
Pak.j.stat.oper.res.   Vol.VI No.1 2010 pp21-35

Nonparametric Mixed Ratio Estimator for a
Finite Population Total in Stratified Sampling

George Otieno Orwa
Department of Statistics and Actuarial Sciences
Jomo Kenyatta University
Nairobi

Romanus Odhiambo Otieno
Department of Statistics and Actuarial Sciences
Jomo Kenyatta University
Nairobi

Peter Nyamuhanga Mwita
Department of Statistics and Actuarial Sciences
Jomo Kenyatta University
Nairobi

Abstract
We propose a nonparametric regression approach to the estimation of a finite population total in
model based frameworks in the case of stratified sampling. Similar work has been done, by
Nadaraya and Watson (1964), Hansen et al (1983), and Breidt and Opsomer (2000). Our point of
departure from these works is at selection of the sampling weights within every stratum, where
we treat the individual strata as compact Abelian groups and demonstrate that the resulting
proposed estimator is easier to compute. We also make use of mixed ratios but this time not in
the contexts of simple random sampling or two stage cluster sampling, but in stratified sampling
schemes, where a void still exists.
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1. Introduction
Model based surveys work against the background that an unknown value of a
survey measurement is a realised value of a random variable, sayX . A model for
the random variableX is then sort and together with sampled data, inference is
made regarding the population parameter of interest. For a detailed review of this
strategy, see Hall and Patil (1996) and Rupert (2003).

The choice of an optimal model remains a concern being that mis-specifying a
model leads to huge amounts of error. One way of solving this problem of model
misspecifications is the use of nonparametric regression. For a review of the
problems associated with model misspecifications, and how nonparametric
regression has in the past been used in an attempt to solve the problems, see
Hansen et al (1983) and Dorfman (1992).

Suppose now that the optimal design for a given survey is stratified random
sampling. Breidt and Opsomer (2000) considered a general unequal probability
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sampling design which covered stratification as a special case, and noted in their
remarks that their technical assumptions hold under stratified simple random
sampling. So making use of these results, we may suppose that a population of
size N is divided into L disjoint strata, each of size , 1,2, 3,...,hN h L .

For the thj unit in the thh stratum, let , 1, 2,3,...,hj hy j N be the survey variable of
interest. Further, let the auxiliary measurement hjx be weakly but positively
correlated with hjy such that their independence is not rendered unrealistic. For
each stratum, a sample of size hn is taken without replacement, where hn is

sufficiently large with respect to hN and 0
h

h
h N

n
f .

Let
N

N
W h

h  be the thh stratum weight. The population total is accordingly given

by
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Now consider the model

hj h hj hjy x   (3)

where  is the error, consider the following function.

It is logical that

   hjhjhjhj xXEE  /  (4)

   hjhjhjhj xXYEYE  / (5)

   , , /hj h j hj h j hj hjcov Y Y cov Y Y X x      (6)

and    , , /hj h j hj h j hj hjcov cov X x         (7)

where

hjhhj xyE  )( (8)
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(9)
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It easy to see that
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which contains an unknown parameter 2 which must be estimated. On
estimating the value of the unknown 2 using equations 4, 5, 6 and 8, we get that
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where
hh

hj
hj xn

x
k  .

Suppose now that the equation 1.6 changes for instance linearly to

hjhhjhjhj XxXYE   )/( (12)

then it follows that

  
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ˆ
h h

h
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The implication of the equation 13 is that SRY


is not robust to model
misspecifications that can occur in the equation 6. Inevitably, an estimation
approach that does not rely on parametric assumptions in the working model is
therefore needed. Ratio estimation has been looked at by various researchers,
but in different contexts. For example, see Srivastava (1990), Sukhatme and
Sukhatme (1970) and even as early as the work of Olkin (1958). The concept of
nonparametric regression has also been explored to yield desirable results in
various other applications which an interested reader may review. For instance,
see Cai and Brown (1998), Cheng (1994), Deng and Chikura (1990), Eilers and
Marx (1996) and Grama and Nussbaum (1998).

1.1. Outline of the Paper
The rest of this paper is organised as follows. In Section 2, a nonparametric

estimator PEY


for finite population total Y is proposed. The asymptotic properties
of the proposed estimator are derived in Section 3. In Section 4, we present an
empirical study and give a conclusion to the paper in Section 5.

