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Abstract

Heteroscedasticity is a stern problem that distorts estimation and testing of panel data model (PDM).
Arellano (1987) proposed the White (1980) estimator for PDM with heteroscedastic errors but it provides
erroneous inference for the data sets including high leverage points. In this paper, our attempt is to improve
heteroscedastic consistent covariance matrix estimator (HCCME) for panel dataset with high leverage
points. To draw robust inference for the PDM, our focus is to improve kernel bootstrap estimators,
proposed by Racine and MacKinnon (2007). The Monte Carlo scheme is used for assertion of the results.

Keywords: Bootstrap; HCCME; Kernel smoothing; Leverage points; Size distortion.

1. Introduction

Panel data is the combination of time series and cross-sectional units collected from the
same group of cross-sectional units over time. In econometric research, it has many
advantages over time series and cross-sectional data. The estimation of PDM includes
two sorts of cases, the fixed effect model (FEM) and random effect model (REM). In the
first stated case, the individual-specific effect or heterogeneity is assumed as fixed while
in the last mentioned, it is expected to be random. The FEM has been frequently used in
panel data analysis for the issue of individual heterogeneity.

An important assumption of classical linear regression model (CLRM) is
homoscedasticity that the variance of error term remains constant and thus, the error term
is identically distributed. The results are inadequate if this assumption is not met. The
ordinary least square (OLS) estimates are not biased and inconsistent but they do not
remain best linear unbiased estimator (BLUE) when the assumption of homoscedasticity
is violated. Heteroscedasticity is a usual problem in the PDM, like unit-specific
heteroscedasticity (USH) and unit-time varying heteroscedasticity (UTVH) and it is
desirable to concentrate on it for making some robust inference.

Earlier studies about the problem of heteroscedasticity in the PDM were carried out by
Mazodier and Trognon (1978). Eicker (1963) and White (1980) proposed heteroscedastic
consistent covariance matrix estimator (HCCME) for non-panel data to tackle the
problem of heteroscedasticity, which makes it conceivable to draw asymptotically robust
inference. In the existing literature, it can be seen that Arellano (1987) builds White's
estimator for the PDM. Uchéa et al. (2014) used another variant of the White estimator
for the case of FE. However, the HCCME proposed by Cribari-Neto et al. (2007) for
cross-sectional data has not been used for the study of panel data yet by any researcher.

Pak.j.stat.oper.res. Vol.XIl No.4 2016 pp589-608



Afshan Saeed, Muhammad Aslam

Thus, in current study, this estimator is being used for the improvement in inference of
PDM.

Besides the HCCME, some bootstrap estimators have also been developed to draw
correct inference about the PDM. Cameron et al. (2008) and MacKinnon and Webb
(2013) used the bootstrap technique in order to draw robust inference for the PDM with
clustered errors. Unfortunately, a wide literature on the use of bootstrap estimators is not
observed for the PDM, especially when there are also some high leverage points.

Another statistical approach is also available in the literature to make robust inference of
linear regression model. This is the kernel smoothing approach proposed by Racine and
MacKinnon (2007). This approach has not been studied in context of the PDM yet by any
researcher and it is tried to fill this gap in our current work.

The paper is outlined as follows. Section 2 provides the model description and the
HCCMEs. Section 3 discusses the HCCME based quasi t-test statistic. Section 4 presents
the bootstrap estimators and Section 5 presents the kernel based versions of bootstrap.
Section 6 displays all the numerical results and Section 7 concludes the results.

2.  The Model and HCCMEs
The concerned model is the heteroscedastic FEM and its basic framework is
Vo =4 +X BHv, 1=1, ..o T=1, .., T, Q)

where g is unobserved heterogeneity. Model (1) can be embodied in the form of matrix
by stacking the data over time dimension T

Vi =X B+u +v;,
wherey, =(y,,..., Yir )l X=Xy Xig )land vi=vig,.. v )'. Following model s
obtained by assembling the whole data set cross-sectionally

y=u®e, +Xpg+v, (2)
where y=(y,....v,) \ X =(X,r.., X, ) andv =(v,,...,v,,) . Here, e, is T x 1 vector of ones,

unobserved individual heterogeneity is captured by u=(y,, ..., 1, ) and® is the Kronecker
product. Additionally, y isnT x1 response vector, X is nT xq implicitly fixed regressor
(g <nT), pis g x 1 vector of unknown parameters and v is nT x1 vector of error term

(for more details, see Uchoba et al. 2014). Here, we have some assumptions about error
term that E (v,)=0,var (v;,) =o?.

