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Abstract 

This study deals with Bayesian analysis of shifted Gompertz mixture model under type-I censored samples 

assuming both informative and noninformative priors. We have discussed the Bayesian estimation of 

parameters of shifted Gompertz mixture model under the uniform, and gamma priors assuming three loss 

functions. Further, some properties of the model with some graphs of the mixture density are discussed. 

These properties include Bayes estimators, posterior risks and reliability function under simulation scheme. 

Bayes estimates are obtained considering two cases: (a) when the shape parameter is known and (b) when 

all parameters are unknown. We analyzed some simulated sets in order to investigate the effect of prior 

belief, loss functions, and performance of the proposed set of estimators of the mixture model parameters. 

Keywords:  Censored data, Shifted Gompertz mixture distribution, Loss functions, 

Bayes estimators, Posterior risk, and Reliability function. 

1.   Introduction 

Mixture distributions are quite popular when modeling populations containing two or 

more subgroups. These probability models represent non-homogenous behavoiurs and 

may be utilized in manufacturing and non-manufacturing applications for the 

characteristic(s) of interest that exhibit mixture patterns. These types of mixtures offer a 

more valuable analysis that leads to more meaningful results. It is important to properly 

model the variable of interest by using simple or mixture models and to estimate their 

parameters with the assistance of accessible information. The estimation of parameters 

may be carried out using classical and Bayesian methods of estimation. Gosh and 

Ebrahimi (2001) have been studied the Bayesian analysis of the mixing function in a 

mixture of two exponential distributions. Sultan et al. (2007) investigated the properties 

of the two component mixture of inverse Weibull distribution under classical approach. 

Saleem and Aslam (2008) presented a comparison study of the maximum likelihood 

estimates with the Bayes estimates assuming the uniform and the Jeffreys priors for the 

parameters of the Rayleigh mixture. Saleem et al. (2010) considered the Bayesian 

mailto:aslamsdqu@yahoo.com


Tabassum Naz Sindhu, Muhammad Aslam, Anum Shafiq 

Pak.j.stat.oper.res.  Vol.XIII  No.1 2017  pp227-243 228 

analysis of the mixture of Power function distribution using the complete and the 

censored sample. 

 

Sindhu et al. (2014) has considered the Bayesian inference for mixture Burr type II 

distribution under type-I censoring.  

 

In life testing experiments, it often occurs that experimenter may not be in a position to 

observe the life times of all items put on test because of time limitations and other 

restrictions on the data collection.  Type-I and Type-II censoring schemes are the two 

most common censoring schemes. In Type-I censoring scheme, the experiment pursue up 

to a predetermined fixed time T but the number of failures is random, whereas in Type-II 

censoring scheme, the experimental time is random but the number of failures is 

preselected, r. Sindhu et al. (2016) have studied the cumulative charting technique based 

on simple and the mixture of Rayleigh models. Sindhu et al. (2016) have considered a 

new methodology for Bayesian analysis of mixture models under doubly censored 

samples. 

 

The modeling and forecasting of the diffusion of modernization has been a topic of 

increasing research interest in marketing and other fields of life. A good number of 

models on the acceptance and diffusion of new products and technologies have been 

presented over time, since the basic article of Bass (1969). Later models have integrated 

greater adaptability modifying and extending the Bass model in different ways. The 

model of Bass has been one of the main references in models of adopting timing of 

innovations. From this model, Bemmaor (1999) formulated a derivation for which the 

individual-level model of adopting timing of a new product is randomly distributed 

according to the shifted Gompertz distribution. Some statistical properties of the shifted 

Gompertz distribution are shown in Bemmaor (1999). 

 

Bemmaor and Lee (2002) studied that the Bass model results from the mixing of shifted 

Gompertz and exponential distributions. More recently, Jimenez and Jodra (2009) have 

contributed to the study of this distribution, providing explicit expressions for the 

expectation and variance, deriving a closed-form expression for the quantile function and 

considering the limit distributions of extreme order statistics.  

 

Gompertz distribution is used as a survival model in reliability and survival analysis. It 

has an increasing hazard rate for the life of the systems. This distribution does not seem 

to have received enough attention. Saracoglu et al. (2009) compared the maximum 

likelihood, uniformly minimum variance  unbiased and Bayes estimators for the 

parameter of the Gompertz distribution. Ismail (2010) considered the  Gompertz 

distribution as a lifetime model for applying the Bayesian approach to the estimation 

problem in the case of step stress partially accelerated life tests with two stress levels and 

type-I censoring. Ismail (2011) discussed the point and interval estimations of a two-

parameters Gompertz distribution under partially accelerated life tests with Type-II 

censoring. Kiani et al. (2012) studied the performance of the Gompertz model with time-

dependent covariate in the presence of right censored data. Torres (2014) proposed 

nonlinear least squares procedures for estimating the parameters of the shifted Gompertz 

distribution.  Sindhu et al. (2014) studied Bayesian analysis of the shape parameter of the 

mixture of Burr type X distribution using the censored data.   
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Form the literature survey; it is obvious that no attempt has been made so far to analyze 

the study of shifted Gompertz mixture distribution. Also the shifted Gompertz 

distribution does not seem to have been studied in the statistical literature under the 

Bayesian framework. Motivated by the study of shifted Gompertz distribution, thus the 

aim of present article is to investigate the prominent features of shifted Gompertz mixture 

distribution under Bayesian structure. The rest of the paper is organized as follows. In 

Section 2, we define the mixture model, and likelihood function of shifted Gompertz 

mixture distribution.  Section 3, deals with Bayesian estimation of the parameters when 

shape parameter is known, which includes the posterior distribution, Bayes estimators 

and posterior risks under different loss functions. A Simulation study and comparison of 

the estimates are given in Section 4. The Bayesian estimation of the parameters and 

reliability function when all parameters are unknown is considered in Section 5. Some 

concluding remarks are presented in Section 6.  

