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Abstract 

In this paper we use the Kullback-Leibler divergence to measure the distance between the posteriors of 

autoregressive (AR) model order, aiming to evaluate mathematically the sensitivity of the model 

identification to different types of priors of the model parameters. In particular, we consider three priors for 

the AR model coefficients, namely Jeffreys', g, and natural conjugate priors, and three priors for the model 

order including uniform, arithmetic, and geometric priors. Using a large number of Monte Carlo 

simulations with various values of the model coefficients, model order, and sample size, we evaluate the 

impact of the posteriors distance in the accuracy of the model identification. Simulation study results show 

that the posterior of the model order is sensitive to prior distributions, and the highest accuracy of the 

model identification is obtained from the posterior resulting from the g-prior. Same results are obtained 

from the application to real-world time series datasets. 

Keywords:   Distance of posteriors, Kullback-Leibler divergence, Jeffreys’ prior, g-prior, 

Natural conjugate prior.  

1.   Introduction  

Prior specification plays an important role in the Bayesian analysis of time series models. 

This is because the posterior density of the model parameters is obtained by combining 

the prior distribution of these parameters with the likelihood function of the observed 

time series (Broemeling, 1985). Different types of prior distributions are employed in the 

Bayesian time series analysis to represent the information about the parameters of time 

series model. Schlaifer and Raiffa (1961) presented a natural conjugate prior that has a 

distributional form depends on the likelihood function form to guarantee obtaining an 

analytically tractable posterior distribution. In case of little or no information is available 

about the model parameters, Jeffreys (1961) introduced a prior, known as Jeffreys’ proir, 

which overcomes the lack of invariance property of other existing non-informative priors. 

In order to simplify the elicitation of covariances of the model parameters, Zellner (1986) 

presented a reference informative prior known as g-prior. The availability of different 

types of priors makes the prior selection a complicated task and raises the issue of model 

identification sensitivity to prior distributions. 

 

The identification of time series model means the model order is unknown and needs to 

be specified, which is is the first and crucial step in the analysis of time series models. 

Thus, the order of time series model can be assumed to be a random variable with a 

known maximum, and its posterior mass function can be derived to select the order as a 

value with a maximum posterior probability. Following this idea, Diaz and Farah (1981) 

proposed a Bayesian method to identify the order of autoregressive models. Their work 

has been extended by many researchers to various time series models, which include 

moving average models (Shaarawy et al., 2007), autoregressive moving average models 
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(Fan and Yao, 2009), multivariate autoregressive models (Shaarawy and Ali, 2008), and 

multivariate moving average models (Shaarawy and Ali, 2012). These researchers have 

employed one or more of the abovementioned prior distributions to derive the posterior 

mass function of the model order, however, none of them has evaluated the sensitivity of 

model identification to different types of prior distributions. Recently, Soliman et al. 

(2015) have tried to evaluate the sensitivity of model identification to prior selection, 

however, their work is only based on empirical results and depends on a small scale of 

simulation study. Therefore, there is a need in the Bayesian time series analysis for a 

comprehensive and sophisticated evaluation of the model identification sensitivity to 

different priors to help researchers in the phase of prior specification. 

 

In this paper, we use the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) 

to measure the distance between the posteriors of the AR model order, resulting from 

different types of priors, in order to evaluate mathematically the sensitivity of the model 

identification to the employed priors. In addition, we evaluate the impact of the posteriors 

distance in the accuracy of model identification using a large number of Monte Carlo 

simulations. Accordingly, our work in this paper can be summarized in the following. 

First, we consider three types of priors for the AR model coefficient, namely Jeffreys’, g, 

and natural conjugate priors, and also three priors for the AR model order including 

uniform, arithmetic, and geometric priors in order to obtain the posterior mass functions 

of the AR model order. Second, we compute the KL divergence and its calibration 

between the resulting posteriors to measure the distance between these posteriors. Third, 

we execute a large number of Monte Carlo simulations with various values of the model 

coefficients, model order, and sample size in order to evaluate the impact of the 

posteriors distance in the accuracy of model identification. Finally, we use real-world 

time series datasets to illustrate the use of the KL divergence to measure the distance 

between the posteriors and show the impact of this distance in the model identification. 

 

The remainder of this paper is organized as follows. In Section 2 we present the 

background of the autoregressive time series model and its Bayesian concepts, and we 

obtain the marginal posteriors of the AR model order. In Section 3 we introduce the KL 

divergence and its calibration between the model order posteriors. In Section 4 we 

present simulation study and real-world time series datasets to illustrate the use of the KL 

divergence to measure the distance between the posteriors and then evaluate the impact 

of this distance in the model identification. Finally, we give the conclusions in Section 5. 

2.   Autoregressive Time Series Models and Bayesian Concepts  

Time series {𝑦𝑡} can be modeled by an autoregressive (AR) model of order 𝑝, simply 

denoted by AR(𝑝), and written as (Box et al., 2015): 

𝜙𝑝(𝐵)𝑦𝑡 = 𝜀𝑡         (1) 

where {𝜀𝑡} is a sequence of independent and normally distributed errors with zero mean 

and variance 𝜎2, B is the backshift operator defined as 𝐵𝑑𝑥𝑡 = 𝑥𝑡−𝑑, and 𝜙𝑝(𝐵) is the 

autoregressive polynomial with order 𝑝 written as 𝜙𝑝(𝐵) = (1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝). 