The estimation of (2) can be achieved by within group estimator (WGE). It can be
accomplished by pre-multiplication of (2) with the following matrix

M=1,-P,
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where P=Q(Q'Q)"'Q', Q=1, ®g, is nT xn matrix of n dummy variables associated with
each cross-sectional unit, and 1 is the identity matrix of order nT and n,

I nT n
respectively. & =T 'xe, is a vector of ones of index T (for details; see Greene, 2003).
Model (2) becomes

y=XB+7, 3)
where X =MX, y =My and v =My, the appropriate estimator for (3) is the OLS. The
unbiased estimator of g is

A

p=(X'%)'X7.

The variance of estimator is

var (5) :32()2'2)71, 4)
where 22 _ vy _v=(-X E) and the hat matrix can be defined as 7 = x(X'x)'x"-
n(T-)-tr(H)

The usual covariance matrix of £ can be described as

7=(X'X)"X'OX(X'X )" =DAD', (5)

where D =()Z')Z)71)Z'. In case of homoscedasticity, Eq. (5) reduces to variance given in

(4). For the heteroscedastic case, the error term is independent but non-identically
distributed, hence there is a need of consistent estimator of ¢ . Arellano (1987) improved

White (1980) estimator for the FEM which can be defined as
HCO = (X'X) ' X0, X(X'X )" =DA,D'= 3,
where ZO =diag {312,322,...,32}.

For the FEM, HC3 can be found by replacement of ZO with following diagonal elements
in (5)

A P2 P2 P2
As—dlag{ T T 2},
a-nf @-nf -,
where h is being the it™ diagonal element of A .

Uchoa et al. (2014) used the HC4 for FEM having high leverage points. For this
estimator,

s [
ol T
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where :min{4,@1} ..... min{4‘@ﬂ}. Since 0 < h <1and >0, thereforeo<fi—, " <1. In

the available literature, the HC5 version of HCCME has not been used for the FEM
which has proposed by Cribari-Neto et al. (2007) for non-panel data to study the
influence of maximal leverage. In our present work, we propose to use the HC5 for the
FEM. For this purpose, we use

A ‘flz 522 1~;-n2
el AT

where 5  min [[{rl} ..... {QT}] max[{4, L } ..... {4, L H] 0<c<l:
hil hnT hil hnT

The condition implicates that 5,>0and 0 < f < 1, it entails thato <4—f ' <1

The general structure of the HCCME is
HC(l): 4, =DA, D', (6)
where | =0,3,..., 5, | =0 indicates HCO, | = 3 is for HC3 and so on.

3. The HCCME based t-test and the Heteroscedastic-Consistent Covariance
Interval Estimator (HCCIE)

The quasi-t test statistic can be intended with the concept of normality of regression
parameter, such that Er ~N(B, 9 -

Consider the hypothesis
H,: 8. = B° against H,:B. = B°, where B°is hypothesized value of 3, .

The t-test statistic under the null hypothesis is

ﬁ:(ﬂrjﬁf’). @)
P(m)
whereé(rr) is the r™ diagonal element of 5 andr=0,1,..., q-1. The fr is likely to
follow a t, . distribution. In case of large sample size, Halawa and El-Bassiouni

n(T-1-t (H)§

(2000) noted that the asymptotic distribution of this statistic is normal. Thus a test of
asymptotic significance a rejects H, if s|>Z where Z , is the ;_« quantile of
1,3 1- 2

2
standard normal distribution (SND). Thus, the true size of test can be built up as

P(reject H, | H, )= P[ 'tt(r)

>2, mzﬁf’} ®)
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The power of test can be measured as

P(reject H, | H, )= P( ?(r)

>Z, Iﬂr=ﬂ3J- ©)

Now for the case of heteroscedastic errors, the Statistic (7) can be improved as

7S P 0
t ZM,where 1=0,3,...,5.
¢I(rr)
Cribari-Neto and Lima (2009) constructed confidence interval based on the ,BOLS and

HCCMEs for linear regression models. But, we are going to construct confidence interval
for the FEM. Similarly, for large dataset, the HCIE can be derived and (1-a) % 100 %
(two sided) confidence interval for g is

Er * Zl,ﬁ &‘I(rr) ) (10)
2

4. The Bootstrap Estimator

To draw robust inference about the heteroscedastic linear FEM, some bootstrap
estimators have also been observed. The residual bootstrap (RB), WB and pair bootstrap
(PB) estimators have been frequently used for the PDM (for more details; see Cameron et
al., 2008). Cameron et al. (2008) have considered different bootstrap procedures for
clustered errors like bootstrap-T method and bootstrap-se method. MacKinnon (2007)
discussed the bootstrap p-value procedures for non-panel data. The bootstrap schemes are
given below.

4.1 The Bootstrap-T Procedures
4.1.1 The RB Estimator (t) (RBE (t))

The bootstrap scheme for the residual resampling is as follows
1. Create pseudo-sample of residualsii by resampling of residual v .

