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Abstract 

Heteroscedasticity is a stern problem that distorts estimation and testing of panel data model (PDM). 

Arellano (1987) proposed the White (1980) estimator for PDM with heteroscedastic errors but it provides 

erroneous inference for the data sets including high leverage points. In this paper, our attempt is to improve 

heteroscedastic consistent covariance matrix estimator (HCCME) for panel dataset with high leverage 

points. To draw robust inference for the PDM, our focus is to improve kernel bootstrap estimators, 

proposed by Racine and MacKinnon (2007). The Monte Carlo scheme is used for assertion of the results.  

Keywords:   Bootstrap; HCCME; Kernel smoothing; Leverage points; Size distortion. 

1. Introduction 

Panel data is the combination of time series and cross-sectional units collected from the 

same group of cross-sectional units over time. In econometric research, it has many 

advantages over time series and cross-sectional data. The estimation of PDM includes 

two sorts of cases, the fixed effect model (FEM) and random effect model (REM). In the 

first stated case, the individual-specific effect or heterogeneity is assumed as fixed while 

in the last mentioned, it is expected to be random. The FEM has been frequently used in 

panel data analysis for the issue of individual heterogeneity.  

 

An important assumption of classical linear regression model (CLRM) is 

homoscedasticity that the variance of error term remains constant and thus, the error term 

is identically distributed. The results are inadequate if this assumption is not met. The 

ordinary least square (OLS) estimates are not biased and inconsistent but they do not 

remain best linear unbiased estimator (BLUE) when the assumption of homoscedasticity 

is violated. Heteroscedasticity is a usual problem in the PDM, like unit-specific 

heteroscedasticity (USH) and unit-time varying heteroscedasticity (UTVH) and it is 

desirable to concentrate on it for making some robust inference.  

 

Earlier studies about the problem of heteroscedasticity in the PDM were carried out by 

Mazodier and Trognon (1978). Eicker (1963) and White (1980) proposed heteroscedastic 

consistent covariance matrix estimator (HCCME) for non-panel data to tackle the 

problem of heteroscedasticity, which makes it conceivable to draw asymptotically robust 

inference. In the existing literature, it can be seen that Arellano (1987) builds White's 

estimator for the PDM. Uchôa et al. (2014) used another variant of the White estimator 

for the case of FE. However, the HCCME proposed by Cribari-Neto et al. (2007) for 

cross-sectional data has not been used for the study of panel data yet by any researcher. 
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Thus, in current study, this estimator is being used for the improvement in inference of 

PDM. 

 

Besides the HCCME, some bootstrap estimators have also been developed to draw 

correct inference about the PDM. Cameron et al. (2008) and MacKinnon and Webb 

(2013) used the bootstrap technique in order to draw robust inference for the PDM with 

clustered errors. Unfortunately, a wide literature on the use of bootstrap estimators is not 

observed for the PDM, especially when there are also some high leverage points.  

 

Another statistical approach is also available in the literature to make robust inference of 

linear regression model. This is the kernel smoothing approach proposed by Racine and 

MacKinnon (2007). This approach has not been studied in context of the PDM yet by any 

researcher and it is tried to fill this gap in our current work.  

 

The paper is outlined as follows. Section 2 provides the model description and the 

HCCMEs. Section 3 discusses the HCCME based quasi t-test statistic. Section 4 presents 

the bootstrap estimators and Section 5 presents the kernel based versions of bootstrap.  

Section 6 displays all the numerical results and Section 7 concludes the results.     

2. The Model and HCCMEs  

The concerned model is the heteroscedastic FEM and its basic framework is  

ititiit xy   , i = 1, …, n; T = 1, …., T,      (1) 

where i is unobserved heterogeneity. Model (1) can be embodied in the form of matrix 

by stacking the data over time dimension T 

iiii Xy   ,  

where      





 iTiiiTiiiTii xxXyyy  ,,and,,,,, 111  . Following model is 

obtained by assembling the whole data set cross-sectionally 

   Xey T
,        (2) 

where      





 nnn XXXyyy  ,,and,,,,, 111  . Here, 
Te  is T × 1 vector of ones, 

unobserved individual heterogeneity is captured by   n ,,1  and is the Kronecker 

product. Additionally, y is 1nT  response vector, X is qnT   implicitly fixed regressor 

(q < nT),  is q × 1 vector of unknown parameters and   is 1nT  vector of error term 

(for more details, see Uchôa et al. 2014). Here, we have some assumptions about error 

term that 2)(var,0)(   ititE .  