2. Proposed Estimator
We propose an estimator based on the model:

  )( hjhj xYE  (14)
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where (.) and (.)2 are assumed to be twice continuously differentiable
functions of hjx . In this proposal, let  .bk denote a kernel function, which is also

twice continuously differentiable, and as expected, is such that   1bk u du  .

Further, let the smoothing weight in the thh stratum be defined by

 
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with 1,2, 3,..., hj N and 1,2, 3,..., hi N .

This weight defined by the equation 15 was first suggested by Nadaraya and
Watson (1964) and later used in several other works. Their estimator of (.) in
the equation 14 based on this weight was appropriately found to be

hj
s

hjhj yxwx )()(ˆ  (16)

To estimate the population of the non-sampled units in the thh stratum, it is
assumed that hixx  is any of the non-sampled units and therefore,
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(17)

Now, denote the nonparametric regression estimator for the population total by
P̂EY and the estimator within stratum h by P̂EhY . In stratumh , the population total is

therefore

 



h

h

N

nj
hjhsNph yEyY

1

ˆ
 (18)

and the estimator of the population total is given by

1 1

ˆ ( )
L L

PE hs hj i hj
h h s

Y y w x y
 

   (19)

The equations 18 and 19 are similar to those used in previous works. We now
suggest a different approach to the method of constructing the sampling weights
defined in equation 15. Recall that our sampling scheme takes the various strata
to be mutually disjointed and that within every stratum, simple random sampling
is used.
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Consider stratum h in isolation and let the sample size hn from this stratum be
sufficiently large. This assumption can be easily justified by our description in
Section 1. Now, let the sampled elements be almost homogeneous in terms of
the survey characteristics. This is usually the main goal of stratification and the
elements within any stratum can usually be assumed to bear this property. Let
these sampled values be such that they can be viewed as order statistics within
the stratum h. This is logical being that stratification attempts to bring elements
whose characteristics are very close to each other with respect to the survey
problem, but this is never completely achieved. So the sampled values in the
stratum can be ordered with respect to how close they are to the desired
characteristics.

With this description, the sampled elements in stratum h form a compact Abelian
group. Viewed as ordered values, they form a sequence whose sum is an
Abelian sum, since the differences between the elements being summed has
been taken to be very small.

Therefore, considering the right hand side of equation 15 let it be re-written as
The prediction error is given by

( )

hj hi
b
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(20)

with j being the weight of sampled unit j . Since the population size N is finite, it
follows that even hN is finite and therefore the weight in equation 20 is a
countable sequence. Now as hn has been assumed large, the Abelian sum of the
denominator in equation 20 becomes

( ) 1
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which is approximated using the integral
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But it is known that
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x
a x

x

a x
a x dx

c
  (23)

where   *a x is a composite function of  a x containing infinitely many sub
functions as may be the case when hn is assumed large in stratum h while c is a
constant which is such that c << 1. The immediate meaning of equation 23 is that
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the weights described in equation 20 are purely discrete and further, they are
pure functions of the auxiliary variables. It further implies that the proposed
model is sufficient and also suggests unbiasedness of the model which we later
prove in Section 4. The weight in the proposed estimator defined in equation 19
is therefore written as

b j
hj

j

ck
w




 (24)

Notably from 23, the constant c << 1, meaning that this weight hj bw k so that
we now have as our proposed estimator,

1 1

L L

PE hs b hj
h h s

Y y k y

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   (25)

But  .bk is a kernel function assumed to be twice differentiable, and will therefore
in this sampling scheme, always exist. The advantage with this setup is that we
do not have to assign any weights or probabilities to the elements within the
clusters, but only select a kernel and proceed to perform sampling. In fact, in the
considered case where hn is sufficiently large, 1bk  and the estimator reduces to
simply

1 1

L L

PE hs hj
h h s

Y y y


  

   (26)

which is easy to compute compared to its counterpart in equation 25.

3. Properties of the Proposed Estimator

3.1 The Asymptotic Bias of the Proposed Estimator

The error in using PEY


as an estimator of Y is given by
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Equation 28 gives the bias associated with P̂EY . )( hjx is approximated by
applying Taylor series expansion about a point hjx . Further, assume that hn is
sufficiently large and that 0b , then observe that

   21ˆ ( ) ( ) ( ) ( )
2hj hi hi hj hi hi hj hix x x x x x x x         (29)

Letting
b
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Substituting for )(ˆ hjx , equation (1.28) becomes
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We now make use of the following theorem.