2. Make a bootstrap sample (Y, X ), @Sy, = XE +V,

where ,E and v are the WG coefficient and residual, respectively.

3. Estimate g, =(X'M X) ™ X'M yg -
4. Constructiy = M
var (Beg )

5. Repeat Steps 1 to 4 for large number of (say, B) times.

Reject the null hypothesis at level « if and only if

|t |> ZA—RB[L%p

where tgg,, represents the q™ quantile of Trg, o Tra, -

Pak.j.stat.oper.res. Vol.XIl No.4 2016 pp589-608 593



Afshan Saeed, Muhammad Aslam

The percentile-t two-sided confidence interval at level 1-« is
Y. | }m .
RB|1-—
2

4.1.2 The WB Estimator (t) (WBE (1))

It has proposed by Liu (1988), who followed the suggestions of Wu (1986) and Beran
(1986). Its scheme is given below.

1. Foreachm, m =1, ..., n, draw a random number R, from a population that has
zero mean and unit variance.
2. Construct a bootstrap sample (y,,,, X ), as
PSR,
yWB:X,B-l-l_H.i Rm’ (11)

where ﬁ, is the it" diagonal element of hat matrix, ,E and 1 are the WG coefficient and
residual, respectively.

Steps 3 to 5 are similar to the scheme of ARB (t). The weight in (11) is based on HC3.

4.2 The Bootstrap-p Procedures

MacKinnon (2007) presented the way of computing bootstrap p-value for linear
regression model.

4.2.1 The RBE (p)
For the RB, the bootstrap-p technique is as follows

A 2o 1S, 2N
Pre(p) =1-F(7) :EZI(l Ti(rB) I>[t]), j=1,.., B,
j=L
B S
where F(f)zézlll(l Tjre) |>|t[) denotes the empirical distribution function (EDF),
J:
I () is the indicator function, 7., Iis the t-statistic obtained from RB and t is the t-

statistic acquired from WG. It is the way of computing symmetric bootstrap p-value.

4.2.2 The WBE (p)

The method of the computation of the symmetric bootstrap p-value on the basis of the
WB is as follows

R A a 1& R 2
Pue(p =1-F (7) = EZ; L 75wy [>T D)
]=
B A
where 7. is the t-statistic comes from WB and F(z)= %z 1( gy 1] t])-
j=1

5. The Kernel Estimators

The kernel estimator of Racine and MacKinnon (2007) has proposed for non-panel
model. In the present work, we propose to use this estimator while considering the FEM.
The scheme of kernel estimators is given below:
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5.1 The RB Kernel Estimator
The kernel estimator is going to be used for the RBE and can be defined as

A A 1E& . rS
Posx =1 Fd(r)=1—EZK(Tj(RB),t,d),

j=1
where F, ( ZK( J(RB),t,d)j =1,.. Ifd(f) is the cumulative distribution

function (CDF), d is the bandwidth, { is the t test statistic from WGE and Teg is the
quasi-t test statistic acquired from the RBE. It is termed as the “RBE (Kk)”.

5.2 The WB Kernel Estimator

Racine and MacKinnon (2007) calculated the p-value for simple linear regression model
but in the current work, it is computed for the FEM as

: 5 > Kl )
Puex =1- 1_EZK J(WB), y W

where £ ( ZK( 1 £2w) Fo() s the CDF, wis the bandwidth and 7, is the

quasi-t test statistic obtained from the WBE. It is termed as the “WBE (k)”.

6. Empirical Results

For the empirical results, we used the same Monte Carlo scheme as used in some
previous studies like Li and Stengos (1994), Roy (2002) and Aslam and Pasha (2007).
The considered model is

Yie =B, + BXy + g +o i=1..,n; t=1.T, where x; =0.5w, _, +Ww,.

We have used two data generating processes (DGPs)
(1) W, as w, ~iid.U(0,2).
(i) w; as  w, ~iid.exp(N(0,0.4%)), w, follows lognormal distribution.