2.   Mixture model and likelihood function  

A finite mixture model with 2-component densities of specified parametric form and 

unknown mixing proportion (pi) is defined as: 
2

1 1 1 1 2 2 2 2

1

( ; ) ( , ) ( , ),  1,j j i

i

f x p f x p f x p


       

   1 1 2 1 2 2 1where = , , , , , 1  and = , ,  1,2.i i ip p p i         
 

 

The random variable X has the shifted Gompertz distribution with the p.d.f is assumed 

for two components of the mixture: 

          , exp exp exp 1 1 exp ,  0, , 0, 1,2.i i i i i i i i i i if x x x x x i                   

           (1) 

 

Where i  > 0 is a shape parameter and i  > 0 is a scale parameter of the density function 

of the i
th

 component. Then the distribution of the corresponding mixture distribution is: 

     

             
1 1 1 2 2 2

1 1 1 1 2 2 2 2

;  ;  ;  ,

;  1 exp exp exp 1 exp exp exp .

F T p F T p F T

F T p T T p T T     

    

          

           (2) 

Graphical representations for different selected parametric values for the mixture model 

are shown in Fig. 1.  

 
 (i) (ii) (iii) 
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Fig. 1:   Density function components and their mixtures  1 1 2 1 2, , , ,  p     : (i) (0.6, 3, 5, 7, 4), (ii) (0.6, 

1, 0.5, 3, 4), (iii) (0.4, 5, 3, 4, 2.5), (iv) (0.3, 2.5, 1.5, 6, 4), (v) (0.5, 1.5, 3.5, 2, 4), (vi) (0.5, 0.7, 1.9, 2.7, 5)

  

The mean median and mode  of the two-component mixture of the shifted Gompertz 

distribution are obtained and shown in Table 1. 

Table 1:  Mean Median and Mode for the two-component mixture of the Gompertz 

distribution. 

 1 1 2 1 2, , , ,p      Mean Median Mode  1 1 2 1 2, , , ,p      Mean Median Mode 

0.1, 1, 4, 3, 6 0.77107 0.61332 0.48723 0.1, 3, 0.5, 8, 1.5 2.97383 2.40250 0.79406 

0.2, 1, 4, 3, 6 0.90824 0.65551 0.48935 0.2, 3, 0.5, 8, 1.5 2.74643 2.07476 0.75887 

0.3, 1, 4, 3, 6 1.04541 0.71106 0.49202 0.3, 3, 0.5, 8, 1.5 2.51902 1.72566 0.74754 

0.4, 1, 4, 3, 6 1.18258 0.78786 0.49562 0.4, 3, 0.5, 8, 1.5 2.29162 1.42731 0.74193 

0.5, 1, 4, 3, 6 1.31976 0.89912 0.50074 0.5, 3, 0.5, 8, 1.5 2.06422 1.22649 0.73858 

0.6, 1, 4, 3, 6 1.45693 1.05924 0.50863 0.6, 3, 0.5, 8, 1.5 1.83682 1.09719 0.73635 

0.7, 1, 4, 3, 6 1.59410 1.25743 0.52242 0.7, 3, 0.5, 8, 1.5 1.60492 1.00890 0.734761 

 

The median and mode of the two components mixture of the shifted

 

Gompertz 

distribution are found by solving the nonlinear equation with respect to x. 

      

               
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     

          
  

             

and

             1 1 1 1 1 2 2 21 exp exp exp 1 1 exp exp exp 0.5.p x x p x x               

 

The Parametric values 1 2 1 2 1, , ,  and ,p    in Table 1 are chosen to show the increasing 

and decreasing order of mean, median and mode by the variation in the values of the 

mixing proportion 1p .

 

(iv) (v) (vi) 
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Suppose the n units from the above cited mixture model is used in life testing experiment 

with a fixed test termination time T. After the test has been performed, it is observed that 

out of n units, r units have failed till the test termination time T, while the remaining n-r 

units are still working As the sampling scheme proposed by Mendenhall and Hader 

(1958), in many real life situation only the failed items can be identified as the members 

of the first and the second subpopulation respectively. Here it is clear that r = r1 + r2 and 

the remaining n-r units that are still functioning provide no information about the 

population to which they belong. Let xij be defined as the failure time of the jth unit from 

the i th subpopulation, where j =1, 2,…,ri, i =1, 2. 1 20 , .j jx x T 
 Then the likelihood 

function has the following form: 

       
1 2

1 1 1 2 2 2

1 1

x 1 ( )
r r

n r

j j

j j
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1
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r
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Hence (3) can be simplified to: 
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  

  2 .
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3.   Bayesian estimation of parameters (case a: shape parameter known) 

In this section, we discuss prior distributions for unknown parameters, loss functions and 

Bayes estimators and their posterior risks.  
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3.1 Bayesian estimation using gamma prior 