The model (1) can be simplified and written as  

𝑦 = 𝑋𝜙 + 𝜀,         (2) 
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where 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛)𝑇, 𝑋 is an 𝑛 × 𝑝 design matrix with the 𝑡𝑡ℎ row 𝑋𝑡 =

(𝑦𝑡−1, … , 𝑦𝑡−𝑝), 𝜙 = (𝜙1, 𝜙2, … , 𝜙𝑝)
𝑇
 is the autoregressive coefficients, and 𝜀 =

(𝜀1, 𝜀2, … , 𝜀𝑛)𝑇. 

 

It is worth noting that the design matrix 𝑋 becomes a function of 𝑝 when the AR model 

order is unknown. In this case we can assume that the model order 𝑝 is a random variable 

with a known maximum value of 𝑘. The prior information about 𝑝 can be represented in 

terms of a prior mass function 𝜁(𝑝) that can have different forms such as uniform, i.e. 

𝜁(𝑝) = 1/𝑘, or geometric, i.e. 𝜁(𝑝) = 0. 5𝑝 ∀𝑝 = 1,2, . . . , 𝑘. 

 

As we discussed above, we consider in this work three types of priors for the parameters 

𝜙 and 𝜎2: natural conjugate prior, g-prior, and Jeffreys’ prior. The natural conjugate prior 

in the case of AR models with normally distributed errors is a normal-gamma 

distribution. Suppose 𝜙~𝑁𝑝(𝜇𝜙, 𝜎2Σ𝜙) and 𝜎2~𝐼𝐺(
𝜈

2
,

𝜆

2
), the joint natural conjugate 

prior distribution of 𝜙 and 𝜎2 is given by:  

𝜁𝑛(𝜙, 𝜎2) ∝ (𝜎2)−(
𝜈+𝑝

2
+1)exp {−

1

2𝜎2 [𝜆 + (𝜙 − 𝜇𝜙)
𝑇

Σ𝜙
−1(𝜙 − 𝜇𝜙)]}, (3) 

where 𝜇𝜙, Σ𝜙, 𝜈 and 𝜆 are hyperparameters need to be estimated. 

 

The g-prior of 𝜙 and 𝜎2 can be written as:  

𝜁𝑔(𝜙, 𝜎2) ∝ (𝜎2)−(
𝑝

2
+1)exp {−

𝑔

2𝜎2
(𝜙 − �̅�)𝑇(𝑋𝑇𝑋)(𝜙 − �̅�)},  (4) 

where �̅� is an anticipated value of 𝜙, and g is a parameter that usually specified as a 

decreasing function of 𝑛 and 𝑝 (Fernandez et al., 2001). 

 

Jeffreys’ prior of 𝜙 and 𝜎2 is given by:  

𝜁𝑗(𝜙, 𝜎2) ∝ (𝜎2)−1, 𝜎2 > 0       (5) 

 

The likelihood function of the AR model (2) can be obtained by employing a 

straightforward random variable transformation from 𝜀 to 𝑦, and written as  

𝐿(𝜙, 𝜎2, 𝑝|𝑦) ∝ (𝜎2)−
𝑛

2exp {−
1

2𝜎2
𝜀𝑇𝜀}, 

∝ (𝜎2)−
𝑛

2exp {−
1

2𝜎2
(𝑦 − 𝑋𝜙)𝑇(𝑦 − 𝑋𝜙)},     (6) 

 

Based on the likelihood function (6), we update the information about the AR model 

order 𝑝 by the posterior probability mass function. To derive this posterior mass function 

of 𝑝, we need first to obtain the joint posterior of the model parameters 𝜙, 𝜎2 and 𝑝, and 

then integrate out the parameters 𝜙 and 𝜎2. 

 

We obtain the joint posterior of the parameters 𝜙, 𝜎2 and 𝑝 by multiplying the likelihood 

function by the joint prior of these parameters. For the natural conjugate prior, the joint 

posterior of 𝜙, 𝜎2 and 𝑝 is obtained as:  

𝜁𝑛(𝜙, 𝜎2, 𝑝|𝑦) ∝ 𝜁(𝑝)(𝜎2)−(
𝑛+𝜈+𝑝

2
+1)exp {−

1

2𝜎2
[𝜆 + (𝜙 − 𝜇𝜙)

𝑇
Σ𝜙

−1(𝜙 − 𝜇𝜙) + 

  (𝑦 − 𝑋𝜙)𝑇(𝑦 − 𝑋𝜙)]}.      (7) 
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We integrate out the parameters 𝜙 and 𝜎2 in (7) and obtain the marginal posterior mass 

function of the model order 𝑝 as:  

𝜁𝑛(𝑝|𝑦) ∝ 𝜁(𝑝) [
|Σ𝜙

−1|

|𝐴𝑛|
]

1

2

[𝑦𝑇𝑦 + 𝜆 + 𝜇𝜙
𝑇 Σ𝜙

−1𝜇𝜙 − 𝐵𝑛
𝑇𝐴𝑛

−1𝐵𝑛]
−

𝑛+𝜈

2    ∀𝑝 = 1,2, . . . , 𝑘. 