The values assigned to g, and g, are 5 and 0.5 respectively. v, and ; can be generated as
v, ~iid.N@©0,02), # ~iid.N(O,@)where @ =wo(X)=5% (L+4%)’. It is supposed that
heteroscedasticity is of additive form. Let the total variance y, and expected variance of
41 v =0 +o2and @, respectively. For comparison across different DGPs, the expected
total variance is set to be z+s2=8. The values of 1 are 0, 1, 2 and 3, where 0 indicates

homoscedastic unit-specific error and other shows different levels of heteroscedasticity
for the fixed value of »? and the values assigned to 52 are 2, 4 and 6. Increase in 4 cause

increase in degree of heteroscedasticity. Moreover, the value of @ can be obtained using
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different values of 4 for each value of 2> and  is obtained using the additive
heteroscedastic design specified above for giveni. Thus, the values of o, for each 52
under the four different values of Aare obtained. In our work, we have used normal

2
kernel which has cited in Roy (2002) that is k(x) :\/Z_mexp (—X?),

where the value of smoothing parameter given in Racine and MacKinnon (2007) is
g=cB*® wherec =2.418,1.575and1.3167 for 10%, 5% and 1%, respectively The

simulations are 5000 with two sample size scheme
l. Scheme I: n=50; T =3; nT =150
Il. Scheme Il: n =100; T = 3; nT = 300

The number of bootstraps are 399. We use the following estimators
a The pooled OLS estimators

b The WGE

C The HCCME

d. The Bootstrap-t estimators (RBE (t), WBE (t)

e The Bootstrap-p estimators (RBE (p), WBE (p))

f The Kernel Bootstrap estimator (RBE (k), WBE (k))

For study of the finite sample behaviour of the given estimators under heteroscedasticity,
following measures are used

. Mean and MSE

o Empirical coverage
o Empirical size
o Empirical power

Empirical coverage of confidence interval and size of test are given in percentage form.
Nominal coverage is taken to be 95% and empirical size is investigated at 1%, 5% and
10% nominal level of significance (LOS). Value of A indicates level of heteroscedasticity
for instance, 0 shows homoscedasticity, 1 reveals mild, 2 shows moderate and 3 indicates
severe heteroscedasticity.

Table 1 (a) and 1 (b) contain the mean and MSE for Scheme | and Il under DGPI,
respectively. Intercept is excluded in the WG estimation (see Aslam, 2006), therefore it is
not given in these tables and discussion is focused only on the slope estimates. Table 1

(a) shows that all the estimators are efficient for all homoscedastic and heteroscedastic
cases but the OLSE is inefficient for smaller UTVH. For 2= 2, the MSE of OLSE is

more than twice of WGE. However, the OLSE performs equally well for 2= 4. For
larger UTVH (2= 6), performance of the OLSE is improved and it shows smaller MSE
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than that of WGE. The similar behaviour of OLSE and WGE is noticed in Table 1 (b).
For large samples, it is expected that performance of the OLSE is improved and it
happens that for smaller UTVH, the OLSE performance is improved but still not better
than the WGE.

Under DGPII, the results are given in Table 2 (a) and 2 (b) for given Scheme | and Il of
sample size, respectively. The obtained results do not differ from those generated under
DGPI. The WGE outperformed OLSE for 2 = 2 but MSE of the OLSE is smaller than

WGE for larger UTVH.

The average length and coverage is measured for study of finite sample properties of
estimators under heteroscedasticity. The estimation of confidence interval is done as
illustrated in (10). We have performed experiment for 52 = 2, though we have performed
for 52 = 4 and 6 and found similar results. Under DGP | and Il, empirical coverage is

presented in Fig. 1 (a) and 1 (b), respectively. Under DGPI, the OLSE curve shows
under-coverage while the curve of WGE is closer to the nominal coverage (95%). There
is overlapping of the curves of HC3 and HC5. The curve of WBE (t) is closer to 95%.
The similar behaviour is observed in Fig. 1 (b). Under DGPI, Table 3 (a) and 3 (b) carry
empirical coverage and average length for Scheme I and 11, respectively. Performance of
the OLSE is not satisfactory in Table 3 (a) as it shows under-coverage for homoscedastic
as well as heteroscedastic cases. The empirical coverage of WGE is closer to nominal
coverage for all degrees of heteroscedasticity and it outperforms the OLSE. On the other
side, it is noticed that the best empirical coverage among the HCCMEs are provided by
HC4 and HC5. Among the bootstrap estimators, the WBE (t) exhibits best empirical
coverage for heteroscedastic cases. This is verification of findings of Liu (1988) for linear
regression models. Performance of the estimators in Table 3 (b) is similar to that
observed in Table 3 (a). With the increment in sample size, there is no improvement in
performance of the OLSE. Again, performance of the WBE (t) is remarkable and it
remains an attractive choice.

Table 4 (a) and 4 (b) show empirical coverage and average interval length for DGP Il for
Scheme | and 11, respectively. Table 4 (a) shows that the OLSE confidence interval does
not exhibit good empirical coverage. For all degrees of heteroscedasticity (A =0, 1, 2 and
3), HC5 shows the best coverage among all the HCCMEs. It is noticed in Table 4 (b) that
the WBE (t) confidence interval displays coverage that is closer to the nominal coverage
(95%). The similar behaviour of estimators is observed in Table 4 (b) as observed in
Table 4 (a).

