mortality data of Bangladesh up to age 8 well (Fig.
1) while Gompertz model graduates mortality data beyond the age 15 (Alam,
1996). In case of Japan and Canada, the models exhibit the nature of Gompertz
model. In case of Bangladesh, IBD model over estimates mortality in between
the ages 10-50 while for Canada and Japan the over estimation is in between the
age 08-55 (Fig. 2). In case of Canada, this over estimation is parallel to the
observed mortality pattern while for Bangladesh, it is not parallel to the observed
mortality pattern and the extent of over estimation is higher than that of Canada
and Japan. It may be due to the fact that in case of Bangladesh the fluctuation in
the mortality pattern is much more prominent than that of Japan and Canada.
The extent of under estimation due to the model beyond the age range of over
estimation is much more prominent than the over estimation range.
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Two sets of data is used in the study of Dimitrakopoulou et al., (2007).
Depending on the nature of the data sets, they have shown that the estimated
hazard function may not always produce bathtub shape curve. Second data set
of their study follows bathtub shaped hazard pattern like this work for
Bangladeshi mortality data (Fig. 3) and first set produces unimodal pattern like
Japanese and Canadian mortality data (Fig. 4).

Conclusion
To reach the initial solution of MLE equations for IDB distribution, our proposed
technique may take less time to solve the MLE equations. The model used here
for graduating mortality data is not found suitable, although the model fit the data
of Bangladesh in the age range of 0-8 well. Development of a new model with the
combination of increasing failure rate models and this model, may graduate the
mortality data of Bangladesh to a better extent.

We are unable to make any comments regarding the efficiency of the estimation
process in estimating parameters of the models studied. Because, the
information used for estimating parameters are not from the respective
distributions. A study of the efficiency of the estimation models as well as the
initial solution may be taken as a problem for the future studies.
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Figure 1: Representation of observe and expected death for Bangladesh
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Figure 2: Observe Vs expected death for Canada and Japanese mortality data
(DeathCan: Observed death; ExpDethCan: expected death for Canada and DeathJpn:
Observed death; ExpDethJpn: expected death for Japan).
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Figure 3: Hazard plot for Bangladesh.
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Figure 4: Hazard plot for Canada and Japan (HCan: hazard plot for Canadian data;
HJap: hazard plot for Japan).