Theorem 3.1
Assume hx ’s are fixed uniform design points and regularly spaced on (0, 1), then
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Using the above Theorem, equation (1.29) can be shown to be
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Hence the bias of P̂EY is given by
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From equation 33, it is clear that the bias of
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for sufficiently large hn and with 0b .

3.2 Asymptotic Variance if the Proposed Estimator

Let the variance of P̂EY be denoted by ( )PEVar Y
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Which may be expanded to the form
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sj

hh xxwx  


 and   2 2ˆ ˆhj hj hjy x   and hence

      2 2

1

ˆ ˆ
L

PE h h h h h
h

Var Y W x N n x 
 



           
 (42)

In equation 41 in which hn is sufficiently large and hN , ),(  nO
N

n
f

h

h
h as

earlier stated in Section 3.1 and ),(  NO
N

N h 10   .

Meaning that

2

1

ˆ 1 ˆar ( )
L

hPE
h

h

Y Y W
V x

N N N






 
 

 
 (43)

The asymptotic variance of P̂EY Y

N

 
 
 

is therefore

2

2

1

( )ˆ 1 ˆar ( )
hj hL

sPE
h

h

w x
Y Y

V x
N N N




 
     

 


 (44)
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Recalling that





sj
b

b
hhj

uk

uk
xw

)(

)(
)( ,


s

b uk )( = 






 

s

hihj
b b

xx
k = )( 3bnObn hh  , and that

bn

uk

bnObn

uk
xw

h

b

hh

b
hhj

)(

)(

)(
)(

3





we have that
2

2
2

1

ˆ ( )1 1 ˆar ( )
L

bPE
h

h sh h

k uY Y
V x

N N n b n b




 
 

 
  (45)

Consider hn equidistant points within the thh stratum such that the spacing

between any two consecutive points is 1
hn then  1

1
 hjhj

h

xx
n

 
2

2
12

1

ˆ ( )1 1
ar ( )

L
bPE

hj hj h
h sh

k uY Y
V x x x

N N n b b




 
  

 
  (46)

Which we may write as
2

2
2

1

ˆ ( )1 1
ar ( )

L
bPE

hj h
h sh

k uY Y
V dx x

N N n b b




 
 

 
  (47)

Let u
b

xx hihj 


, hihj xxbu  so that hjdxbdu  .

Using this transformation in equation 47, we may write that
2 2

2
1

ˆ ( ) ( )1
ar

L
h bPE

h j sh

x k uY Y
V bdu

N N n b b


 

 
 

 
  (48)

For a continuous set of points, this expression becomes

2
2

1

ˆ 1 1 1
ar ( )

L
PE

h k
h h

Y Y
V x C

N b N n




 
 

 
 (49)

where kC duukb )(2 .
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3.3 Asymptotic Mean Squared Error

The MSE of P̂EY is given by

   
2

ˆ ˆar PEPE PEMSE Y V Y Bias Y

        
(50)

From equations 34 and 49 the following the following results are immediate
consequences

 
22 12 2

2 0
1 1

ˆ

1 1 1 1ˆ ( ) ( ) ( )
2

PE

L L

h k h
h hh

MSE Y

b
x C x u k u du

b N n N



 
 

             
  

(51)

 
24

2
2

1 1

1 1 1 1ˆ ( ) ( )
4

L L

PE h k h k
h hh

b
MSE Y x C x d

b N n N  
 

         
  (52)

where 
1

0

2 )( duukudk

Now differentiating equation 52 with respect to b and leads to
2

2 3
2 2

1 1

1 1 1 1
( ) ( )

L L

h k h k
h hh

x C b x d
b b N n N

  
  

          
  (53)

And by equating the equation (53) to zero, the optimum b therefore becomes

5

1

2

1










C

C
bopt where k

L

h
h

h

Cx
n

C 



1

2
1 )(

1  and
2

1
2 )( 







  


L

h
kh dxC 

Using this optb in the Theorem 3.1 gives

 

4/5

2
2/5

1

2
1

2

1

1
( )

1ˆ ( )
1

( )
4

L

h kL
h h

PE h k
Lh

h k
h

x C
n

MSE Y x d
N

x C














                           





(54)

Hence MSE for the population total under this model is
4/5

2
2/5

1

1
2

1

1
( )

( )
1

( )
4

L

h kL
h h

PE h k
Lh

h k
h

x C
n

MSE Y x d

x C













                                 





(55)
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If the averages are bounded as N and 0b then equation 49 0
This shows that our estimator is statistically consistent and therefore useful.