The Bayesian analysis requires the choice of suitable priors for the unknown parameters 

in addition to the experimental data. There is no well-defined way in which one can say 

that one prior is better than other see Arnold and Press (1983). The main thing in this 

bond is the relationship between the prior distribution and the loss function. The mixture 

model under consideration has two shape parameters, two scale parameters and one 

mixing proportion parameter. We consider both the informative and noninformative 

priors and observed the results. First, we assume that scale parameter ,  1,2,i i   has 

independent gamma prior with the shape and scale parameters as a and b respectively, 

   1
, expia

i i i i i ig a b b  
    and uniform prior for 1.p  By combining the likelihood 

function given in (3) leads towards the following joint posterior distribution of 
1,i p  as: 
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The Marginal distribution of  1  is simply the probability distribution of 1  that neglects 

other nuisance information about 2 1 and ,p which is obtained by integrating the joint 

probability distribution with respect to other parameters as: 

 

      

  

1
1

1 1 1

1 2

2

2 1

1

1 2

1 1

1 1 2 2 2 1 1 1 1 1 1 1

0 0 11 2

1

2 2 2 2 2 2 2 2

10

1

0 0 1

1 1, 1 exp exp

exp exp

x

r

r

kn r
k r a

j

k k j

r a

j

j

kn

k k

n r k
B r k k r k b x

k k

b x d

p
n r

k

  

   




 

  



 



 

      
              

      

   
      
    

 
 
 

 



       11 1

1 1 2 2 2 i

12 0 0

.

1 1, 1 exp exp

ri

i i

r
k r a

i i i ij i i i

j

k
B r k k r k b x d

k
   

 
 



     
             

     
 

 

Similarly, the marginal posterior distribution of 2 1 and p are derived as: 
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3.2  Bayesian estimation of the mixture model assuming the noninformative prior 

The noninformative priors are significant part of Bayesian tool kit. The noninformative 

priors have a least effect on the ultimate inference comparative to the data.  Bernardo 

(1979) contended that a noninformative prior should be considered as a reference prior, 

i.e., a prior that is favourable for use as a standard when scrutinize statistical data. The 

most common example of noninformative prior is uniform prior and is employed when 

no conventional prior information is available. The uniform prior for the unknown 

parameter i  can be written as  0, ,  1,2.i Uniform i  
 
We suppose a priori that 

 1,i p are independent and also assume that  1 0,1 .p Uniform  Thus the joint prior 

distribution of  1,i p is  1, .ip p k   By merging the likelihood function given in (3) 

with uniform prior information, we obtained the joint posterior distribution as: 

      
1

1 1 1 2 2 2

1 2

1

1 2 i

0 0 11 2

x 1 exp exp ,

where ,   and  are already defined.

ri

i

kn r
k rr k k r k

i i ij i i

k k j

i i

n r k
p p p x

k k
  


  

  

     
          

     

  

   (4) 

 

Marginal distributions of i  and 1p  can be obtained by nuisance parameters. For space 

restriction, we do not present the expression for the marginal distributions under 

noninformative priors. 

3.3  Bayesian estimators under different loss functions 

In order to select a best decision in decision theory, a suitable loss function must be 

specified. The preference of loss function is a difficult job, and its selection is often 

formed for the reasons of mathematical convenience without any particular decision 

problem of ongoing interest excluding cost effect. As in the risk analysis, the potentiality 

of undesired event and its consequences both are explored. This potentiality is usually 

measured by failure rate. The Bayesian approach is extensively applied to failure rate. In 

disastrous outcomes, it can be terrible to underestimate the potentiality of an event rather 

than to overestimate. This is significant when the risk level is the basis of risk reducing 

initiative, either by reducing the potentiality or the consequences. An inappropriately low 

estimate of the risk level can lead to the lack of necessary steps to reduce the risk level. 

Hence, it is unreasonable to use a loss function that allows the estimation of a failure 

probability of zero.  A positive loss at the origin allows the estimation of zero and in risk 

analyses estimating a zero failure probability simply means that no risk is expected for 

further detail see Norstrom (1996). Three loss functions are used to obtain the Bayes 

estimators along with posterior risks, i.e., the squared error (SE) loss function, weighted 

squared error (WSE) loss function and quadratic (Q) loss function. The most commonly 

used loss function is (SE) loss function defined by    
2

1
ˆ ˆ ,SE SEL l       

 
where 

ˆ
SE

 
is a decision rule to estimate parameter .  The Bayes estimator under SE loss 

function is  ˆ
SE E 

 
and posterior risk under SE loss function is 

      
22ˆ x x .SE E E      

 
The  weighted squared error (WSE) loss function which is 
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of concern is  
2

1

2
ˆ ,WSEL      the Bayes estimator under WSE loss function is 

  
1

1ˆ xWSE E 


 
 

and posterior risk under WSE loss function is  

      
1

1ˆ x x .WSE E E   


   
 
The third loss function is the quadratic loss function 

which is defined as  
2

1

3
ˆ1 .QL     The Bayes estimator and posterior risk under Q 

loss function are     
1

2 1ˆ x x ,Q E E  


            
1 2

2 1ˆ 1 x x .Q E E   


    
       

 

Where E denotes the expectation with respect to the posterior distribution of  .  Thus the 

posterior expectation of any function of parameter, say  1 2 1, ,U p   can be written as:  

    
   

 

1

1 2 1 1 1 1 1 1 2
0 0 0

1 2 1 1 2 1 1

1 1 1 1 1 2
0 0 0

, , , , x
ˆ , , , , x, ) .