 

The estimation of (2) can be achieved by within group estimator (WGE). It can be 

accomplished by pre-multiplication of (2) with the following matrix  

PIM nT  ,  
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where   ''
1
QQQQP


 , 

Tn eIQ  is nnT   matrix of n dummy variables associated with 

each cross-sectional unit, 
nTI  and 

nI  is the identity matrix of order nT and n, 

respectively. TT eTe  1

 is a vector of ones of index T (for details; see Greene, 2003). 

Model (2) becomes 

 ~~~~  Xy ,            (3) 

where ,~and~,
~

 MMyyMXX   the appropriate estimator for (3) is the OLS. The 

unbiased estimator of   is  

  yXXX ~'
~~

'
~~̂ 1

 . 

 

The variance of estimator is  

  12 ~
'

~~̂)
~̂

(var


 XX ,         (4) 

where
)

~
()1(

~̂'~̂
~̂2

HtrTn 





 , )

~̂~~(~̂  Xy   and the hat matrix can be defined as   '
~~

'
~~~ 1

XXXXH


 .  

The usual covariance matrix of 
~̂

can be described as  

    '
~~

'
~~~

'
~~

'
~~ 11

DDXXXXXXφ 


,      (5) 

where   '
~~

'
~ 1

XXXD


 . In case of homoscedasticity, Eq. (5) reduces to variance given in 

(4). For the heteroscedastic case, the error term is independent but non-identically 

distributed, hence there is a need of consistent estimator of φ~ . Arellano (1987) improved 

White (1980) estimator for the FEM which can be defined as 

    00

11 ~̂'
~̂~

'
~~~̂

'
~~

'
~

0 φDDXXXXXXHC d 


,                 

where  22

2

2

10
~̂,,~̂,~̂~̂

ndiag   .  

 

For the FEM, HC3 can be found by replacement of 0

~̂
  with following diagonal elements 

in (5)   

      















2

2

2

2

2

2

2

1

2

1
3 ~

1

~̂
,,~

1

~̂
,~

1

~̂~̂

n

n

hhh
diag


 , 

where ith
~

is being the it
th

 diagonal element of H
~

. 

 

Uchôa et al. (2014) used the HC4 for FEM having high leverage points. For this 

estimator,  

      
















n

n

n

hhh
diag




~

1

~̂
,,~

1

~̂
,~

1

~̂~̂
2

2

2

2

1

2

1
4

21

 , 
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where 1

1

min 4, , ,min 4,ii inT
i

i nT

h h

h h


    
    

    

. Since 0 < 
ih

~
 < 1 and 

i > 0, therefore   1
~

10 
i

ih


. In 

the available literature, the HC5 version of HCCME has not been used for the FEM 

which has proposed by Cribari-Neto et al. (2007) for non-panel data to study the 

influence of maximal leverage. In our present work, we propose to use the HC5 for the 

FEM. For this purpose, we use 

      
















n

n

n

hhh
diag




~

1

~̂
,,~

1

~̂
,~

1

~̂~̂
2

2

2

2

1

2

1
5

21

 , 

where 10,~

~

,4,,~

~

,4max,~

~

,,~

~

min max

1

max

1

1 














































































 c
h

hc

h

hc

h

h

h

h

nTinT

inT

i

i

i
i  .  

The condition implicates that 
i > 0 and 0 < 

ih
~

 < 1, it entails that   1
~

10 
i

ih


 

The general structure of the HCCME is  

'
~̂~̂:)( DDφlHC ll  ,        (6) 

5...,,30,where l , l = 0 indicates HC0, l = 3 is for HC3 and so on. 

3. The HCCME based t-test and the Heteroscedastic-Consistent Covariance 

Interval Estimator (HCCIE) 

The quasi-t test statistic can be intended with the concept of normality of regression 

parameter, such that  )
~,(~

~̂
rrr N  .  

 

Consider the hypothesis   

0

1

0

0 :Hagainst: rrrrH   , where 0

r is hypothesized value of
r . 

