Inferences on a Scale Parameter of Bivariate Rayleigh Distribution
by Ranked Set Sampling

Saeid Tahmasebi
Department of Statistics, Persian Gulf University, Bushehr, Iran
tahmasebi@pgu.ac.ir

Maryam Eskandarzadeh
Department of Statistics, Persian Gulf University, Bushehr, Iran
stahmasby@yahoo.com

Zahra Almaspoor
Department of Statistics, Persian Gulf University, Bushehr, Iran
s.tahmasebi57@gmail.com

Abstract

In this paper, we obtain several estimators of a scale parameter of Morgenstern type bivariate Rayleigh
distribution based on the observations made on the units of the ranked set sampling regarding the study
variable which is correlated with the auxiliary variable. We also compare the efficiency of these estimators.
Finally, we illustrate the methods developed by using a real data set.
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1. Introduction

Morgenstern (1956) defined a class of bivariate distributions, and Farlie (1960) extend it
to the multivariate case. This class of distributions is known as Farlie-Gumbel-
Morgenstern (FGM) distribution. Some well-known marginal distributions are considered
and studied in literature: For example logistic (Gumbel, 1961), gamma (D'Este, 1981 ;
Tahmasebi and Jafari, 2015), uniform (Bairamov and Bekci, 1999 ; Tahmasebi and Jafari,
2012; Singh and Mehta, 2015), exponential (Gumbel, 1960, Balasubramanian and Beg,
1997; Chacko and Thomas, 2008, 2011) and generalized exponential (Tahmasebi and
Jafari, 2014, 2015) distributions. A new member of bivariate FGM distribution is
Morgenstern type bivariate Rayleigh distribution (MTBRD) with the cumulative
distribution function (cdf) as

x2 y2 x2 y2
Foy (0 Y) = (- “T)(1-e ) (14ae 27 2), x,y>0, (L.1)
and the probability density function (pdf) as
G e v
For(y) = —2pe *1 s a(ze T ~1)(2e ** 1)), (12)
102

We consider several unbiased estimators of parameter o,using ranked set sampling

(RSS). This technique of sampling was first proposed by Mclintyre (1952) and has a more
efficient sampling method than simple random sampling (SRS) method for estimating the
population mean. Some modifications of RSS are presented in literatures: For example
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modified ranked set sampling procedure by Stokes (1980), extreme ranked set samples
(ERSS) by Samawi et al. (1996), moving extreme ranked set sampling (MERSS) by Al-
Odat and Al-Saleh (2001), and double robust extreme ranked set sampling (DRERSS) by
Al-Omari (2011).

RSS are applied for estimating parameters of some distributions: for example location-
scale family of distribution by Stokes (1995), two-parameter exponential distribution by
Lam et al. (1994), bivariate normal distribution by Al-Saleh and Al-Ananbeh
(2005,2007), Morgenstern type bivariate exponential distribution by Chacko and Thomas
(2008), Downton's bivariate exponential distribution by Al-Saleh and Diab (2009), and
Morgenstern type bivariate gamma distribution by Tahmasebi and Jafari (2015). In this
paper we are trying to estimate the mean of the population, under a situation where in
measurement of observations are strenuous and expensive.

The organization of this article is as follows. In Section 2, we present three estimators for
the scale parameter, o,in MTBRD based on the RSS, and compared the efficiency of
these estimators and the estimator based on SRS. In Section 3, we obtain different
estimators for o, in MTBRD by using ERSS and MERSS methods. Also, the efficiency

of all estimators are evaluated. In Section 4, we obtain unbiased estimator for o, in

MTBRD by DRERSS method. In Section 5, we illustrate the proposed methods using a
real data set.

2. Estimating based on RSS

In the RSS technique, the sample selection procedure is composed of two stages. At the
first stage of sample selection, n simple random samples of size n are drawn from an
infinite population and each sample is called a set. Then, each of units is ranked from the
smallest to the largest. At the second stage, the (th observation unit from the th ranked
set is taken. Ranking of the units is done with a low-level measurement such as using
previous experiences, visual measurement or using a concomitant variable. Stokes (1977)
described the procedure of RSS for bivariate random variable (x,vy), where X is the

variable of interest and Y is a concomitant variable that is not of direct interest but is
relatively easy to measure, as follows:

Step 1. Randomly select n independent bivariate samples, each of size n.
Step 2. Rank the units within each sample with respect to a variable of interest X
together with the Y variate associated.