In this work, hypothesis of interest is
Hy, :4,=05,H,:8 #05.

Empirical size can be measured according to (8). We have performed experiment for 2 =
2, though we have performed for 52 = 4 and 6 and found similar results. Empirical size is
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presented in Fig. 2 (a) and 2 (b) under DGP | and II, respectively. The OLSE curve
reveals high size distortion in Fig. 2 (a). The WGE curve is closer to nominal level (5%).
The bootstrap and kernel bootstrap estimators curves are also closer to nominal size. The
similar trend is observed in Fig. 2 (b). Table 5 (a) and 5 (b) carry empirical results under
DGP | for the estimators described above for Scheme | and I, respectively. It is noticed
in Table 5 (a) that empirical sizes executed by the OLSE are very poor and there is high
size distortion under both homoscedastic (A = 0) and heteroscedastic cases (A = 1, 2 and
3). However, the OLSE gets improvement in performance. While performance of all the
other estimators is remarkable in case of heteroscedasticity. The HC4 and HC5 provide
show the best null rejection rate (NRR) among all the HCCMEs. The HC3 also shows
admirable rejection rates. Good performance of HC4 verifies the results of Uchao et al.
(2014). The HCS carries out a sound performance from mild (A = 1) to severe
heteroscedasticity (A = 3) which justifies our new design for the FEM. The RBE also
performs well in terms of NRR. The WB (p) approach provides remarkable NRR and
gives confirmation to the results of MacKinnon (2007) for cross-sectional data. Among
all the bootstrap estimators, WB performs excellently and the similar results are observed
in the literature like in the work of Cameron et al. (2008). Among all the considered
estimators, the best NRR is provided by kernel bootstrap estimators in the presence of
heteroscedasticity (A = 1, 2 and 3) and it becomes an attractive choice for heteroscedastic
PDM at all nominal LOS. This verifies findings of Racine and MacKinnon (2007) for
linear regression models. Our proposed kernel bootstrap estimator performs the best
among all the estimators under consideration in the presence of heteroscedasticity. It also
justifies our proposal for the PDM. The results given in Table 5 (b) indicate that
performance of all the estimators is analogous to those given in Table 3.9. Performance
of the OLSE is expectedly very poor. The HC5 shows substantial performance under all
cases of heteroscedasticity (A = 1, 2 and 3). The WB (k) approach justifies new
formulation by providing NRR closer to all the nominal LOS (1%, 5% and 10%). Table 6
(@) and 6 (b) show empirical sizes under DGP Il for Scheme | and II, respectively. The
results given in these tables striking the same mark as in DGP 1.

Empirical power can be estimated according to (9). Under DGP I, Fig. 3 (a) shows
empirical power curves based on all the estimators under consideration for Scheme I. For
the case of homoscedasticity (A = 0), it is observed that power curves of all the estimators
are identical except that of OLSE which shows high power distortion for smaller UTVH
(o2 = 2). The curves of all other estimators are identical and they perform equally well. It
verifies reported results of Aslam (2006). Fig. 3 (b) displays empirical power curves for
Scheme 11 under DGP 1. It is expected that with the increment in sample size, the power
curves tend to slumber. The curve of OLSE does not improve and shows power distortion
for homoscedasticity (A = 0) and heteroscedasticity (A = 1, 2 and 3).

Fig. 4 (a) and 4 (b) show power curves for Scheme | and Il, respectively under DGP II.
The similar results are noticed under DGP 11 as given under DGP 1.
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Emprical coverage under DGP I: n =150, T =3 Emprical coverage under DGP I: n=100, T=3
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Figure 1 (a): Empirical coverage (%) of confidence interval for g, under DGP |

Emprical coverage under DGP II: n=50, T=3 Emprical coverage under DGP II: n=100, T=3
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Figure 1 (b): Empirical coverage (%) of confidence interval for g, under DGP II
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Figure 2 (b): Empirical size (%) for g, under DGP I
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Table 1 (a): Mean and MSE under DGP1 (n =50, T = 3)

A =0 coefficient

Mean MSE Mean MSE Mean MSE
OLS 499 0.24 5.00 0.24 5.00 0.24
OLS | 050 011 050 011 050 011
WG | 050 005 050 011 049 0.16 B, (true value 0.5)
A= coefficient

B, (true value 5)

OLS | 499 025 499 025 500 025 B, (true value 5)
OLS | 050 011 050 011 050 0.1
WG | 050 005 050 011 050 0.16 B, (true value 0.5)
A =2 coefficient

OLS | 500 025 498 025 501 025 | Ao (truevalue)
OLS | 049 012 051 011 050 0.1
WG | 049 005 051 011 050 016 | /i /(truevalue0.5)
A =3 coefficient