 

The t-test statistic under the null hypothesis is 

 rr

rr

r

φ

t
~̂

)
~̂
ˆ(~̂

0 
 .          (7) 

where  rrφ̂~  is the r
th

 diagonal element of φ̂~  and r = 0, 1, …,  q - 1. The rt̂
~

 is likely to 

follow a 
 )~

()1( HtrTn
t



 distribution. In case of large sample size, Halawa and El-Bassiouni 

(2000) noted that the asymptotic distribution of this statistic is normal. Thus a test of 

asymptotic significance α rejects 0H  if 

2
1

ˆ



 ZWG

, where 
2

1



Z  is the 

2
1


  quantile of 

standard normal distribution (SND). Thus, the true size of test can be built up as  

    












 0

2

00 |
~̂

| rrr ZtPHHrejectP  .      (8) 
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The power of test can be measured as 

     












 1

2

10 |
~̂

| rrr ZtPHHrejectP  .     (9) 

Now for the case of heteroscedastic errors, the Statistic (7) can be improved as  

 rr

0

~̂

)
~̂

(~̂

l

rr
rt



 
 , where l = 0, 3, …, 5. 

Cribari-Neto and Lima (2009) constructed confidence interval based on the OLS̂  and 

HCCMEs for linear regression models. But, we are going to construct confidence interval 

for the FEM. Similarly, for large dataset, the HCIE can be derived and (1−α) × 100 % 

(two sided) confidence interval for   is 

 
 rr

2
1

~̂~̂
lr Z  


 .          (10) 

4. The Bootstrap Estimator  

To draw robust inference about the heteroscedastic linear FEM, some bootstrap 

estimators have also been observed. The residual bootstrap (RB), WB and pair bootstrap 

(PB) estimators have been frequently used for the PDM (for more details; see Cameron et 

al., 2008).  Cameron et al. (2008) have considered different bootstrap procedures for 

clustered errors like bootstrap-T method and bootstrap-se method. MacKinnon (2007) 

discussed the bootstrap p-value procedures for non-panel data. The bootstrap schemes are 

given below.   

4.1 The Bootstrap-T Procedures  

4.1.1 The RB Estimator (t) (RBE (t))  

The bootstrap scheme for the residual resampling is as follows 

1. Create pseudo-sample of residuals  by resampling of residual̂~ . 

2. Make a bootstrap sample (
RBy , X

~
), as  

~̂~
XyRB

,  

where 
~̂

 and  are the WG coefficient and  residual, respectively.  

3. Estimate
RBRB yMXXMX ')'( 1


.          

4. Construct
)ˆ(var

)
~̂ˆ(

ˆ

RB

RB

RB







 .               

5. Repeat Steps 1 to 4 for large number of (say, B) times.   

Reject the null hypothesis at level   if and only if  

             
]

2

α
[1

ˆ|
~̂

|


 RBt  ,  

where ][qRBt
 
represents the q

th
 quantile of  

BRBRB  ˆ,...,ˆ
1

. 
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The percentile-t two-sided confidence interval at level 1 is 

  12

2
1

~
'

~~̂ˆ
~̂ 











 XX
RB




. 

4.1.2 The WB Estimator (t) (WBE (t)) 

It has proposed by Liu (1988), who followed the suggestions of Wu (1986) and Beran 

(1986). Its scheme is given below. 

1. For each m, m = 1, …, n, draw a random number  mR
 
from a population that has 

zero mean and unit variance. 

2. Construct a bootstrap sample (
WBy , X

~
), as 

m

i

WB R
h

Xy ~
1

~̂~̂~





 ,        (11) 

where ih
~

is the it
th

 diagonal element of hat matrix, 
~̂

 and ̂~ are the WG  coefficient and 

residual, respectively.  

Steps 3 to 5 are similar to the scheme of ARB (t). The weight in (11) is based on HC3.     

4.2 The Bootstrap-p Procedures  

MacKinnon (2007) presented the way of computing bootstrap p-value for linear 

regression model.  

4.2.1 The RBE (p)   

For the RB, the bootstrap-p technique is as follows  





B

j

RBjpRB tI
B

Fp
1

)()( |)
~̂

||ˆ(|
1

)ˆ(ˆ1ˆ  , Bj ...,,1 , 

where    



B

j

RBj tI
B

F
1

)( |)
~̂

||ˆ(|
1

ˆˆ 

 

denotes the empirical distribution function (EDF), 

(.)I  is the indicator function, 
RBWG̂

 
is the t-statistic obtained from RB and t̂

~
 is the t-

statistic acquired from WG. It is the way of computing symmetric bootstrap p-value.  