Step 3. In the (th sample of size n, select the unit (X(r)r,Y[r]r), r=1.2,..., n, Where

X(r)r is the observation measured on the variable X in the rth unit of the RSS and Y[r]r
is the corresponding measurement made on the study variable Y of the same unit.

Suppose that the random variable (x,y) has a MTBRD as defined in (1.1). LetY[r]r,

r=1,2,3,....n, be the RSS observations made on the units of the ranked set sampling
regarding the study variable Y which is correlated with the auxiliary variable X . It is
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clear that Y[r]r is the concomitant of .th order statistic arising from the .th sample. From

Scaria and Nair (1999), the pdf of Yj,, is given by

¥ ¥
0'2 O’Z
O (¥) = 2z "2 [L+5,(2e 2 -1, y>0, (2.1)
2
where &, = _a(-2r+l) . Also, the pdf of X(r)r is
n+1
(n—r-+—1)x2 x2
I 2 2
fo)=— b X 2 [1e i 2.2)

(r-1)!(n-r)! o7}

Therefore, the mean and variance of Y[r]r are given as

E[Y[r]r] = O-Zﬂr' Var[Y[r]r] = Gzzﬂ’r’ (2-3)
4 — 1- 2-2
where S, = \/7 5—(1 J2) and 4, = dl ”5( \/_) 5r[1+M]-
2 4 2
Theorem 2.1 When « is known, an unbiased estimator for o, based on RSS is
. 1
O2rss = 2 Viege: (2.4)
n\/; r=1
2
with the variance
. o (4-r)
Var(6,gss) = —(1 b,), (2.5)

;z(3—2ﬁ)(n—1) 2

where b, =
6(4—-r)(n+1)

Proof. Since Z::@ =0, and using (2.3) the proof is obvious.

The random variable Y has a Rayleigh distribution with scale parameter o, . Therefore,
an unbiased estimator of o, based on a simple random sample (SRS) of size n from

ol (4-7)

Rayleigh distribution is &,¢s = \7/\/2 with variance Zn— The relative efficiency
T

Of &,pss 10 Gy qrs IS
Var(&Z,SRS) — 1
Var(6,gss) 1-b,

Note that 1 < e 10 9 . Thus, &, s is more efficient than &,z

€= e(&Z,RSS | 6-2,SRS) =

Now, we study the efficiency of &, .4, relative to the best linear unbiased estimator
(BLUE) of 0,, based on v, r =1,2,3,...,n 0f MTBRD, when « is known. Suppose
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that Y| 0 (Y[l]l, PR ,Y[n]n) Then BLUE of o, is derived as ( see David and Nagaraja,
2003)

, = (BIW _lﬂ)_lBIW _lY[n] ZarY[r]r’
2

where B= (8, By, B.), W =[diag(2 )]and a, -ﬂr/Zlﬂ

2
O,

n ﬂZ h
r=1 ﬂ“

. The variance of o, is

Var[o,]1= (B'W B) o =

r

Therefore, the relative efficiency of &, ¢ to o, is given by

- 4—1 n, B
e, =€(0; | Oypss) = v(l_bn)zg_- (2.6)
r=1

r

We can also provided a ranked set sample of size n by each sample measurement of Y
which is taken on the unit that has the maximum value for the X variable. Let v, be
concomitants of largest order statistics x , of the rth sample for r=1,2,._,

we call the collection of observations x ., as the upper ranked set sample (URSS). We

can derive BLUE of o, based on the observations URSS. From (2.3), the mean and

variance of Y nlr are given as o,p, and Vvarl[y,, 1=o34,, respectively. Also, for
1<r<s<n, CoV[Y,yY:1=0. A BLUE for o, based on URSS is obtained as

~ 13 . : o
0, =— > Yiur» and its variance is given by
nﬂn r=1
2
~ oA
Var(o,) = =3
JZA