 

Where 𝐴𝑛 = (𝑋𝑇𝑋 + Σ𝜙
−1) and 𝐵𝑛 = (𝑋𝑇𝑦 + Σ𝜙

−1𝜇𝜙) 

 

For the g-prior, we obtain the joint posterior of 𝜙, 𝜎2 and 𝑝 as:  

𝜁𝑔(𝜙, 𝜎2, 𝑝|𝑦) ∝ 𝜁(𝑝)(𝜎2)−(
𝑛+𝑝

2
+1)exp {−

1

2𝜎2
[(𝜙 − �̅�)𝑇(𝑔𝑋𝑇𝑋)(𝜙 − �̅�) +  

                                                          (𝑦 − 𝑋𝜙)𝑇(𝑦 − 𝑋𝜙)]}.  (8) 

 

By integrating out the parameters 𝜙 and 𝜎2 in (8), we obtain the marginal posterior mass 

function of 𝑝 as:  

𝜁𝑔(𝑝|𝑦) ∝ 𝜁(𝑝) [
𝑔

𝑔 + 1
]

−
𝑛−𝑝

2
[𝑦𝑇𝑦 + 𝑔�̅�𝑇(𝑋𝑇𝑋)�̅� − 𝐵𝑔

𝑇𝐴𝑔
−1𝐵𝑔]

−
𝑛

2     ∀𝑝 = 1,2, . . . , 𝑘. 

where 𝐴𝑔 = ((𝑔 + 1)𝑋𝑇𝑋) and 𝐵𝑔 = (𝑋𝑇𝑦 + 𝑔(𝑋𝑇𝑋)�̅�) 

 

For Jeffreys’ prior, the joint posterior of 𝜙, 𝜎2 and 𝑝 is given by :  

𝜁𝑗(𝜙, 𝜎2, 𝑝|𝑦) ∝ 𝜁(𝑝)(𝜎2)−(
𝑛

2
+1)exp {−

1

2𝜎2
(𝑦 − 𝑋𝜙)𝑇(𝑦 − 𝑋𝜙)},  (9) 

 

Integrating out the parameters 𝜙 and 𝜎2 in (9) results in the marginal posterior mass 

function of 𝑝 as:  

𝜁𝑗(𝑝|𝑦) ∝ 𝜁(𝑝)
Γ (

𝑛−𝑝

2
)

𝜋
𝑛−𝑝

2 |𝑋𝑇𝑋|
1

2

[𝑦𝑇𝑦 − 𝑦𝑇𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑦]−
𝑛−𝑝

2    ∀𝑝 = 1,2, . . . , 𝑘. 

3.   Kullback-Leibler Divergence Between Posterior Mass Functions of Model Order  

The distance between two probability mass functions, say 𝜁1(𝑥) and 𝜁2(𝑥), can be 

measured by the Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) defined 

as  

𝐾𝐿[𝜁1(𝑥), 𝜁2(𝑥)] = 𝐸𝜁1(𝑥) [𝑙𝑛 (
𝜁1(𝑥)

𝜁2(𝑥)
)], 

                            = ∑𝑥 𝜁1(𝑥)𝑙𝑛 (
𝜁1(𝑥)

𝜁2(𝑥)
).     (10) 

 

The KL divergence is always non-negative and has zero value when the two probability 

mass functions are identical, and the smaller its value the closer are the two probability 

mass functions. From that we get the motivation to evaluate the sensitivity of the AR 

model identification to different types of priors based on the distance between the 

posterior mass functions of the model order measured by the KL divergence. In 

particular, for two different types of priors, if the computed distance between the 

resulting posterior mass functions are large that implies the prior specification has an 

impact in the AR model identification. 
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The KL divergence between two posterior mass functions of 𝑝, say 𝜁1(𝑝|𝑦) and 𝜁2(𝑝|𝑦), 

can be computed as:  

𝐾𝐿[𝜁1(𝑝|𝑦), 𝜁2(𝑝|𝑦)] = ∑𝑘
𝑝=1 𝜁1(𝑝|𝑦)𝑙𝑛 (

𝜁1(𝑝|𝑦)

𝜁2(𝑝|𝑦)
),    (11) 

and simplified to be:  

𝐾𝐿[𝜁1(𝑝|𝑦), 𝜁2(𝑝|𝑦)] = ∑

𝑘

𝑝=1

𝜁1(𝑝|𝑦)[−𝑙𝑛(𝜁2(𝑝|𝑦))] − ∑

𝑘

𝑝=1

𝜁1(𝑝|𝑦)[−𝑙𝑛(𝜁1(𝑝|𝑦))], 

                 = 𝐶𝐻[𝜁1(𝑝|𝑦), 𝜁2(𝑝|𝑦)] − 𝐻[𝜁1(𝑝|𝑦)],   (12) 

where the components 𝐶𝐻[𝜁1(𝑝|𝑦), (𝜁2(𝑝|𝑦)] and 𝐻[𝜁1(𝑝|𝑦)] are known as the cross-

entropy and Shannon entropy respectively. The KL divergence in (12) is asymmetric 

measure since it does not satisfy the triangle inequality (Contreras-Reyes and Arellano-

Valle, 2012). However, we can get a symmetric distance by computing the average of 

two KL divergences as:  

𝐾𝐿∗[𝜁1(𝑝|𝑦), 𝜁2(𝑝|𝑦)] =
1

2
{𝐾𝐿[𝜁1(𝑝|𝑦), 𝜁2(𝑝|𝑦)] + 𝐾𝐿[𝜁2(𝑝|𝑦), 𝜁1(𝑝|𝑦)]} 

 

Values of the KL divergence are between 0 and ∞, and it can be calibrated to be between 

0.5 and 1.0 to be easy to judge about the distance between the posteriors. Accordingly, 

when the calibration value of the KL divergence between two posteriors is close to 0.5, it 

implies the two posteriors are very similar; and when the value is close to 1.0 the two 

posteriors are strongly different and the prior specification is important in this case. 