4.2.2 The WBE (p) 

The method of the computation of the symmetric bootstrap p-value on the basis of the 

WB is as follows 





B

j

WBjpWB tI
B

Fp
1

)()( |)
~̂

||ˆ(|
1

)ˆ(ˆ1ˆ  ,        

where  
PBWG̂  

is the t-statistic comes from WB and   



B

j

WBj tI
B

F
1

)( |)
~̂

||ˆ(|
1

ˆˆ  . 

5. The Kernel Estimators  

The kernel estimator of Racine and MacKinnon (2007) has proposed for non-panel 

model. In the present work, we propose to use this estimator while considering the FEM. 

The scheme of kernel estimators is given below:  
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5.1   The RB Kernel Estimator  

The kernel estimator is going to be used for the RBE and can be defined as 

   



B

j

RBjdRBK dtK
B

FP
1

)( ,
~̂

,ˆ
1

1ˆˆ1ˆ  , 

where     BjdtK
B

F
B

j

RBjd ...,,1,,
~̂

,ˆ
1

ˆˆ

1

)(  


 ,  ̂ˆ
dF  is the cumulative distribution 

function (CDF), d is the bandwidth, t̂
~

 is the t test statistic from WGE and RB̂  is the 

quasi-t test statistic acquired from the RBE. It is termed as the “RBE (k)”. 

5.2 The WB Kernel Estimator  

Racine and MacKinnon (2007) calculated the p-value for simple linear regression model 

but in the current work, it is computed for the FEM as   

   



B

j

WBjwWBK wtK
B

FP
1

)( ,
~̂

,ˆ
1

1ˆˆ1ˆ  ,        

where    



B

j

WBjw wtK
B

F
1

)( ,
~̂

,ˆ
1

ˆˆ  ,  ̂ˆ
wF  is the CDF, w is the bandwidth and WB̂  is the 

quasi-t test statistic obtained from the WBE. It is termed as the “WBE (k)”.     

6. Empirical Results 

For the empirical results, we used the same Monte Carlo scheme as used in some 

previous studies like Li and Stengos (1994), Roy (2002) and Aslam and Pasha (2007). 

The considered model is  

.5.0where,,...1;,...,1 1,1 ittiititiitoit wwxTtnixy  
 

 

We have used two data generating processes (DGPs) 

(i)  itw
 
as )2,0(...~ Udiiwit

.  

(ii) itw
 
as )),4.0,0(exp(...~ 2Ndiiwit itw  follows lognormal distribution. 

 

The values assigned to
0 1and   

are 5 and 0.5 respectively. it  and i  can be generated as 

),0(...~ 2

 Ndiiit
, 

22 )1()(where),0(...~ iiiii xxNdii   . It is supposed that 

heteroscedasticity is of additive form. Let the total variance i and expected variance of 

i is 2

  ii
and  , respectively. For comparison across different DGPs, the expected 

total variance is set to be 82   . The values of   are 0, 1, 2 and 3, where 0 indicates 

homoscedastic unit-specific error and other shows different levels of heteroscedasticity 

for the fixed value of 2

  and the values assigned to 2

  are 2, 4 and 6. Increase in   cause 

increase in degree of heteroscedasticity. Moreover, the value of   can be obtained using 
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different values of   for each value of 2

  and   is obtained using the additive 

heteroscedastic design specified above for given . Thus, the values of i for each 2



under the four different values of  are obtained. In our work, we have used normal 

kernel which has cited in Roy (2002) that is )
2

(exp2)(
2

2/1 x
xk 



 , 

where the value of smoothing parameter given in Racine and MacKinnon (2007) is 

3167.1and575.1,418.2where,)5/1(   ccBg for 10%, 5% and 1%, respectively The 

simulations are 5000 with two sample size scheme 

I. Scheme I: n = 50; T = 3; nT = 150 

II. Scheme II: n = 100; T = 3; nT = 300 

 

The number of bootstraps are 399. We use the following estimators  

a. The pooled OLS estimators 

b. The WGE  

c. The  HCCME  

d. The Bootstrap-t estimators (RBE (t), WBE (t) 

e. The Bootstrap-p estimators   (RBE (p), WBE (p)) 

f. The Kernel Bootstrap estimator (RBE (k), WBE (k)) 

 

For study of the finite sample behaviour of the given estimators under heteroscedasticity, 

following measures are used 

 Mean and MSE 

 Empirical coverage 

 Empirical size 

 Empirical power 

 

Empirical coverage of confidence interval and size of test are given in percentage form. 