The efficiency of o, relative to &, and the efficiency of &, . relative to &, are
ns, ~ | A (4-7)(1-b)ng,
5 €, = e(0, | Oyrss) =
yon Nz,
lﬂz y)
= r

e, = e(o, |0;) =

We have computed the values of e,,e;, and e,for n=2(2)10(5)25, and
o =+.25+5+75+1 in Table 1. It can be seen that o, is more efficient than &, . and

for fixed n=> 2, the efficiency increases with respect to | & |. We can easily see that &,
is relatively more efficient than o, and &, for 0<a<1. Also, e, and e, increases

(decreases) with 1 and0<a <1 (—1<a <0). Thus, we conclude that o, and &, s

are relatively more efficient than &, when —1<« <o0.
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Remark 2.1 Our assumption is that « is known, but sometimes « may not be known.
an(3-24/2)
24-7)

We know that the correlation coefficient between X and Y in MTBRD is

So by using the sample correlation coefficient ¢ of the RSS observations (X(r)r,

estimator for « is

QL
1

1 <—;r(3—2ﬁ)
2(4—r)
2q(4-7) -7(3-2V2) _ 0= 7(3-2+/2)
7(3-+/2) 24-7) ~ 7 2(4-n)
ﬂ(3—2ﬁ)<q
2(4—r)

Table 1: The values of relative efficiencies e, ,e,, and e, in MTBRD

Y

), an

a €, €; €, N @ €, €; €4

2 -1.00 1.0123 0.7805 0.7901 10 -1.00 1.0413 0.5944 0.6189
-0.75 1.0069 0.8345 0.8402 -0.75 1.0201 0.6730 0.6865
-0.50 1.0031 0.8892 0.8919 -0.50 1.0081 0.7657 0.7719
-0.25 1.0008 0.9445 0.9452 -0.25 1.0019 0.8739 0.8755

0.25 1.0008 1.0555 1.0563 0.25 1.0019 1.1484 1.1505

0.50 1.0031 1.1108 1.1141 0.50 1.0081 1.3257 1.3365

0.75 1.0069 1.1655 1.1736 0.75 1.0201 1.5433 1.5743

1.00 1.0123 1.2195 1.2345 1.00 1.0413 1.8203 1.8955

4 -1.00 1.0266 0.6612 0.6787 15 -1.00 1.0456 0.5817 0.6081
-0.75 1.0138 0.7356 0.7457 -0.75 1.0219 0.6593 0.6736
-0.50 1.0058 0.8164 0.8211 -0.50 1.0088 0.7538 0.7603
-0.25 1.0014 0.9043 0.9055 -0.25 1.0021 0.8663 0.8681

0.25 1.0014 1.1047 1.1062 0.25 1.0021 1.1603 1.1627

0.50 1.0058 1.2196 1.2266 0.50 1.0088 1.3564 1.3683

0.75 1.0138 1.3465 1.3650 0.75 1.0219 1.6044 1.6394

1.00 1.0266 1.4877 1.5272 1.00 1.0456 1.9342 2.0223

6 -1.00 1.0340 0.6228 0.6439 20 -1.00 1.0479 0.5758 0.6033
-0.75 1.0170 0.7009 0.7128 -0.75 1.0228 0.6525 0.6673
-0.50 1.0070 0.7889 0.7944 -0.50 1.0091 0.7477 0.7544
-0.25 1.0017 0.8881 0.8895 -0.25 1.0021 0.8624 0.8642

0.25 1.0017 1.1271 1.1290 0.25 1.0021 1.1667 1.1691

0.50 1.0070 1.2730 1.2819 0.50 1.0091 1.3731 1.3855

0.75 1.0170 1.4428 1.4673 0.75 1.0228 1.6384 1.6757

1.00 1.0340 1.6445 1.7004 1.00 1.0479 1.9999 2.0956

8 -1.00 1.0384 0.6047 0.6278 25 -1.00 1.0492 0.5725 0.6007
-0.75 1.0189 0.6834 0.6963 -0.75 1.0233 0.6484 0.6635
-0.50 1.0077 0.7746 0.7805 -0.50 1.0092 0.7440 0.7509
-0.25 1.0018 0.8793 0.8809 -0.25 1.0021 0.8600 0.8619