Suppose 𝐾𝐿[𝜁1(𝜙|𝑦), 𝜁2(𝜙|𝑦)] = 𝛾, McCulloch (1989) proposed that the calibration of 

the KL divergence can be computed to be the value 𝛿 such that 𝐾𝐿[𝐵(0.5), 𝐵(𝛿)] = 𝛾, 

where 𝐵(𝛿) is a Bernoulli distribution with success probability 𝛿. Using the result that 

𝐾𝐿[𝐵(0.5), 𝐵(𝛿)] = −𝑙𝑜𝑔(4𝛿(1 − 𝛿))/2 (McCulloch, 1989, Abramowitz and Stegun, 

1972), we can compute the calibration of KL divergence (KLC) between two posteriors 

as:  

𝐾𝐿𝐶[𝜁1(𝜙|𝑦), 𝜁2(𝜙|𝑦)] =
1

2
{1 − 𝑒𝑥𝑝(−2𝐾𝐿[𝜁1(𝜙|𝑦), 𝜁2(𝜙|𝑦)])}  (13) 

 

The KL divergence in (12) and its calibration in (13) can be directly computed for any 

two of the marginal posteriors of 𝑝 presented in Section (2), and in the following section 

we evaluate these measures using simulated and real-world time series datasets. 

4.   Application 

In this section we have two parts. In the first part, we present a simulation study to 

evaluate the KL divergence (and its calibration) between the posterior mass functions of 

the AR model order and evaluate its impact in the model identification. We present two 

applications of our work to real world time series datasets in the second part. 

4.1 Simulation Study 

In this section, we conduct a simulation study to evaluate the KL divergence (and its 

calibration) between the posterior mass functions of the AR model order, which are 

derived in Section (2), and evaluate the impact of this posteriors divergence in the model 
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identification. We generate several time series data with considering different sample 

size, different model orders, and different values of the model coefficients. 

 

For the prior specification in this simulation study, we employ the uniform prior for the 

model order 𝑝 with a known maximum 𝑘 = 4. In addition, we use three values for the 

parameter 𝑔, i.e. 1/𝑛, 𝑝/𝑛, and 𝑘𝑝/𝑛, for the g-prior, following the recommendations of 

Fernandez et al. (2001), and also we follow the training sample approach to estimate the 

hyperparamters of the natural conjugate prior (Berger, 1985, Rachev et al., 2008). To run 

the simulations, we generate 1,000 time series of size 𝑛 (from 50 to 400 with an 

increment of 50 observations) from AR models with orders 1 (𝜙 = 0.3, 0.5, and 0.8), 2 

(𝜙1 = 0.5 and 0.2, and 𝜙2 = 0.4 and 0.6), and 3 (𝜙1 = 0.5 and 0.2, 𝜙2 = 0.4 and 0.6, and 

𝜙3 = 0.4 and 0.6). For each time series, we compute the posterior mass functions of 𝑝, 

𝜁𝑗(𝑝|𝑦), 𝜁𝑔(𝑝|𝑦), and 𝜁𝑛(𝑝|𝑦) resulting from the employed priors Jeffreys’, g, and 

natural conjugate respectively. Based on the computed posterior mass functions of 𝑝, we 

compute the KL divergence (and its calibration) between these posteriors, and identify 

the model order as a value with a maximum posterior probability. For all simulated time 

series, we compute the percentage of correctly identified models by comparing the 

identified order with the true value of 𝑝 used to generate the time series. 

 

We present the average of KL divergence and its calibration obtained with the 1,000 time 

series for AR(1) with 𝜙 = 0.3 in Table (1) and particularly the boxplot of the KL 

calibration (for 𝑛 = 200) in Figure (1), and present the percentage of correctly identified 

models in Table (2). From these results, we observe that the KL divergence and its 

calibration between 𝜁𝑗(𝑝|𝑦) and 𝜁𝑔1(𝑝|𝑦) and those between 𝜁𝑗(𝑝|𝑦) and 𝜁𝑔3(𝑝|𝑦) are 

very close, for example when 𝑛 = 200 their calibration values are about 0.73. These 

divergences are strongly larger than those between 𝜁𝑗(𝑝|𝑦) and 𝜁𝑔2(𝑝|𝑦) and those 

between 𝜁𝑗(𝑝|𝑦) and 𝜁𝑛(𝑝|𝑦), which both have calibration values of about 0.6 for 𝑛 =

200 as an example. The impact of these posteriors divergences can be observed in the 

percentage of correctly identified models presented in Table (1), since the results show 

that the highest percentage of correctly identified models is obtained from the two 

posteriors resulting from the g-prior with 𝑔 = 1/𝑛 and 𝑘𝑝/𝑛 followed by the percentage 

obtained from the two posteriors resulting from the g-prior with 𝑔 = 𝑝/𝑛 and from the 

natural conjugate prior, and the lowest percentage is obtained from the posterior resulting 

from the Jeffreys’ prior. It is worth observing that when the sample size grows the 

divergences of posteriors mass functions are reduced. For large sample size (𝑛 = 400), 

all the KL calibration values are less than 0.7, and all the percentages of correctly 

identified models are greater than 95%. This confirms that the impact of the prior 

distribution will be eliminated for a large sample of observations. 