Nominal coverage is taken to be 95% and empirical size is investigated at 1%, 5% and 

10% nominal level of significance (LOS). Value of λ indicates level of heteroscedasticity 

for instance, 0 shows homoscedasticity, 1 reveals mild, 2 shows moderate and 3 indicates 

severe heteroscedasticity.  

 

Table 1 (a) and 1 (b) contain the mean and MSE for Scheme I and II under DGPI, 

respectively. Intercept is excluded in the WG estimation (see Aslam, 2006), therefore it is 

not given in these tables and discussion is focused only on the slope estimates. Table 1 

(a) shows that all the estimators are efficient for all homoscedastic and heteroscedastic 

cases but the OLSE is inefficient for smaller UTVH. For 2

 = 2, the MSE of OLSE is 

more than twice of WGE. However, the OLSE performs equally well for 2

 = 4. For 

larger UTVH ( 2

 = 6), performance of the OLSE is improved and it shows smaller MSE 
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than that of WGE. The similar behaviour of OLSE and WGE is noticed in Table 1 (b). 

For large samples, it is expected that performance of the OLSE is improved and it 

happens that for smaller UTVH, the OLSE performance is improved but still not better 

than the WGE. 

 

Under DGPII, the results are given in Table 2 (a) and 2 (b) for given Scheme I and II of 

sample size, respectively. The obtained results do not differ from those generated under 

DGPI. The WGE outperformed OLSE for 2

  = 2 but MSE of the OLSE is smaller than 

WGE for larger UTVH.  

 

The average length and coverage is measured for study of finite sample properties of 

estimators under heteroscedasticity. The estimation of confidence interval is done as 

illustrated in (10). We have performed experiment for 2

  = 2, though we have performed 

for 2

  = 4 and 6 and found similar results. Under DGP I and II, empirical coverage is 

presented in Fig. 1 (a) and 1 (b), respectively. Under DGPI, the OLSE curve shows 

under-coverage while the curve of WGE is closer to the nominal coverage (95%). There 

is overlapping of the curves of HC3 and HC5. The curve of WBE (t) is closer to 95%. 

The similar behaviour is observed in Fig. 1 (b). Under DGPI, Table 3 (a) and 3 (b) carry 

empirical coverage and average length for Scheme I and II, respectively. Performance of 

the OLSE is not satisfactory in Table 3 (a) as it shows under-coverage for homoscedastic 

as well as heteroscedastic cases. The empirical coverage of WGE is closer to nominal 

coverage for all degrees of heteroscedasticity and it outperforms the OLSE. On the other 

side, it is noticed that the best empirical coverage among the HCCMEs are provided by 

HC4 and HC5. Among the bootstrap estimators, the WBE (t) exhibits best empirical 

coverage for heteroscedastic cases. This is verification of findings of Liu (1988) for linear 

regression models.  Performance of the estimators in Table 3 (b) is similar to that 

observed in Table 3 (a). With the increment in sample size, there is no improvement in 

performance of the OLSE. Again, performance of the WBE (t) is remarkable and it 

remains an attractive choice.  

 

Table 4 (a) and 4 (b) show empirical coverage and average interval length for DGP II for 

Scheme I and II, respectively. Table 4 (a) shows that the OLSE confidence interval does 

not exhibit good empirical coverage. For all degrees of heteroscedasticity (λ = 0, 1, 2 and 

3), HC5 shows the best coverage among all the HCCMEs. It is noticed in Table 4 (b) that 

the WBE (t) confidence interval displays coverage that is closer to the nominal coverage 

(95%). The similar behaviour of estimators is observed in Table 4 (b) as observed in 

Table 4 (a). 

 

In this work, hypothesis of interest is  

.5.0:,5.0: 1110   HH
 

 

Empirical size can be measured according to (8). We have performed experiment for 2

  = 

2, though we have performed for 2

  = 4 and 6 and found similar results. Empirical size is 
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presented in Fig. 2 (a) and 2 (b) under DGP I and II, respectively. The OLSE curve 

reveals high size distortion in Fig. 2 (a). The WGE curve is closer to nominal level (5%). 

The bootstrap and kernel bootstrap estimators curves are also closer to nominal size. The 

similar trend is observed in Fig. 2 (b). Table 5 (a) and 5 (b) carry empirical results under 

DGP I for the estimators described above for Scheme I and II, respectively. It is noticed 

in Table 5 (a) that empirical sizes executed by the OLSE are very poor and there is high 

size distortion under both homoscedastic (λ = 0) and heteroscedastic cases (λ = 1, 2 and 

3). However, the OLSE gets improvement in performance. While performance of all the 

other estimators is remarkable in case of heteroscedasticity. The HC4 and HC5 provide 

show the best null rejection rate (NRR) among all the HCCMEs. The HC3 also shows 

admirable rejection rates. Good performance of HC4 verifies the results of Uchao et al. 