0.25 1.0018 1.1400 1.1421 0.25 1.0021 1.1706 1.1731

0.50 1.0077 1.3047 1.3147 0.50 1.0092 1.3835 1.3963

0.75 1.0189 1.5026 1.5309 0.75 1.0233 1.6600 1.6988

1.00 1.0384 1.7475 1.8146 1.00 1.0492 2.0427 2.1434
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3. Estimating based on ERSS and MERSS

In this section, first we derive different estimators for o, based on ERSS method with

concomitant variable. This method introduced by Samawi et al. (1996) and can be
described as follows:

Step 1. Select n random samples each of size n bivariate units from the population.
Step 2. If the sample size n is even, then select from % samples the smallest ranked unit

X together with the associated Y and from the other 2 samples the largest ranked unit

X together with the associated Y .This selected observations

(X(l)liY[l]l)’(X(n)z’Y[n]z)’(X(l)y Y[1]3)1---’(X(1)n_1aY[1]n-1) (X nlY[n]n) can be denoted by
ERSS,.

Step 3. If n is odd then select from nT—l samples the smallest ranked unit X together

with the associated Y and from the other nT—l samples the largest ranked unit X

together with the associated Y and from one sample the median of the sample for actual
measurement. In this case the selected observations
Xy ¥ Xyn Yo Y]

(X(l)l’Y[l]l)’(X(n)Z’Y[n]Z)’(X(1)3’Y[1]3)""1(X(n)n—1’Y[n]n—1)! ( o 5 ' 5 [n]n) can
be denoted ERSS, and (X(1)1’Y[1]1) (X Z’Y[n )(X 3’Y[1]3)
..,(X(n)nfl,Y[n]nfl),(X(Lﬂ) 'Y[";l]n) can be denoted by ERss, .
2 2
Theorem 3.1 i. When 1 is even, an unbiased estimator for o, using grss, is
&Z,ERssl = 31)

w2
Z tgzra + Yinger )
{E r=1

0-22 (4_”) (1_Cn)’
Nz

with the variance

Var (OA-Z,ERssl) =

where ¢ =% (a(n 1)(1-~2 ))
" 2(4-n) n+1
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ii. When 1 is odd, unbiased estimators for o, using erss, and grss, are

~ 1 1
O2Erss, — —7[ Mg + Yoo F Y+ -+ Yo + 5 > “Yun + 5 5 =Y
n P
V 2
A 1
O2Erss, — pn —=Yup + Yo +Yup +- -+ Ve +Y[n7+1]n)-
n |7 2
2

with the variances

[ (1 4c.(n-1)/n)—-d, ],

. o,(4-7x) 2n-1
Var(GZ,ERSSZ)_ 2(7[ )

o, (4-7)
/1

Var(&ZYERSS?S) = [1-4c, (n-1)/n],

7(3—23/2)(n% -3) 2
24-7)(n+1)%(n+2)

respectively, where d, =

Proof. The proof is obvious.

The efficiency of &,.s relative to the estimators 6-2,ER531’ &Z,ERSSZ and &ZVERS%,
respectively, are
1-b,

€ = e(&z,ERSSl |5 rss) = ¢’
n

1-b,
~11_ac (n—1)m)—d )

€ = e(&Z,ERSSZ |6-2,RSS) = n

1-b,

o1 = 0aemss, 1 020ss) =1 Ty

Note that 1< e, gg for i =5,6,7. Also, for fixed n, e,'s increase in | & |, and for fixed
||, e,'s increase in n. Therefore, 52YER351, (%’ERSSZ and &Z,ERSS3 are more efficient than

O Rss*

The concept of MERSS with concomitant variable is proposed by Al-Saleh and Al-

Ananbeh (2007) for estimation of means of the bivariate normal distribution. Here, we
consider that the random vector (x,v) has a MTBRD as defined in (1.1). The procedure

of MERSS with concomitant variable in MTBRD is as follows:

Pak.j.stat.oper.res. Vol.XI1l No.12017 ppl-16 7
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Step 1. Select n samples each of size n from MTBRD using SRS. Identify by judgment
the minimum of each sample with respect to the variable X .