1
5

2

1
2

1

1
( )

( )

L

h k
h h

opt
L

h k
h

x C
n

b

x d









 
 
   
      




(56)

Since b is asymptotically equivalent to 5/1
hn , it follows that an optimal local rate of

convergence for PEY


is  5/1
hnO as expected. See Bashtannyk and Hyndman

(2001), Wu (2003) and Wu and Luan (2003) for examples. In fact, this conclusion
implies that the model is actually unbiased, since past works bearing this
property, already demonstrated unbiasedness. See Chambers et al. (1992) and
Chambers and Dorfman (1992) and Silverman (1986).

4. Empirical Study

4.1. Description of the Population

For our experiment, we simulated a population,   20, hjX N x .

We stratified this population, first considering the distance of each value from the
mean, and then by considering the distance of each value from the median to
give two separate populations. In these populations, we used the mixed ratio

estimator due to Nadaraya and Watson (1964), which we denote by SRY


, and the

proposed estimator PEY


to estimate the population total. We did this for several
mean functions so as to make enough comparison. A sample of size 100was
taken with each stratum contributing a sample size proportional to the number of
units in it. Simple random sampling is done 250 times for each case.
Epanechnikov kernel, defined by, was used for the kernel smoothing on the
various populations. We computed the biases as  YYSR ˆ and  YYNP ˆ ,

respective average of the variances  YYSR ˆ and  YYNP ˆ , and the Mean
Squared Errors. We also computed the 95% confidence interval for each of the
populations.

4.2. Results

From Table 1, the SRY


gives a better estimation of the population total, while

PEY


underestimates the population total. However, the Root Mean Square Error

RMSE of PEY


is superior. The coverage ability of PEY


is also better than that

of SRY


.



Nonparametric Mixed Ratio Estimator for a Finite Population Total in Stratified Sampling

Pak.j.stat.oper.res.   Vol.VI No.1 2010 pp21-35 33

Table 1: MSE from the Random Samples

1.96STE   1.96STE  1.96STE  Bias RMSE

SRY


16.5 21.5 62.0 1, 098 17,170

PEY


22.0 9.0 69.0 21,511 15,578

SRY


22.5 14.5 63.5 6,782 16,111

PEY


23.0 8.5 68.5 10,745 15,234

Table 2 presents the conditional relative biases due to the two estimators for the
various chosen mean functions. For each of the mean functions, various values
of the bandwidths were tried.

Table 2: Conditional Relative Biases from the Two Populations
.1pop .1pop .2pop .2pop

mean functions PEY


SRY


PEY


SRY


linear
0.1h 
0.25h 
1h 
2h 

quadratic

0.1h 
0.25h 
1h 
2h 

exponential

0.1h 
0.25h 
1h 
2h 

cycle

0.1h 
0.25h 
1h 
2h 

0.002102
0.034306
0.021130
0.015000

0.034904
0.052177

0.022990
0.011171

0.350423
0.211236
2.135405
1.216383

0.014433
0.034446
0.035104
0.037353

0.052537
7.081053
7.081123
7.081232

0.066913
1.317905

1.319005
1.364600

0.370265
28.32795

30.24339
29.43096

0.012207

0.545414
0.315127
0.627709

0.026044
0.048733

0.035501
0.027226

0.052033
0.074353
0.086174

0.040354

0.408932
0.705700
2.529527
1.710575

0.014464
0.100755

0.120530
0.103034

0.244286
0.238996
0.238999
0.225987

3.982488
3.989672
3.997947
3.998730

7.389913
7.713993

9.450606
8.787640

0.432200
0.576848
0.607393
0.683317

The biases due to SRY


are remarkably larger compared to those of PEY


for the
first population. Though the biases due to the separate ratio estimator are
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positive, those of the proposed estimator are generally smaller; a manifestation

that SRY


tends to overestimate the population total while PEY


may underestimate
the population total but only in a case where hn is not large enough. For the

second population, PEY


performs better than SRY


, but again it is worth noting that

in a case where the sample size is small, there is a risk of PEY


underestimating
the population total.

5. Conclusion

Use of PEY


has in general led a relatively smaller error compared to the usual
separate ratio estimator. We can therefore conclude that nonparametric
regression approach in stratified sampling using the modified kernel smoothing
yields very good results.
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