, , x
i

U p g p dp d d
U p E U p

g p dp d d

     
    

   

 

 


   



  

  
 (5) 

However, it is not possible to evaluate (5) in closed-form. We obtain the Bayes estimates 

using the curvature method.   

4.   Simulation study 

In this section, we perform a Monte Carlo simulation to observe the behavior of the 

proposed estimator of the parameters and respective posterior risks for different sample 

sizes, for different priors, for different parametric values 

       1 2 1, 3,5 , 0.5,1.5 , 4,2 , =10,  0.4,T p     fixing 1 2 0.5,  and   

1 20.25, 0.5.    Samples of size n = 30, 60 and 100 were generated from the two 

component  mixture of the shifted Gompertz distribution. A well-known procedure in 

simulation for computer generation of random variables is the inverse transform method. 

This method provides the most straightforward procedure to generate samples of a given 

distribution when its quantile function exists in closed-form.  The quantile function of the 

shifted Gompertz distribution can be expressed in closed-form in terms of the Lambert W 

function. As a consequence, simulation studies involving the shifted Gompertz 

distribution can easily be carried out for theoretical and practical purposes. From a 

computational point of view, since the Lambert W function is efficiently implemented in 

various computer algebra systems Matlab and Mathematica.  Therefore, the inverse 

transform method can directly be applied to generate samples of the shifted Gompertz 

distribution. Probabilistic mixing is used to generate the mixture data. To generate the 

mixture model, a random number ‘u’ is generated from the uniform distribution on (0, 1). 

If u < p1 the observation is taken randomly from F1 (the shifted Gompertz distribution 

with parameter 1 ) and If u > p1 the observation is taken randomly from F2 (the shifted 

Gompertz distribution with parameter 2 ). The values of hyperparameters (a1, b1, a2, b2) 

have been selected in such a manner that the prior mean becomes the expected value of 

the corresponding parameter. The hyperparameters consider in the simulation study are 
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(6, 2, 10, 2), (1, 2, 3, 2) and (8, 2, 4, 2). All observations that exceeded T were treated as 

censored. For each of the combinations of parameters, sample sizes, we generated 1000 

samples using Mathematica. For each of 1000 samples, the Bayes estimates and posterior 

risks are not in closed form and calculated by using the curvature integration method. 

There are two main reasons for one to need to do numerical integration: analytical 

integration may be impossible or infeasible, or one wishes to integrate tabulated data 

rather than known functions. In general, we derive numerical integration methods by 

splitting the interval [a, b] into small subintervals, approximate f  by a polynomial on 

each subinterval, integrate this polynomial rather than f, and then add together the 

contributions from each subinterval. This is the strategy we follow for deriving numerical 

integration methods, and this works as long as f can be approximated well by 

polynomials on each subinterval. The average of these estimates and corresponding 

posterior risks are reported in Table 2-7. 

Table 2:  Bayes estimates and their posterior risks in parentheses under SE loss 

function for different parametric points when 1 2 0.5.     

n 
Gamma prior Uniform prior 

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

30 3.79007 

(0.409413) 

4.20046 

(0.326908) 

0.40625 

(0.007309) 

2.80835 

(0.618781) 

3.77180 

(0.502621) 

0.42151 

(0.007527) 

60 3.27266 

(0.303047) 

4.25863 

(0.244741) 

0.40322 

(0.003819) 

2.86440 

(0.344531) 

3.89331 

(0.329380) 

0.41739 

(0.003939) 

100 2.99339 

(0.187709) 

4.58252 

(0.193125) 

0.40196 

(0.002333) 

2.90215 

(0.213533) 

4.47016 

(0.247248) 

0.39661 

(0.002419) 

n 1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

30 
0.579411 

(0.014658) 

1.45757 

(0.105432) 

0.406228 

(0.007309) 

0.88059 

(0.220906) 

1.15438 

(0.167504) 

0.32182 

(0.012136) 

60 
0.52271 

(0.001873) 

1.45788 

(0.046582) 

0.40319 

(0.003820) 

0.647511 

(0.002141) 

1.25820 

(0.137583) 

0.35911 

(0.010937) 

100 
0.50034 

(0.000086) 

1.45814 

(0.023931) 

0.40195 

(0.002313) 

0.50212 

(0.001102) 

1.43859 

(0.024999) 

0.40194 

(0.002334) 

n 1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

30 
4.27034 

(0.328570) 

2.16131 

(0.122003) 

0.40625 

(0.007305) 

3.34015 

(0.600769) 

1.73905 

(0.162738) 

0.39063 

(0.007309) 

60 
4.12458 

(0.281236) 

2.06151 

(0.0867007) 

0.403226 

(0.003816) 

3.52803 

(0.391835) 

1.78048 

(0.087179) 

0.40323 

(0.003820) 

1

00 

3.98141 

(0.240661) 

1.97365 

(0.044765) 

0.401961 

(0.002236) 

3.58380 

(0.241341) 

1.86515 

(0.045346) 

0.40196 

(0.002338) 
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Table 3:  Bayes estimates and their posterior risks in parentheses under SE loss 

function for different parametric points when 
1 20.25, 0.5.     

n 
Gamma prior Uniform prior 

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

30 3.56934 

(0.456082) 

3.89195 

(0.431195) 

0.40625 

(0.007084) 

3.15419 

(0.561008) 

3.88102 

(0.438071) 

0.40725 

(0.007309) 

60 3.40623 

(0.307405) 