Step 2. Repeat step 1, but for the maximum.

Note that the 2n pairs of set {(Xgr Yy )s (X Y ;¥ =1,2,...,1} that are obtained
using the above procedure, are independent but not identically distributed.

Theorem 3.2 An unbiased estimator of o, based on MERSS is given by
62,MERSS Z( [1]r +Y[n]r) (32)

with the variance
o, (4-r) 1-c

nx ( 2”)_

Var (6, yerss) =

Proof. The proof is obvious.

The efficiency of 0, pgs relative to G, yerss i
- 2(1_bn)

€ = €(Gperss | Oopss) = 1—c
n

Note that 1< e, < %. Thus, G, \erss is more efficient than 0, gss. Also, the efficiency of

0, verss elative to o, and &, are

-1 1-c, & B
3 );z

(4- 7[),3 ( )

n

e, = e(o, |&2,MERSS) =

€0~ 6(5'2 |6-2,MERSS) =

The efficiency of o, relative to the estimators GAZ,ERSSll OA_Z,ERSSZ and 62,ER553 are

. o nz
ell_e(O-Z,ERSSl|O-2)_ " 2 ,
@035 e,
r=1 7%
e, =86, cnee. |00) = nz
12 = S\ Oz erss, 102) = " 3% on-1 ,
- =L 1-4c. )-d
O3 2 Fade) -0,
nx

€3= e(é-Z,ERSS3 |o,) =

@-my 0 -1

r
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Finally, the efficiency of &, relative to &Z,ERSSla OA_Z,ERSSZ and &Z,ERSS?) are

eI ALY E—
14 2,ERSS1 2 (4—72')ﬂnz (1—Cn) ]
N )
€5 = e(é-Z,ERSSZ |O'2) = L
@-mAI L1-ac,)-d,]
- z
€6 = e(&Z,ERSSS |o,) = o
@-npa-0"e)

We computed the values of e;,j=9,10,...,16 for &=+025-+05+075+1 and
n = 5(5)20. The results are given in Table 2, and we can conclude that

i) The efficiencies of &, s relative to o, and o, are less than 1 for n>5. So,
G, merss 1S relatively more efficient than o, and o, .
i) The efficiencies of G; relative to the estimators GZ,ERssl’ GZ,ERSSZ and GZ,ER553 are more

than 1 for n > 5. Thus, GZ,ER551' GZ,ERSSZ and GZ,ER553 are relatively more efficient than
o,.
iii) The efficiencies of 52 relative to the estimators Gz,ERssly GZ,ERSSZ and GZ,ER553 are more

than (less than) 1 for —1<a <0 (O<a<l)and n=5. Thus 5'2 is relatively more

efficient than O-Z,ERSS]_’ GZ,ERSSZ and GZ,ERSSS when 0< ¢ <1.

4. Estimating based on DRERSS

In this section, first we obtain different estimators for o, based on DRERSS method

with concomitant variable. This method introduced by Al-Omari (2011) and can be
described as follows:

Step 1. Select n* random samples each of size 1 bivariate units from the population.

Step 2. Select the coefficient k =[sn], where o< g <1, and [x] is the largest integer value
less than or equal to X.

Pak.j.stat.oper.res. Vol.XI1l No.12017 ppl-16 9
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16 in MTBRD