OLS | 500 026 501 025 500 025 By (true value 5)
OLS | 051 012 049 011 050 0.11
WG | 050 005 050 011 049 016 | B /(truevalue0.5)

Table 1 (b): Mean and MSE under DGP1 (n =100, T = 3)

A =0 coefficient

Mean MSE Mean MSE Mean MSE
OLS | 501 0.2 500 012 500 0.2
OLS | 049 006 050 006 050 0.06
WG | 050 0.03 050 005 050 0.08 B, (true value 0.5)
A= coefficient

B, (true value 5)

OLS | 500 0.3 500 012 500 0.12 B, (true value 5)
OLS | 050 006 050 006 050 0.06
WG | 050 003 050 005 050 0.08 B, (true value 0.5)
A =2 coefficient

OLS | 500 013 500 013 500 0.12 B, (true value 5)
OLS | 049 006 050 006 050 0.06
WG | 050 003 050 005 050 0.08 B, (true value 0.5)
A= coefficient

OLS | 499 013 500 013 500 0.12 B, (true value 5)
OLS | 050 006 050 006 050 0.06
WG | 050 003 050 005 050 008 | A (truevalue0.5)
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Table 2 (a): Mean and MSE under DGP1Il (n =50, T = 3)

A =0 coefficient
o)
Mean MSE Mean MSE Mean MSE ,Bo (true value 5)

OLS | 5.01 0.49 500 049 502 049

OLS | 049 021 049 021 049 021

WG | 049 009 050 019 050 0.28 B, (true value 0.5)
A= coefficient

OLS | 499 049 501 049 501 050 B, (true value 5)

OLS | 051 021 050 021 050 0.21

WG | 050 009 051 019 050 0.28 B, (true value 0.5)
A=2 coefficient

oLs | 500 050 500 050 500 049 | KB (truevalue5)

OLS | 050 021 050 021 051 021

WG | 050 009 050 019 051 028 B, (true value 0.5)
A =3 coefficient

oLs | 502 050 500 050 501 050 | Ao (truevalues)

OLS | 049 022 050 021 050 0.21

WG | 049 009 050 019 051 028 | A (truevalue0.5)

Table 2 (b): Mean and MSE under DGP1I (n =100, T = 3)
A =0 coefficient
o)
Mean MSE Mean MSE Mean MSE :Bo (true value 5)

OLS | 500 025 5.01 025 500 025

OLS | 050 0.11 0.49 011 050 011

WG | 050 0.05 0.49 009 050 0.4 B, (true value 0.5)
A= coefficient

OLS | 499 0.25 501 025 500 0.25

OLS | 051 011 049 011 050 0.11

WG | 050 005 049 009 051 014 | /Bi(truevalue0.5)
A =2 coefficient

OLS | 501 0.25 501 025 499 025

OLS | 049 011 050 011 051 0.11

WG | 050 005 050 009 050 014 B, (true value 0.5)
A= coefficient

OLS | 499 0.25 500 025 501 025

OLS | 051 011 050 011 049 011

WG | 050 005 050 009 050 014 | A (truevalue0.5)
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Table 3 (a): 95% Confidence Interval: Coverage and Length (n =50, T = 3) under

DGP |
o, =2
A=0 A=1 A=2 A=3
Coverage Length Coverage Length Coverage Length Coverage Length
oLs 90.34 0.91 88.56 0.91 87.92 0.91 87.72 0.91
WG 95.56 0.73 94.22 0.73 94.16 0.73 94.94 0.73
HCO 89.00 0.73 86.90 0.73 87.84 0.74 88.40 0.73
HC3 89.86 0.75 87.94 0.75 88.56 0.75 89.00 0.75
HC4 89.88 0.75 87.94 0.75 88.60 0.75 89.02 0.75
HC5 89.88 0.75 87.94 0.75 88.60 0.75 89.02 0.75
RB(t) 95.74 0.92 94.54 0.93 94.62 0.93 95.12 0.93
WB(t) 95.56 0.93 94.92 0.93 94.42 0.93 95.16 0.93

Table 3 (b): 95% Confidence Interval: Coverage and Length (n = 100, T = 3)

under DGP |
c?=2
A= 10 A= 1 A= 2 A=3

Coverage Length Coverage Length Coverage Length Coverage Length
OLS 90.48 0.92 88.78 0.93 88.50 0.94 87.08 0.94
WG 94.48 0.64 94.90 0.64 94.26 0.64 95.04 0.64
HCO 88.26 0.52 88.98 0.52 88.08 0.52 88.68 0.52
HC3 88.64 0.53 89.36 0.53 88.42 0.53 89.08 0.52
HC4 88.64 0.53 89.34 0.53 88.44 0.53 89.14 0.53
HC5 88.64 0.53 89.34 0.53 88.44 0.53 89.14 0.53
RB(t) 94.54 0.66 95.20 0.66 94.36 0.66 95.24 0.66
WB(t) 94.50 0.66 95.24 0.66 94.12 0.66 95.04 0.66