4.47885 

(0.177566) 

0.40323 

(0.003719) 

2.99863 

(0.330063) 

4.02775 

(0.282345) 

0.40383 

(0.003820) 

100 3.23124 

(0.215864) 

4.49654 

(0.147134) 

0.40166 

(0.002334) 

2.98159 

(0.22273) 

4.59987 

(0.205389) 

0.401961 

(0.002334) 

n 
1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

30 
0.602047 

(0.018955) 

1.45492 

(0.105755) 

0.40614 

(0.007312) 

0.61200 

(0.020280) 

1.37675 

(0.106368) 

0.40625 

(0.007094) 

60 
0.15929 

(0.003965) 

1.45727 

(0.046027) 

0.40321 

(0.003816) 

0.53996 

(0.006167) 

1.38554 

(0.047845) 

0.40320 

(0.003820) 

100 
0.50819 

(0.001375) 

1.45952 

(0.026456) 

0.40195 

(0.002321) 

0.509279 

(0.001485) 

1.43939 

(0.028926) 

0.40295 

(0.002340) 

n 
1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

30 
4.34363 

(0.289527) 

2.04862 

(0.196335) 

0.40625 

(0.007210) 

3.57312 

(0.563268) 

1.78059 

(0.198252) 

0.40664 

(0.007408) 

60 
4.18177 

(0.284460) 

1.99819 

(0.095608) 

0.40323 

(0.00376) 

3.58931 

(0.375443) 

1.79526 

(0.096505) 

0.40332 

(0.003820) 

100 
4.04812 

(0.223180) 

1.99978 

(0.043186) 

0.40196 

(0.002218) 

3.60573 

(0.269684) 

1.86526 

(0.045229) 

0.40198 

(0.002334) 

Table 4:  Bayes estimates and their posterior risks in parentheses under WSE loss 

function for different parametric points when 1 2 0.5.     

n 
Gamma prior Uniform prior 

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

30 
2.69237 

(0.149124) 

3.91390 

(0.094741) 

0.38803 

(0.019153) 

2.47605 

(0.179939) 

3.86169 

(0.117508) 

0.38709 

(0.019153) 

60 
2.75664 

(0.088179) 

4.06623 

(0.062029) 

0.393443 

(0.009783) 

2.58039 

(0.104887) 

3.98539 

(0.081891) 

0.39343 

(0.009783) 

100 
2.84701 

(0.058691) 

4.50663 

(0.047206) 

0.39604 

(0.005911) 

2.70179 

(0.066727) 

4.48981 

(0.053517) 

0.39604 

(0.005922) 

n 
1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

30 
0.53203 

(0.011165) 

1.29272 

(0.065209) 

0.38702 

(0.019162) 

0.53048 

(0.011313) 

1.28193 

(0.071869) 

0.38752 

(0.019164) 

60 
0.51566 

(0.002101) 

1.39578 

(0.032878) 

0.39342 

(0.009784) 

0.51308 

(0.002445) 

1.37321 

(0.033773) 

0.39341 

(0.009785) 

100 
0.50711 

(0.002953) 

1.42375 

(0.019553) 

0.39602 

(0.00590) 

0.50154 

(0.001684) 

1.42239 

(0.020558) 

0.39603 

(0.005913) 

n 
1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

30 
3.45814 

(0.138723) 

1.70583 

(0.081224) 

0.38710 

(0.019153) 

3.27966 

(0.195983) 

1.57392 

(0.087437) 

0.38709 

(0.019153) 

60 
3.62881 

(0.095503) 

1.726314 

(0.041621) 

0.39343 

(0.009683) 

3.39822 

(0.116526) 

1.66235 

(0.046169) 

0.39344 

(0.009731) 

100 
3.77451 

(0.069352) 

1.86758 

(0.026601) 

0.39560 

(0.005810) 

3.43749 

(0.077571) 

1.76372 

(0.027288) 

0.39604 

(0.005921) 
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Table 5:  Bayes estimates and their posterior risks in parentheses under WSE loss 

function for different parametric points when 
1 20.25, 0.5.   

 

n 
Gamma prior Uniform prior 

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

30 
2.70909 

(0.151209) 

4.01021 

(0.091507) 

0.38709 

(0.019152) 

2.87543 

(0.195701) 

3.87434 

(0.118974) 

0.38807 

(0.019053) 

60 
2.77838 

(0.092770) 

4.06322 

(0.062121) 

0.39344 

(0.009783) 

2.89951 

(0.112231) 

3.98871 

(0.074917) 

0.39934 

(0.009832) 

100 
2.86267 

(0.058317) 

4.46404 

(0.046317) 

0.39604 

(0.005921) 

2.86434 

(0.065738) 

4.42077 

(0.050219) 

0.39857 

(0.005938) 

n 
1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

30 
0.52834 

(0.010902) 

1.29446 

(0.064789) 

0.38709 

(0.019154) 

0.53086 

(0.024083) 

1.27331 

(0.071065) 

0.39604 

(0.019373) 

60 
0.510827 

(0.003957) 

1.39097 

(0.031994) 

0.39343 

(0.009784) 

0.52268 

(0.006446) 

1.37969 

(0.033193) 

0.395433 

(0.009788) 

100 
0.509483 

(0.002049) 

1.43961 

(0.018745) 

0.39604 

(0.005923) 

0.50997 

(0.002857) 

1.43960 

(0.020665) 