Table 2: The values of e; for j=9,10

N a e9 e10 ell elZ e13 el4 e15 elG
5 | -1.00| 04688 0.3719 1.0545 1.1708 1.0190 1.6530 1.8354 1.5974
-0.75] 0.4830 0.3540 1.0293 1.1432 1.0109 1.4400 1.5994 1.4142
-0.50 | 0.4926 0.3401 1.0126 1.1249 1.0049 1.2656 1.4060 1.2559
-0.25| 0.4981 0.3285 1.0031 1.1145 1.0012 1.1211 1.2456 1.1190
0.25 | 0.4981 0.3086 1.0031 1.1145 1.0012 0.8975 0.9971 0.8958
0.50 | 0.4926 0.2990 1.0126 1.1249 1.0049 0.8100 0.8998 0.8038
0.75 | 0.4830 0.2891 1.0293 1.1432 1.0109 0.7346 0.8160 0.7215
1.00 | 0.4688 0.2782 1.0545 1.1708 1.0190 0.6694 0.7432 0.6469
10| -1.00 | 0.4398 0.3942 1.1237 1.1828 1.0924 1.8906 1.9900 1.8378
-0.75 ] 0.4674 0.3656 1.0636 1.1195 1.0485 1.5804 1.6635 1.5580
-0.50 | 0.4859 0.3461 1.0266 1.0806 1.0206 1.3407 1.4112 1.3328
-0.25 | 0.4965 0.3310 1.0064 1.0594 1.0050 1.1516 1.2123 1.1500
0.25 | 0.4965 0.3064 1.0064 1.0594 1.0050 0.8764 0.9225 0.8751
0.50 | 0.4859 0.2946 1.0266 1.0806 1.0206 0.7744 0.8151 0.7698
0.75 | 0.4674 0.2818 1.0636 1.1195 1.0485 0.6892 0.7254 0.6794
1.00 | 0.4398 0.2668 1.1237 1.1828 1.0924 0.6173 0.6497 0.6001
15| -1.00 | 0.4266 0.4051 1.1592 1.1992 1.1333 1.9930 2.0617 1.9485
-0.75 | 0.4604 0.3706 1.0801 1.1173 1.0681 1.6384 1.6948 1.6202
-0.50 | 0.4829 0.3484 1.0331 1.0687 1.0284 13706 14178 1.3644
-0.25 | 0.4958 0.3320 1.0079 1.0427 1.0068 1.1634 1.2036 1.1622
0.25 | 0.4958 0.3056 1.0079 1.0427 1.0068 0.8686 0.8986 0.8677
0.50 | 0.4829 0.2929 1.0331 1.0687 1.0284 0.7616 0.7879 0.7582
0.75 | 0.4604 0.2789 1.0801 1.1173 1.0681 0.6732 0.6964 0.6658
1.00 | 04266 0.2621 1.1592 1.1992 1.1333 0.5993 0.6200 0.5859
20| -1.00 | 0.4191 0.4115 11805 1.2107 1.1587 2.0501 2.1026 2.0123
-0.75 ] 0.4564 0.3734 1.0896 1.1176 1.0795 1.6700 1.7128 1.6550
-0.50 | 0.4812 0.3497 1.0368 1.0633 1.0330 1.3866 1.4222 1.3816
-0.25 | 0.4953 0.3325 1.0088 1.0346 1.0079 1.1697 1.1997 1.1687
0.25 | 0.4953 0.3052 1.0088 1.0346 1.0079 0.8646 0.8868 0.8639
0.50 | 0.4812 0.2920 1.0368 1.0633 1.0330 0.7551 0.7744 0.7523
0.75 | 0.4564 0.2773 1.0896 1.1176 1.0795 0.6650 0.6821 0.6591
1.00 | 0.4191 0.2595 1.1805 1.2107 1.1587 0.5902 0.6054 0.5794

2
Step 3. If n is even, from the first g samples select the (k +1)th smallest unit X

2
together with the associated Y and from the second % samples the (n—k)th smallest

(n-1)

unit X together with the associated Y . If n is odd, select from the first n samples
the (k+1)th smallest unit X together with the associated Y, and from the next n

samples the nTch smallest unit X together with the associated Y , and from the last

10 Pak.j.stat.oper.res. Vol.XIIl No.12017 ppl-16
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n(n-1)

samples the (n—k)th smallest ranked unit with the associated Y . This step

yield n samples each of size n.

Step 4. For the n samples obtained in Step 3, if n is even, select for actual measurement

from the first 2 samples the (k +1)th smallest ranked unit X together with the
associated Y and from the second 2 samples the (n—k)th smallest ranked unit X

together with the associated Y . If n is odd, select from the first nT—l samples the
(k +1) th smallest ranked unit X together with the associated Y , the median from the
next sample and from the last nT—l samples the (n—k)th smallest ranked unit X
together with the associated Y . This step yields one sample of size n units from the
DRERSS data.