Table 4 (a): 95% Confidence Interval: Coverage and Length (n =50, T = 3) under

DGP Il
o, =2
A=0 A=1 A=2 A=3

Coverage Length Coverage Length Coverage Length Coverage Length
(O] ] 94.30 1.79 88.98 1.80 88.46 1.81 86.92 1.81
WG 94.46 1.19 94.96 1.19 94.68 1.19 94.48 1.19
HCO 87.18 0.95 88.08 0.95 87.60 0.95 87.82 0.95
HC3 88.28 0.98 88.98 0.97 88.44 0.98 88.84 0.98
HC4 88.70 0.99 89.26 0.99 88.82 0.99 89.22 1.00
HC5 88.70 1.00 89.28 0.99 88.84 0.99 89.24 1.00
RB(t) 94.64 1.22 95.26 1.22 95.14 1.21 94.94 1.22
WAB(t) 94.60 1.24 94.92 1.23 94.94 1.23 94.80 1.24

Table 4 (b): 95% Confidence Interval: Coverage and Length (n = 100, T = 3)

under DGP 1l
c?=2
A=10 A= 1 A=2 rA=3
Coverage Length Coverage Length Coverage Length Coverage Length
OLS 92.40 1.27 89.26 1.28 88.06 129 87.28 1.29
WG 94.20 0.84 94.64 0.84 94.56 0.84 94.58 0.84
HCO 87.32 0.68 87.90 0.68 87.64 0.68 88.78 0.68
HC3 87.98 0.69 88.36 0.69 88.08 0.69 89.22 0.69
HC4 88.22 0.70 88.52 0.69 88.28 0.69 89.44 0.70
HC5 88.24 0.70 88.56 0.70 88.30 0.69 89.46 0.70
RB(t) 94.36 0.86 94.92 0.86 94.52 0.86 94.80 0.86
WB(1) 94.00 0.86 94.46 0.86 94.32 0.86 94.68 0.86
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Table 5 (a): NRR of quasi-t test for n =50, T = 3 under DGP |

c?=2
a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5%  10%
o, A=0 =1 r=2 A=3
OLS 288 966 1656 358 1144 1846 4.24 1208 19.02 4.08 1228 20.06
WG 090 444 970 106 578 1112 142 584 1066 114 506 9.98
HCO 364 1100 1830 4.40 1310 1968 4.98 1216 1970 404 11.60 18.70
HC3 314 1014 1738 400 1206 1870 4.46 1144 1868 3.64 1100 17.74
HC4 314 1012 1734 398 1206 1862 4.44 1140 1864 3.64 1098 17.74
HC5 314 1012 17.34 398 1206 1862 444 1140 1864 3.64 1098 17.74
RB(t) 082 426 918 106 546 1088 126 538 1032 0.68 4.88 9.66
WB(t) 088 444 892 090 508 1056 116 558 1028 1.06 4.84 9.82
RB(p) 076 410 930 088 536 1084 110 558 1036 0.86 4.88 9.70
WB(p) 098 464 88 090 530 1074 136 552 1036 1.08 4.88 974
RB(K) 120 762 1024 148 892 1160 1.92 912 1118 122 7.90 1054
WB(K) 122 728 922 140 870 1132 162 858 1102 136 804 10.40
Table 5 (b): NRR of quasi-t test for n = 100, T = 3 under DGP |

c?=2
a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5%  10%
o) 2=0 =1 A=2 r=3
oLS 292 952 1590 332 1122 1810 3.88 1150 1884 4.60 12.92 20.32
WG 116 552 1046 116 510 976 118 574 1070 090 4.96 10.04
HCO 418 1174 1848 378 11.02 1792 472 11.92 1942 384 1132 19.24
HC3 390 11.36 1810 362 1064 17.36 450 1158 1876 3.66 1092 1858
HC4 388 1136 1806 3.62 1066 17.32 4.48 1156 1878 366 10.86 1858
HC5 388 11.36 1806 362 1066 17.32 448 1156 1878 3.66 10.86 1858
RB(t) 100 546 992 100 480 9.68 124 564 1018 0.88 476 9.96
WB(t) 106 550 1028 130 476 944 122 588 1034 108 4.9 10.06
RB(p) 094 540 1030 1.00 476 942 128 566 1052 084 490 956
WB(p) 112 532 1046 134 492 960 116 590 1020 1.04 514 9.86
RB(K) 144 874 1100 142 814 1020 156 9.02 1112 120 832 10.84
WB(K) 154 902 1100 156 804 1010 174 886 10.88 1.28 806 10.62
Table 6 (a): NRR of quasi-t test for n =50, T = 3 under DGP Il