 

We get approximately same results from AR(2) and AR(3) models with an additional 

observation that the more complicated AR model the smaller percentage of correctly 

identified models, especially in case of small sample size. In particular, the results of 

AR(2) model with 𝜙1 = 0.2 and 𝜙2 = 0.6 are presented in Tables (3) and (4), and also 

the results of AR(3) model with 𝜙1 = 0.5, 𝜙2 = −0.4 and 𝜙3 = 0.6 are presented in 

Tables (5) and (6). 
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Table 1:   KL divergence and its calibration for AR(1) with 𝝓 = 𝟎. 𝟑 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟏]
∗
 0.322 0.211 0.164 0.134 0.122 0.109 0.101 0.093 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟏] 0.837 0.784 0.755 0.734 0.723 0.711 0.704 0.696 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟐] 0.068 0.038 0.028 0.023 0.021 0.019 0.016 0.015 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟐] 0.655 0.619 0.603 0.594 0.589 0.584 0.58 0.577 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟑] 0.315 0.207 0.161 0.13 0.119 0.106 0.099 0.091 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟑] 0.833 0.78 0.751 0.73 0.719 0.708 0.7 0.693 

𝑲𝑳[𝜻𝒋, 𝜻𝒏] 0.112 0.067 0.052 0.039 0.037 0.032 0.029 0.026 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒏] 0.667 0.631 0.615 0.604 0.599 0.593 0.589 0.585 

𝑲𝑳[𝜻𝒈𝟏, 𝜻𝒏] 0.19 0.147 0.126 0.107 0.1 0.09 0.085 0.081 

𝑲𝑳𝑪[𝜻𝒈𝟏, 𝜻𝒏] 0.754 0.728 0.711 0.697 0.69 0.681 0.675 0.67 

 ∗𝜁𝑔1, 𝜁𝑔2, and 𝜁𝑔3 posteriors from g-prior with 𝑔 = 1/𝑛, 𝑝/𝑛 and 𝑘𝑝/𝑛 respectively, and 𝜁𝑗  and 𝜁𝑛 

posteriors from Jeffreys’ and natural conjugate priors respectively.  

Table 2:   Percentage of correctly identified models for AR(1) with 𝝓 = 𝟎. 𝟑. 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝜻𝒋(𝒑|𝒚) 76.6 87.2 90.8 92.9 92.9 95 94.9 95.8 

𝜻𝒈𝟏(𝒑|𝒚) 93.9 97.1 97.9 98.4 98.6 98.6 97.8 98.3 

𝜻𝒈𝟐(𝒑|𝒚) 87.2 92.5 94.7 95.2 94.9 96.6 96.3 97.2 

𝜻𝒈𝟑(𝒑|𝒚) 94.3 96.8 98 98.3 98.3 98.5 97.8 98.3 

𝜻𝒏(𝒑|𝒚) 84.9 89.9 92.3 94 93.8 95.6 95.6 95.9 
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Figure 1: Boxplot of the KL calibration for AR(1) with ϕ=0.3 and n=200  

Table 3:   KL divergence and its calibration for AR(2) with 𝝓𝟏 = 𝟎. 𝟐 and 𝝓𝟐 = 𝟎. 𝟔 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟏] 0.229 0.155 0.128 0.11 0.1 0.092 0.086 0.08 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟏] 0.797 0.752 0.73 0.715 0.705 0.697 0.69 0.684 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟐] 0.071 0.05 0.043 0.033 0.031 0.028 0.027 0.024 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟐] 0.62 0.592 0.582 0.574 0.57 0.567 0.564 0.561 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟑] 0.224 0.154 0.127 0.109 0.099 0.091 0.085 0.079 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟑] 0.792 0.749 0.727 0.712 0.702 0.694 0.687 0.681 

𝑲𝑳[𝜻𝒋, 𝜻𝒏] 0.089 0.056 0.046 0.037 0.035 0.031 0.028 0.026 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒏] 0.650 0.618 0.605 0.598 0.593 0.59 0.586 0.583 

𝑲𝑳[𝜻𝒈𝟏, 𝜻𝒏] 0.167 0.115 0.101 0.091 0.084 0.08 0.074 0.07 

𝑲𝑳𝑪[𝜻𝒈𝟏, 𝜻𝒏] 0.736 0.704 0.691 0.681 0.675 0.67 0.665 0.66 

Table 4:  Percentage of correctly identified models for AR(2) with 𝝓𝟏 = 𝟎. 𝟐 and 

𝝓𝟐 = 𝟎. 𝟔. 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝜻𝒋(𝒑|𝒚) 80.4 88.9 91.9 94.5 93.8 94.6 94.3 95.3 