Theorem 4.1 i. When 1 is even, an unbiased estimator for o, using DRERSS S

n/2

O ) pRERSSE = [§ :'[k+1]r + Z Yinir]
n
\ 2

(4.1)

r=(n+2)/2

with the variance

Var (6, prersse) = M(l_wn)’
T
x (a(n 2k —1)(1- J_))

where w, =
2(4—1) n+1

ii. When n is odd, an unbiased estimator for o, using DRERSS s

(n-1)2

OA_Z,DRERSSO [Z [k+1]r +Yn+1] + Z Y[n k]r (42)
n.|—
e

r=(n+3)/2

with the variance

o2m) g )

Var (6, prersso) =
V4

_n-1
where £, —TWn.

Proof. The proof is obvious.
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The efficiency of &, . relative to the estimator &, jpeess 1S

1-Db, .
n IS even
1-w,
€, = (G, prerss | Ozpss) = 1-Db (4.3)
1 . n is odd
_Zn

Note that 1<e,, <1.3. Thus, &,,erss IS More efficient than &, .. The efficiency of

G, orerss Felative to the estimator &, \erss 1S
2(1-w,) n is even
1-c,
€5 = (0, merss | 02 orerss) = 2(1 (4.4)
' , -z .
% n is odd
_Cn

Where 1<e,<2. SO, 6, \wss 1S More efficient than &,.ss- The efficiency of

&, orerss Telative to the estimators o, and &, are

—(1—w;])7§4—7z)2“1§_f n is even
r=1 A
€6 = €(0; | 6, prerss) = (1—Zn)(4—7r)z”: g_z o (4.5)
nz =iy
(l_W;])f'_”)x nf“z n is even
€0 = €(5, | 85 prerss) = (1-2)4-7) nf; o (4.6)
nz )

We computed the values of e, and e,, for a ==20.25,20.5,£0.75,£1, k =0,1,2,3
and n = 4,5,6,7. The results are given in Table 3, and we can conclude that:
I. The efficiency of &, jpergs relative to o, is less than 1 for k =0 and n=>4. So,
&, orenss 1S relatively more efficient than o .
. The efficiency of &, prenss relative to the o, is more than 1 for n>5 and kK =1,2,3.
So, o, is relatively more than efficient than 05 pReRsS *
iii. The efficiency of &, yrerss relative to the &, is more than (less than) 1 for 0 < o <1

(-1<a<0) and n>4 , k>0. Thus &, prerss iS relatively more efficient than &,
when —1<ag<0Oand n>4, k=0.
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Table 3: The values of e, and e,, in MTBRD