63 =
a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5%  10%
o, 2=0 r=1 n=2 A=3
OoLS 108 570 1136 3.22 1102 1776 3.82 1154 1922 436 13.08 20.74
WG 110 554 1060 116 504 1000 1.08 532 1040 126 552 10.32
HCO 480 1282 1976 452 1192 1870 454 1240 1968 4.62 1218 1958
HC3 432 1172 1854 402 11.02 17.36 4.04 1156 1850 4.10 11.16 18.16
HC4 418 1130 1822 3.84 1074 1684 386 11.18 1798 3.86 10.78 17.50
HC5 418 11.30 1822 384 1072 1676 382 1116 1794 3.84 10.76 17.42
RB(t) 116 536 1060 098 474 954 084 48 1030 1.06 506 10.08
WB(t) 132 540 1018 116 508 976 100 506 996 134 520 9.76
RB(p) 100 532 1034 108 492 978 094 484 1004 100 514 10.06
WB(p) 116 510 996 114 516 964 102 510 1000 154 508 9.74
RB(K) 144 874 1120 158 850 10.28 130 878 1072 150 848  10.60
WB(K) 152 854 1070 1.66 808 1026 1.28 830 1056 168 816 10.22
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Table 6 (b): NRR of quasi-t test for n = 100, T = 3 under DGP 11

c?=2

a 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5%  10%
o) A=0 =1 =2 A=3

oLS 184 7.60 1428 352 10.74 1794 3.96 1194 1874 460 1272 1950
WG 102 580 1114 082 536 1096 1.08 544 1058 1.12 542 9.86
HCO 462 1268 1944 406 1210 1948 460 1236 1922 426 1122 17.46
HC3 420 1202 1882 364 1164 1894 430 1192 1840 390 10.78 16.70
HC4 408 1178 1838 356 1148 1856 422 1172 1798 372 1056 1650
HC5 408 1176 1838 356 1144 1850 422 1170 17.94 370 1054 16.48
RB(t) 092 564 1088 058 508 1046 104 548 998 086 520 9.30
WB() 104 600 1088 100 554 1082 134 568 1064 098 532 982
RB(p) 082 556 10.84 068 524 1060 098 536 994 090 524 952
WB(p) 120 594 1072 084 560 1070 124 564 1072 112 568 9.64
RB(K) 136 964 1170 112 900 1124 156 862 1062 132 838 10.10
WB(K) 162 918 1160 130 88 1130 170 892 1132 144 846 1012

0.6 0.8 1 12 14 16 1.8 2 0.6 0.8 1 12 1.4 16 1.8 2
Alternatives (DGPI; N=50; T=3; sigma=2; lam=0) Alternatives (DGPL; N=50; T=3; sigma=2; lam=1)

0.6 0.8 1 1.2 1.4 1.6 18 2 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Alternatives (DGPT; N=50; T=3; sigma=2; lam=2) Alternatives (DGPT; N=50; T=3; sigma=2; lam=3)

Figure 3 (a) Empirical power of test at 5% LOS (DGP I; n=50, T = 3)
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Figure 3 (b) Empirical power of test at 5% LOS (DGP I; n =100, T = 3)
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Figure 3 (b) Empirical power of test at 5% LOS (DGP I; n =100, T = 3)
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0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Alternatives (DGPII; N=50; T=3; sigma=2; lam=0) Alternatives (DGPII; N=50; T=3; sigma=2; lam=1)

0.6 0.8 1 1.2 14 16 18 2 0.6 0.8 1 12 1.4 16 1.8 2
Alternatives (DGPII; N=50; T=3; sigma=2; lam=2) Alternatives (DGPII; N=50; T=3; sigma=2; lam=3)

Figure 4 (a) Empirical power of test at 5% LOS (DGP II; n =50, T = 3)
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Figure 4 (b) Empirical power of test at 5% LOS (DGP II; n =100, T = 3)

7. Conclusion

We have considered the heteroscedastic FEM and tried to draw robust inference using
quasi t-test based on the HCCME and bootstrap estimators. It is clear from the results
given above that performance of the HC5 is the best among all the HCCMEs in the
presence of heteroscedasticity and leverage data points and the similar results can be seen
by Cribari-Neto et al. (2007) for linear regression model. Performance of the kernel
bootstrap estimators is better than the bootstrap estimators in respect of coverage,
empirical sizes and empirical power. It is concluded that the WB (k) outperforms all the
HCCMEs and bootstrap estimators in the presence of severe heteroscedasticity. It is
justification of our new formulation for the PDM.
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