0.39861 

(0.006219) 

n 
1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

30 
3.50845 

(0.136470) 

1.74355 

(0.083019) 

0.38709 

(0.019153) 

3.37434 

(0.185908) 

1.63686 

(0.09098) 

0.39781 

(0.021532) 

60 
3.60998 

(0.096461) 

1.76874 

(0.043264) 

0.39343 

(0.009783) 

3.49503 

(0.111923) 

1.68515 

(0.044033) 

0.39843 

(0.009789) 

100 
3.74249 

(0.068667) 

1.85287 

(0.026226) 

0.39604 

(0.005921) 

3.53686 

(0.079767) 

1.86178 

(0.026951) 

0.39960 

(0.006122) 

Table 6:  Bayes estimates and their posterior risks in parentheses under Q loss 

function for different parametric points when 1 2 0.5.     

n 
Gamma prior Uniform prior 

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

30 3.30204 

(0.045433) 

4.30476 

(0.010684) 

0.36867 

(0.052078) 

2.23871 

(0.079977) 

3.60019 

(0.039114) 

0.36667 

(0.052778) 

60 3.17656 

(0.033626) 

4.40314 

(0.010522) 

0.38321 

(0.025674) 

2.37165 

(0.041454) 

3.84865 

(0.020883) 

0.38333 

(0.025694) 

100 2.96714 

(0.022206) 

4.52941 

(0.009431) 

0.39157 

(0.015131) 

2.41415 

(0.024964) 

4.45692 

(0.013723) 

0.39231 

(0.015250) 

n 
1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

30 
0.53201 

(0.015955) 

1.39847 

(0.050641) 

0.366567 

(0.052819) 

0.53010 

(0.017578) 

1.18985 

(0.056442) 

0.366469 

(0.052858) 

60 
0.51446 

(0.005894) 

1.39975 

(0.026326) 

0.38314 

(0.025695) 

0.51249 

(0.006422) 

1.23406 

(0.002795) 

0.383307 

(0.025701) 

100 
0.50183 

(0.001007) 

1.45074 

(0.014332) 

0.38999 

(0.015250) 

0.50114 

(0.001021) 

1.39562 

(0.016765) 

0.38998 

(0.015253) 

n 
1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

30 
4.13342 

(0.023352) 

1.80924 

(0.047586) 

0.36679 

(0.052763) 

2.96955 

(0.066981) 

1.61289 

(0.055547) 

0.36667 

(0.052778) 

60 
3.95647 

(0.021646) 

1.84806 

(0.025636) 

0.38325 

(0.025541) 

3.21052 

(0.037276) 

1.65984 

(0.027778) 

0.38333 

(0.025694) 

100 
3.99512 

(0.016714) 

1.87472 

(0.015871) 

0.38923 

(0.015190) 

3.52063 

(0.023844) 

1.761403 

(0.016676) 

0.39145 

(0.015250) 
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Table 7:  Bayes estimates and their posterior risks in parentheses under Q loss 

function for different parametric points when 1 20.25, 0.5.     

n 
Gamma prior Uniform prior 

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

1
ˆ 3   2

ˆ 5   1
ˆ 0.4p   

30 
3.52761 

(0.041418) 

4.52392 

(0.010206) 

0.36667 

(0.052778) 

2.55618 

(0.076166) 

3.60576 

(0.038598) 

0.365807 

(0.054873) 

60 
3.20083 

(0.031351) 

4.54391 

(0.009834) 

0.38333 

(0.025674) 

2.74051 

(0.040217) 

3.89762 

(0.020081) 

0.38273 

(0.025694) 

100 
3.02593 

(0.021865) 

4.54922 

(0.008430) 

0.39125 

(0.01525) 

2.80950 

(0.024698) 

4.53158 

(0.013433) 

0.39087 

(0.015682) 

n 
1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

1
ˆ 0.5   2

ˆ 1.5   1
ˆ 0.4p   

30 
0.54364 

(0.023970) 

1.36568 

(0.050739) 

0.366471 

(0.052857) 

0.52408 

(0.025407) 

1.21533 

(0.057450) 

0.36407 

(0.052889) 

60 
0.51029 

(0.007165) 

1.39505 

(0.026574) 

0.38236 

(0.025709) 

0.50929 

(0.007637) 

1.29512 

(0.027854) 

0.38137 

(0.026937) 

100 
0.50953 

(0.004979) 

1.44519 

(0.016117) 

0.38999 

(0.015251) 

0.50385 

(0.006023) 

1.38673 

(0.016797) 

0.39816 

(0.015469) 

n 
1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

1
ˆ 4   2

ˆ 2   1
ˆ 0.4p   

30 
4.24280 

(0.020152) 

1.93463 

(0.047479) 

0.36667 

(0.052778) 

3.17187 

(0.063645) 

1.69135 

(0.055505) 

0.36635 

(0.053678) 

60 
4.21140 

(0.016740) 

1.96996 

(0.025642) 

0.38343 

(0.025694) 

3.39504 

(0.034875) 

1.85113 

(0.027775) 

0.38453 

(0.02643) 

100 
4.00304 

(0.015807) 

1.99883 

(0.015873) 

0.39217 

(0.015253) 

3.56545 

(0.023082) 

1.861635 

(0.016662) 

0.39142 

(0.016351) 

 

Based on Table 2-7, some results are very obvious. The foremost point that requires 

attention is that posterior risk decreases as we increase sample size and Bayesian 

estimates become very close to the true values of the parameters as we increase the 

sample size. The posterior risk of the Bayes estimator is a notable criterion for computing 

the performance of the different estimators. The amount of the posterior risk is directly 

proportional to true parametric values and is inversely proportional to the sample size.  