𝜻𝒈𝟏(𝒑|𝒚) 90.6 97.4 97.4 98.3 97.8 98.7 98.4 98.9 

𝜻𝒈𝟐(𝒑|𝒚) 85.7 91.6 94.1 95 95.1 95.8 95.1 95.6 

𝜻𝒈𝟑(𝒑|𝒚) 91.4 97.2 97.1 98.3 97.6 98.7 98.2 98.9 

𝜻𝒏(𝒑|𝒚) 84.6 90.8 92.4 94.5 94.1 94.9 94.6 95.1 
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Table  5:  KL divergence and its calibration for AR(3) with 𝝓𝟏 = 𝟎. 𝟓, 𝝓𝟐 = −𝟎. 𝟒 

and 𝝓𝟑 = 𝟎. 𝟔. 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟏] 0.151 0.081 0.07 0.063 0.059 0.056 0.053 0.051 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟏] 0.739 0.69 0.677 0.668 0.662 0.658 0.654 0.65 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟐] 0.054 0.035 0.03 0.027 0.025 0.023 0.021 0.02 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟐] 0.585 0.565 0.56 0.558 0.555 0.554 0.553 0.552 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟑] 0.147 0.082 0.071 0.064 0.059 0.056 0.053 0.051 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟑] 0.736 0.689 0.676 0.667 0.661 0.657 0.653 0.649 

𝑲𝑳[𝜻𝒋, 𝜻𝒏] 0.054 0.031 0.025 0.021 0.02 0.017 0.016 0.015 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒏] 0.613 0.583 0.574 0.569 0.566 0.564 0.562 0.56 

𝑲𝑳[𝜻𝒈𝟏, 𝜻𝒏] 0.131 0.061 0.053 0.048 0.047 0.044 0.042 0.04 

𝐾𝐿𝐶[𝜁𝑔1, 𝜁𝑛] 0.697 0.648 0.64 0.635 0.631 0.628 0.625 0.623 

Table 6:  Percentage of correctly identified models for AR(3) with 𝝓𝟏 = 𝟎. 𝟓, 𝝓𝟐 =
−𝟎. 𝟒 and 𝝓𝟑 = 𝟎. 𝟔. 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝜻𝒋(𝒑|𝒚) 84.7 89.4 91.7 94.5 94.2 95.3 95.8 95.6 

𝜻𝒈𝟏(𝒑|𝒚) 89.6 97.2 98.0 98.3 98.4 99.1 98.7 99.1 

𝜻𝒈𝟐(𝒑|𝒚) 86.8 91.6 93.3 95.4 94.8 95.5 95.6 96.1 

𝜻𝒈𝟑(𝒑|𝒚) 90.3 97.1 98.1 98.3 98.3 98.9 98.5 99.0 

𝜻𝒏(𝒑|𝒚) 89.1 92.4 93.9 95.9 95.7 96.2 96.1 96.6 

 

Now, one question can be raised: is there an impact for the prior distribution of the model 

order in the posteriors divergence and the percentage of correctly identified models? To 

answer this question we modify the simulation design to employ only the g-prior with 

𝑔 = 1/𝑛 for the coefficients 𝜙, and employ three prior distributions for 𝑝 given as:  

𝜁1(𝑝) =
1

𝑘
, ∀𝑝 = 1,2, . . . , 𝑘               (Uniform prior) 

𝜁2(𝑝) = 0. 5𝑝, ∀𝑝 = 1,2, . . . , 𝑘        (Geometric prior) 

𝜁3(𝑝) =
𝑘−𝑝+1

𝑘+1
, ∀𝑝 = 1,2, . . . , 𝑘     (Arithmetic prior)   (14) 

Results of AR(1) with 𝜙 = 0.3, presented in Tables (7) and (8), show that the posterior 

mass functions of 𝑝 resulting from the employed three priors in (3) are slightly different 

and their divergence impact in the percentage of correctly identified models is small and 

can be ignored especially for sample size 𝑛 ≥ 100. We get approximately same results 

from AR(2) model with 𝜙1 = 0.2 and 𝜙2 = 0.6, presented in Tables (9) and (10), and 

from AR(3) model with 𝜙1 = 0.5, 𝜙2 = −0.4 and 𝜙3 = 0.6, presented in Tables (11) 

and (12). 
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In general, all simulation results show that the employed priors for the model order result 

in very similar posteriors. However, the posteriors of the model order resulting from the 

employed priors for the model coefficients are strongly different, and the highest 

percentage of identified models is obtained from the posterior resulting from the g-prior 

distribution. 

Table 7:   KL divergence and its calibration for AR(1) with 𝝓 = 𝟎. 𝟑 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝑲𝑳[𝜻𝟏, 𝜻𝟐]∗ 0.059 0.04 0.032 0.026 0.024 0.021 0.02 0.018 

𝑲𝑳𝑪[𝜻𝟏, 𝜻𝟐] 0.66 0.632 0.618 0.607 0.602 0.596 0.593 0.59 

𝑲𝑳[𝜻𝟏, 𝜻𝟑] 0.019 0.012 0.009 0.007 0.006 0.005 0.005 0.005 

𝑲𝑳𝑪[𝜻𝟏, 𝜻𝟑] 0.59 0.57 0.561 0.555 0.552 0.548 0.547 0.545 

𝑲𝑳[𝜻𝟐, 𝜻𝟑] 0.013 0.009 0.008 0.007 0.006 0.005 0.005 0.005 

𝑲𝑳𝑪[𝜻𝟐, 𝜻𝟑] 0.577 0.565 0.56 0.555 0.552 0.549 0.548 0.546 

 ∗𝜁1, 𝜁2, and 𝜁3 are posteriors from priors 𝜁1(𝑝), 𝜁2(𝑝), and 𝜁3(𝑝), respectively.  