k=0 k=1 k=2 k=3
a e19 eZO e19 eZO e19 e20 elQ e20

-1.00 | 0.9576 0.6460 | 1.0661 0.7191 | 1.0661 0.7191| 0.9576 0.6460
-0.75| 0.9768 0.7269 | 1.0357 0.7708 | 1.3578 0.7708 | 0.9768 0.7264
-0.50 | 0.9898 0.8136 | 1.0154 0.8346 | 1.0154 0.8346 | 0.9898 0.8136
-0.25| 0.9975 0.9050 | 1.003 0.9107 | 1.003 0.9107 | 0.9975 0.9050
0.25 | 09975 1.0972| 1.003 1.1042| 1.003 1.1042 | 0.9975 0.9050
0.50 | 0.9898 1.1953 | 1.0154 1.2262 | 1.0154 1.2262 | 0.9898 1.1953
0.75 | 09768 1.2920 | 1.0357 1.3699 | 1.0357 1.3699 | 0.9768 1.2920
1.00 | 0.9576 1.3845| 1.0661 1.5414 | 1.0661 1.5414 | 0.9576 1.3845
5] -1.00| 09682 0.6320 | 1.0594 0.6916 | 1.0898 0.7114 | 1.0594 0.6916
-0.75 | 0.9824 0.7111 | 1.0318 0.7469 | 1.0483 0.7588 | 1.0318 0.7469
-0.50 | 0.9923 0.7996 | 1.0136 0.8168 | 1.0208 0.8226 | 1.0136 0.8168
-0.25 | 0.9981 0.8962 | 1.0033 0.9009 | 1.0051 0.9025| 1.003 0.9009
0.25 | 0.9981 1.1101 | 1.0033 1.1159| 1.0051 1.1179 | 1.0033 1.1159
0.50 | 0.9923 1.2258 | 1.0136 1.2521 | 1.0208 1.2609 | 1.0136 1.2521
0.75 | 0.9824 1.3460 | 1.0318 1.4136| 1.0483 1.4362 | 1.0318 1.4136
1.00 | 0.9682 1.4695| 1.0594 1.6080 | 1.0898 1.6541 | 1.0594 1.6080
6| -1.00 | 0.9215 0.5890 | 1.0339 0.6609 | 1.0902 0.6968 | 1.0902 0.6968
-0.75 | 0.9572 0.6799 | 1.0179 0.7230 | 1.0482 0.7445| 1.0482 0.7445
-0.50 | 0.9814 0.7800 | 1.0076 0.8008 | 1.0207 0.8112 | 1.0207 0.8112
-0.25 | 0.9954 0.8873 | 1.0018 0.8930 | 1.0050 0.8959 | 1.0050 0.8959
0.25 | 0.9954 1.1159 | 1.0018 1.1231| 1.0050 1.1267 | 1.0050 1.1267
0.50 | 0.9814 12324 | 1.0076 1.2653 | 1.0207 1.2818 | 1.0207 1.2818
0.75 | 0.9572 1.3456 | 1.0179 1.4309 | 1.0482 1.4735| 1.0482 1.4735
1.00 | 09215 1.4498 | 1.0339 1.6268 | 1.0902 1.7153 | 1.0902 1.7153
7] -1.00| 0.9359 0.5896 | 1.0287 0.6481 | 1.0843 0.6831 | 1.1029 0.6948
-0.75 | 0.9650 0.6761 | 1.0149 0.7110 | 1.0448 0.7320 | 1.0548 0.7390
-0.50 | 0.9847 0.7747 | 1.0062 0.7916 | 1.0192 0.8018 | 1.0235 0.8051
-0.25 | 0.9962 0.8832 | 1.0015 0.8878 | 1.0047 0.8907 | 1.0057 0.8916
0.25 | 09962 1.1235| 1.0015 1.1295| 1.0047 1.1331 | 1.0057 1.1343
0.50 | 0.9847 12522 | 1.0062 1.2795| 1.0192 1.2959 | 1.0235 1.3014
0.75 | 0.9650 1.3834 | 1.0149 1.4550 | 1.0448 1.4979 | 1.0548 1.5122
1.00 | 0.9359 1.5139 | 1.0287 1.6639 | 1.0843 1.7539 | 1.1029 1.7839

5. An application

A reappraisal of caloric requirements in healthy women are done by Owen et al. (1986).
The results of this study show that the body weight of women was highly related to the
resting metabolic rate (RMR) of the women.

We considered a bivariate data set from the 44 women data such that the first component
X represents the body weight(kg), and the second components Y represents resting
metabolic rate (RMR) (kcal/24 hr). Clearly, the the body weight(kg) can be measured
very easily but the RMR s difficult to measure. We selected 6 random samples with size
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6 from 44 women data and ranked the sampling units of each sample according to the X
variate (body weight). We measureed the ranked set sample observations Y,

rir

corresponding to X, . The obtained RSS, ERSS; and MERSS observations are given in

Table 4. Since the sample correlation coefficient is g > % the estimate for « is 1 (see

Remark 2.1).

The computed values of 6-2,RSS76-2,ER531’&2,MERSS are 1142.57, 1009.32, and 979.40,

respectively. We can find that the estimated values for o, based on different samplings
are close.

Table 4: Obtained RSS, ERSS; and MERSS observations

r 1 2 3 4 5 6
RSS X oy 499 481 56 62.1 82 99.8
Yo 1079 1372 1392 1574 1536 1639
ERSS, | Xupra | 499 55 66.4
Yopr 1079 1034 1205
X (myer 64.9 66 99.8
Yinjer 1365 1268 1639
MERSS X ayr 499 431 55 59.2 664 834
Yoy 1079 870 1034 1342 1205 1248
X oyr 614 649 59 66 82 99.8
Yingr 1351 1365 1178 1268 1151 1639
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