 

It can be seen that Bayes estimators performed well under quadratic loss function than the 

squared error loss function and weighted squared error loss function. Bayes estimates are 

found to be under estimated under weighted squared error loss function based on all both 

priors. Bayes estimators are efficient under quadratic loss function; In fact the use of 

quadratic loss function unveiled the smallest posterior risk, which is really an 

advantageous property. Furthermore, we obtain efficient results using the gamma prior 

than the uniform prior. Posterior risks for the Bayes estimates assuming uniform prior is 

also little high. Hence, gamma prior has a clear edge over uniform prior.  The selection of 

the best prior and loss function does not depend on sample sizes. Whereas, it is to be 

noted that selection of the best prior/loss function for a given loss function/prior is made 

on the basis of minimum posterior risks associated with it. Therefore we can easily make 

a selection of preferable prior and loss function. Effect of the changing in shape 

parameters 1 1 from 0.5 for 1,2,  to 0.25 and 0.25i i i        yields some closer 

estimates to the true population parameter. 
 



Bayesian Analysis of two Censored Shifted Gompertz Mixture Distributions using Informative and …….. 

Pak.j.stat.oper.res.  Vol.XIII  No.1 2017  pp227-243 239 

5.   Bayesian Estimation (case b: all parameters are random) 

Now we study the most significant aspect when both shape and scale parameters are 

unknown. We use both informative and noninformative priors for the parameters i and 

.i   

5.1  Bayesian estimation using informative / noninformative prior 

It is supposed that  and i i  each have independent gamma priors (ai, bi) and gamma (ci, 

di) priors, respectively, where i=1, 2 and parameters p1 is assumed to have a uniform 

prior. The joint prior ,i i   and p1 may take the form 

       1 2 1 21 1 1 1

1 1 1 1 2 2 2 1 1 1 2 2 2, , | , , , exp exp( ) exp exp .
a a c c

i i i i i ig p a b c d b b d d            
    

 

Then the joint posterior distribution for ,i i  and p1 in this case is obtained by 

multiplying the joint prior and the likelihood function together as: 
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The posterior expectation of any function of parameter, say  1, ,i iU p   can be obtained 

as:  

 

(6) 

 

However, it is not possible to evaluate (6) in explicit tractable form. Hence such 

computational difficulties can be solved to obtain the Bayes estimates using the curvature 

method of integration in SAS or Mathematica. Bayes estimates under uniform prior can 

be obtained simply by equating the hyperparameters ai equal to one and bi equal to zero. 

5.2 Reliability function of shifted Gompertz mixture distribution 

The reliability function or survival function of shifted Gompertz mixture distribution is 

given by: 

               1 1 1 1 2 2 2 21 1 exp exp exp 1 1 exp exp exp .R t p T T p T T                

 

The Bayesian estimation of reliability function using different priors under different loss 

function is obtained as: 
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The expressions of the estimators show that an analytic comparison of these estimators is 

not possible. To compare the different estimators of the reliability function of the shifted 

Gompertz mixture distribution obtained in this paper, probability mixing random sample 

of various sample sizes are generated as the procedure defined in previous section. 

Bayesian reliability estimates      ˆ ˆ ˆ,  and SE WSE QR t R t R t  are then computed at t = 0.3. 

The true value of   0.60318R t  for a given vector 

 1 2 1 2 14, 2, 0.5, 1.5, 0.4p         and   0.935048R t   for vector

 1 2 1 2 10.5, 1.5, 3, 2, 0.4 .p         The values of hyperparameters have been 

selected in such manner that the prior mean becomes the expected value of the 

corresponding parameter as explained earlier. For comparing the performance of different 

Bayes estimates of reliability function posterior risk of estimates is a significant criterion. 

The amount of posterior risk is inversely proportional to the sample size.  From the 

numerical results given in the Table 8-10, we observed that an increase in sample size 

provides improved Bayes estimates. The effect of sample size and parametric values on 

the Bayes estimates is in the form of over estimation. However as sample size increases 

the amount of posterior risks of Bayes estimates of parameters decrease. 

 

The Bayes estimates of reliability function under SE loss function have smaller posterior 

risk as compared to other. The Bayes estimates of reliability function under uniform prior 

are under estimated and are pretty good and efficient under gamma prior. 

Table 8:  Bayes estimates and their posterior risks in parentheses under SE loss 

functions for different parametric points 

n 
Gamma prior 

1
ˆ 3   2

ˆ 2   1̂ 0.25   2
ˆ 0.5   1

ˆ 0.4p   

30 
2.95898 

(0.554873) 

1.82169 

(0.187358) 

0.512343 

(0.006359) 

0.517194 

(0.008937) 

0.40909 

(0.015002) 

60 
2.981637 

(0.266232) 

1.86835 

(0.063473) 

0.350041 

(0.000207) 

0.541021 

(0.000070) 

0.432261 

(0.003849) 

100 
2.997638 

(0.167537) 

1.899615 

(0.037928) 

0.25531 

(0.000042) 

0.50213 

(0.000003) 

0.401961 

(0.002338) 

Uniform prior 

n 1
ˆ 3   2

ˆ 2   1̂ 0.25   2
ˆ 0.5   1

ˆ 0.4p   

30 
3.26132 

(0.683581) 