Table  8: Percentage of correctly identified models for AR(1) with 𝝓 = 𝟎. 𝟑 . 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝜻𝟏(𝒑|𝒚) 93.9 97.1 97.9 98.4 98.6 98.6 97.8 98.3 

𝜻𝟐(𝒑|𝒚) 97.6 98.9 99.2 99.5 99.5 99.1 98.9 99.1 

𝜻𝟑(𝒑|𝒚) 96.1 98.3 98.9 99.2 99 98.9 98.6 98.5 

Table  9: KL divergence and its calibration for AR(2) with 𝝓𝟏 = 𝟎. 𝟐 and 𝝓𝟐 = 𝟎. 𝟔. 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝑲𝑳[𝜻𝟏, 𝜻𝟐] 0.056 0.034 0.027 0.024 0.022 0.02 0.019 0.018 

𝑲𝑳𝑪[𝜻𝟏, 𝜻𝟐] 0.657 0.623 0.61 0.603 0.598 0.594 0.591 0.588 

𝑲𝑳[𝜻𝟏, 𝜻𝟑] 0.025 0.017 0.013 0.011 0.01 0.009 0.009 0.008 

𝑲𝑳𝑪[𝜻𝟏, 𝜻𝟑] 0.607 0.586 0.577 0.571 0.567 0.564 0.562 0.559 

𝑲𝑳[𝜻𝟐, 𝜻𝟑] 0.008 0.004 0.003 0.003 0.002 0.002 0.002 0.002 

𝑲𝑳𝑪[𝜻𝟐, 𝜻𝟑] 0.559 0.541 0.537 0.535 0.533 0.532 0.531 0.531 
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Table 10:  Percentage of correctly identified models for AR(2) with 𝝓𝟏 = 𝟎. 𝟐 and 

𝝓𝟐 = 𝟎. 𝟔. 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝜻𝟏(𝒑|𝒚) 90.6 97.4 97.4 98.3 97.8 98.7 98.4 98.9 

𝜻𝟐(𝒑|𝒚) 91.1 98.7 98.8 99.3 98.9 99.5 99.4 99.6 

𝜻𝟑(𝒑|𝒚) 91.5 98.4 98.1 99.1 98.5 99.3 99.2 99.4 

Table 11:  KL divergence and its calibration for AR(3) with 𝝓𝟏 = 𝟎. 𝟓, 𝝓𝟐 = −𝟎. 𝟒 

and 𝝓𝟑 = 𝟎. 𝟔. 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝑲𝑳[𝜻𝟏, 𝜻𝟐] 0.071 0.025 0.019 0.017 0.016 0.015 0.014 0.014 

𝑲𝑳𝑪[𝜻𝟏, 𝜻𝟐] 0.662 0.605 0.595 0.589 0.586 0.583 0.581 0.578 

𝑲𝑳[𝜻𝟏, 𝜻𝟑] 0.037 0.023 0.019 0.017 0.016 0.015 0.014 0.014 

𝑲𝑳𝑪[𝜻𝟏, 𝜻𝟑] 0.629 0.603 0.595 0.589 0.586 0.583 0.581 0.578 

𝑲𝑳[𝜻𝟐, 𝜻𝟑] 0.011 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

𝑲𝑳𝑪[𝜻𝟐, 𝜻𝟑] 0.549 0.504 0.500 0.500 0.500 0.500 0.500 0.500 

Table 12:  Percentage of correctly identified models for AR(3) with 𝝓𝟏 = 𝟎. 𝟓, 

𝝓𝟐 = −𝟎. 𝟒 and 𝝓𝟑 = 𝟎. 𝟔. 

Sample size (𝒏) 

 50 100 150 200 250 300 350 400 

𝜻𝟏(𝒑|𝒚) 89.6 97.2 98 98.3 98.4 99.1 98.7 99.1 

𝜻𝟐(𝒑|𝒚) 85.7 98 99.1 99.5 99.6 99.6 99.6 99.6 

𝜻𝟑(𝒑|𝒚) 88.9 98.2 99.1 99.5 99.6 99.6 99.6 99.6 

4.2 Application to Real-World Time Series  

In this subsection, we use four real-world time series datasets to illustrate the use of the 

KL divergence and its calibration to measure the distance between the posterior mass 

functions of the model order, and show the impact of this distance in the model 

identification. These real-world time series datasets are described in Table (13) and 

plotted in Figure (2). 
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Table 13:   Description of the real-world time series datasets (Box et al., 2015) 

Series Description  Sample size 

A Readings of chemical process temperature are collected every 

minute by temporarily disconnecting the controllers and 

recording the subsequent fluctuations in temperature. 

226 

B Readings of chemical process viscosity are collected every hour 

to show the effect of uncontrolled factors such as variations in 

ambient temperature.  

310 

C Numbers of annual Wolfer sunspot are collected over the period 

1770 - 1869. 

100 

D Yields are collected from consecutive batches of a chemical 

process.  

70 

 

 

 
(a) Chemical process temperature readings 

 
(b) Chemical process viscosity readings 

 
(c) Annual Wolfer sunspot numbers 

 
(d) Yields from chemical process batches 

 

 

Figure 2: Time-plot of the real-world time series datasets 
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Using the non-Bayesian approach, Box et al. (2015) identified AR(1) model for the time 

series A and B, and identified AR(2) model for the time series C and D. We first employ 

Jeffreys’, g, and natural conjugate priors to obtain the posteriors of the model order. 

Second, we compute the KL divergence and its calibration between these posteriors. 

Finally, we compute the posterior probabilities and identify the model order with the 

maximum posterior probability. Results of the KL divergence and its calibration 

presented in Table (14) and results of the posterior probability and identified model are 

presented in Table (15). It can be observed that these results are very consistent with the 

results from the simulation study in previous subsection, and the identified models are 

almost the same as those identified by the non-Bayesian approach. 

Table 14:   KL divergence and its calibration for the real-world datasets. 

   Real-world time series 

 A B C D 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟏] 0.081 0.175 0.269 0.358 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟏] 0.693 0.772 0.823 0.858 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟐] 0.007 0.05 0.001 0.06 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟐] 0.56 0.655 0.523 0.668 

𝑲𝑳[𝜻𝒋, 𝜻𝒈𝟑] 0.077 0.155 0.258 0.357 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒈𝟑] 0.689 0.758 0.817 0.857 

𝑲𝑳[𝜻𝒋, 𝜻𝒏] 0.005 0.045 0.012 0.12 

𝑲𝑳𝑪[𝜻𝒋, 𝜻𝒏] 0.55 0.647 0.577 0.731 

𝑲𝑳[𝜻𝒈𝟏, 𝜻𝒏] 0.06 0.091 0.169 0.069 

𝑲𝑳𝑪[𝜻𝒈𝟏, 𝜻𝒏] 0.669 0.704 0.768 0.68 

Table 15:  Posterior probability and identified models for the real-world time series. 

 Series A Series B 

𝒑 𝜻𝒋(𝒑|𝒚) 𝜻𝒈𝟏(𝒑|𝒚) 𝜻𝒈𝟐(𝒑|𝒚) 𝜻𝒈𝟑(𝒑|𝒚) 𝜻𝒏(𝒑|𝒚) 𝜻𝒋(𝒑|𝒚) 𝜻𝒈𝟏(𝒑|𝒚) 𝜻𝒈𝟐(𝒑|𝒚) 𝜻𝒈𝟑(𝒑|𝒚) 𝜻𝒏(𝒑|𝒚) 

1 0.811 0.929 0.853 0.925 0.821 0.811 0.881 0.789 0.865 0.719 

2 0.143 0.065 0.117 0.069 0.151 0.143 0.105 0.168 0.120 0.228 

3 0.032 0.005 0.02 0.005 0.021 0.032 0.010 0.029 0.011 0.043 

4 0.014 0.001 0.01 0.001 0.007 0.014 0.003 0.014 0.004 0.009 

Identified 𝒑 AR(1) AR(1) AR(1) AR(1) AR(1) AR(1) AR(1) AR(1) AR(1) AR(1) 

 Series C Series D 

𝒑 𝜻𝒋(𝒑|𝒚) 𝜻𝒈𝟏(𝒑|𝒚) 𝜻𝒈𝟐(𝒑|𝒚) 𝜻𝒈𝟑(𝒑|𝒚) 𝜻𝒏(𝒑|𝒚) 𝜻𝒋(𝒑|𝒚) 𝜻𝒈𝟏(𝒑|𝒚) 𝜻𝒈𝟐(𝒑|𝒚) 𝜻𝒈𝟑(𝒑|𝒚) 𝜻𝒏(𝒑|𝒚) 

1 0.000 0.001 0.000 0.001 0.000 0.067 0.268 0.127 0.27 0.146 

2 0.477 0.797 0.489 0.79 0.544 0.318 0.464 0.382 0.458 0.449 

3 0.18 0.114 0.163 0.116 0.181 0.443 0.24 0.409 0.244 0.341 

4 0.343 0.089 0.348 0.092 0.275 0.172 0.028 0.082 0.028 0.064 

Identified 𝒑 AR(2) AR(2) AR(2) AR(2) AR(2) AR(3) AR(2) AR(3) AR(2) AR(2) 
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5.   Conclusions 

In this paper we first obtained the posterior mass functions of the AR model order by 

considering three types of priors for the AR model coefficients, namely Jeffreys’, g, and 

natural conjugate priors, and three priors for the model order including uniform, 

arithmetic, and geometric priors. We then introduced the KL divergence and its 

calibration between the resulting posteriors to measure the distance between these 

posteriors. We used a large number of Monte Carlo simulations to evaluate the impact of 

the posteriors distance in the accuracy of model identification. Simulation results 

confirmed that the posteriors resulting from Jeffreys’, g, and natural conjugate priors are 

strongly different, and the highest percentage of identified models is obtained from 

employing the g-prior distribution. Along with the simulation study, we applied our work 

to real-world time series datasets and their results are consistent with those of the 

simulation study and the non-Bayesian approach. Future work may be an extension to 

multivariate autoregressive models. 
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