1.80534 

(0.290182) 

0.60732 

(0.068279) 

0.55035 

(0.029580) 

0.40909 

(0.010510) 

60 
3.11887 

(0.328235) 

1.82645 

(0.071096) 

0.40206 

(0.001036) 

0.50032 

(0.000162) 

0.40323 

(0.003820) 

100 
2.890104 

(0.193881) 

1.88971 

(0.046146) 

0.30435 

(0.000335) 

0.50008 

(0.000035) 

0.401961 

(0.003338) 
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Table 9:  Bayes estimates and their posterior risks in parentheses under Q loss 

functions for different parametric points 

n 
Gamma prior 

1
ˆ 3   2

ˆ 2   1̂ 0.25   2
ˆ 0.5   

1
ˆ 0.4p   

30 
2.56625 

(0.103790) 

1.73582 

(0.032513) 

0.41762 

(0.011135) 

0.56472 

(0.002035) 

0.38621 

(0.06135) 

60 
2.83579 

(0.030022) 

1.83497 

(0.013427) 

0.35276 

(0.000167) 

0.53762 

(0.000126) 

0.39756 

(0.015643) 

100 
2.99587 

(0.003525) 

1.93176 

(0.007927) 

0.25432 

(0.000022) 

0.50216 

(0.000001) 

0.399752 

(0.003521) 

Uniform prior 

n 
1
ˆ 3   2

ˆ 2   1̂ 0.25   2
ˆ 0.5   

1
ˆ 0.4p   

30 
2.36355 

(0.109660) 

1.60335 

(0.082069) 

0.52751 

(0.053393) 

0.55206 

(0.023779) 

0.35214 

(0.081256) 

60 
2.71681 

(0.040082) 

1.67344 

(0.027479) 

0.49509 

(0.001024) 

0.50986 

(0.000154) 

0.38333 

(0.025694) 

100 
2.94915 

(0.026819) 

1.83191 

(0.016819) 

0.30056 

(0.000072) 

0.50624 

(0.000078) 

0.39837 

(0.015256) 

Table 10:  Bayes estimates of reliability function and posterior risks in parentheses 

based on SE, WSE and Q loss functions for different parametric points  

Squared Error Loss Function 

R(t) 0.603183 0.935048 

n Gamma prior Uniform prior Gamma prior Uniform prior 

10 
0.608992 

(0.005123) 

0.635939 

(0.008174) 

0.917035 

(0.001234) 

0.889385 

(0.001871) 

20 
0.606242 

(0.003138) 

0.624087 

(0.004434) 

0.917348 

(0.000724) 

0.898660 

(0.000797) 

30 
0.603516 

(0.002404) 

0.605571 

(0.003046) 

0.931998 

(0.000543) 

0.908853 

(0.000552) 

Weighted Squared Error Loss Function 

n Gamma prior Uniform prior Gamma prior Uniform prior 

10 
0.616730 

(0.008355) 

0.650812 

(0.012866) 

0.940192 

(0.000728) 

0.881507 

(0.002559) 

20 
0.610396 

(0.004961) 

0.622832 

(0.006634) 

0.935489 

(0.000637) 

0.885928 

(0.000915) 

30 
0.608583 

(0.004034) 

0.614829 

(0.005119) 

0.935149 

(0.005611) 

0.889226 

(0.000578) 

Quadratic Loss Function 

n Gamma prior Uniform prior Gamma prior Uniform prior 

10 
0.598371 

(0.015699) 

0.603183 

(0.023931) 

0.922038 

(0.001363) 

0.886824 

(0.002174) 

20 
0.606838 

(0.007914) 

0.613572 

(0.010269) 

0.924689 

(0.000951) 

0.889368 

(0.0010934) 

30 
0.603284 

(0.006899) 

0.596604 

(0.008672) 

0.934510 

(0.000657) 

0.897589 

(0.000676) 
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6.   Concluding remarks 

In this study, we propose a mixture shifted Gompertz model of lifetime study under 

censoring sampling scheme. To judge the relative performance of the Bayes estimators 

and also to deal with the problems of selecting the priors and loss functions at different 

sample sizes. The analysis has been considered assuming the cases when shape parameter 

is known and when all parameters are unknown based on right censored data. We have 

discussed Bayesian estimation of reliability function of mixture shifted Gompertz 

distribution using three different loss functions under informative and noninformative 

priors. The capability of Bayesian analysis ensures us to perform a comprehensive study 

to address of selecting the suitable prior and desirable loss function for the mixture 

shifted Gompertz model. It is seen that the closed form expression for the Bayes 

estimators are not possible, we obtain the approximate Bayes estimates. The simulation 

study has revealed some interested results related to Bayes estimates of parameters and 

reliability function. The posterior risks of the estimates of the parameters appeared to be 

quite large with relatively large values of the parameters and vice versa. Though posterior 

risk of parameters decrease as the sample size increase in each case. To address the 

problem of selecting prior and loss function we have observed that the Bayes estimator of 

parameters perform best under Q loss function assuming gamma prior in both cases when 

shape parameters are known and in the case where all parameters are taken as random. In 

the case where all parameters are taken as random Bayes estimates obtained in this case 

show under estimation for scale parameters and over estimation for shape parameters. 

Bayes estimates of reliability function are more efficient and pretty good under SE loss 

function, assuming gamma prior than other two functions assuming uniform prior. 
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