(2014). The HC5 carries out a sound performance from mild (λ = 1) to severe 

heteroscedasticity (λ = 3) which justifies our new design for the FEM. The RBE also 

performs well in terms of NRR. The WB (p) approach provides remarkable NRR and 

gives confirmation to the results of MacKinnon (2007) for cross-sectional data. Among 

all the bootstrap estimators, WB performs excellently and the similar results are observed 

in the literature like in the work of Cameron et al. (2008). Among all the considered 

estimators, the best NRR is provided by kernel bootstrap estimators in the presence of 

heteroscedasticity (λ = 1, 2 and 3) and it becomes an attractive choice for heteroscedastic 

PDM at all nominal LOS. This verifies findings of Racine and MacKinnon (2007) for 

linear regression models. Our proposed kernel bootstrap estimator performs the best 

among all the estimators under consideration in the presence of heteroscedasticity. It also 

justifies our proposal for the PDM.  The results given in Table 5 (b) indicate that 

performance of all the estimators is analogous to those given in Table 3.9. Performance 

of the OLSE is expectedly very poor. The HC5 shows substantial performance under all 

cases of heteroscedasticity (λ = 1, 2 and 3). The WB (k) approach justifies new 

formulation by providing NRR closer to all the nominal LOS (1%, 5% and 10%). Table 6 

(a) and 6 (b) show empirical sizes under DGP II for Scheme I and II, respectively. The 

results given in these tables striking the same mark as in DGP I. 

 

Empirical power can be estimated according to (9). Under DGP I, Fig. 3 (a) shows 

empirical power curves based on all the estimators under consideration for Scheme I. For 

the case of homoscedasticity (λ = 0), it is observed that power curves of all the estimators 

are identical except that of OLSE which shows high power distortion for smaller UTVH  

( 2

  = 2). The curves of all other estimators are identical and they perform equally well. It 

verifies reported results of Aslam (2006). Fig. 3 (b) displays empirical power curves for 

Scheme II under DGP I. It is expected that with the increment in sample size, the power 

curves tend to slumber. The curve of OLSE does not improve and shows power distortion 

for homoscedasticity (λ = 0) and heteroscedasticity (λ = 1, 2 and 3).  

 

Fig. 4 (a) and 4 (b) show power curves for Scheme I and II, respectively under DGP II. 

The similar results are noticed under DGP II as given under DGP I. 
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Figure 1 (a): Empirical coverage (%) of confidence interval for
1 under DGP I 

  

Figure 1 (b): Empirical coverage (%) of confidence interval for
1 under DGP II 

  

Figure 2 (a): Empirical size (%) for 1 under DGP I 

  

Figure 2 (b): Empirical size (%) for 1 under DGP II  
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Table 1 (a):   Mean and MSE under DGP1 (n = 50, T = 3) 

λ  = 0 coefficient 

2

  2  4 6 
 

0  (true value 5)  Mean MSE Mean MSE Mean MSE 

OLS 4.99 0.24 5.00 0.24 5.00 0.24 

OLS 0.50 0.11 0.50 0.11 0.50 0.11 

1 (true value 0.5) WG 0.50 0.05 0.50 0.11 0.49 0.16 

λ  = 1 coefficient 

OLS 4.99 0.25 4.99 0.25 5.00 0.25 0  (true value 5) 

OLS 0.50 0.11 0.50 0.11 0.50 0.11 

1 (true value 0.5) WG 0.50 0.05 0.50 0.11 0.50 0.16 

λ  = 2 coefficient 

OLS 5.00 0.25 4.98 0.25 5.01 0.25 0  (true value 5) 

OLS 0.49 0.12 0.51 0.11 0.50 0.11 

1 (true value 0.5) WG 0.49 0.05 0.51 0.11 0.50 0.16 

λ  = 3 coefficient 

OLS 5.00 0.26 5.01 0.25 5.00 0.25 0  (true value 5) 

OLS 0.51 0.12 0.49 0.11 0.50 0.11 

1 (true value 0.5) WG 0.50 0.05 0.50 0.11 0.49 0.16 

Table 1 (b):   Mean and MSE under DGP1 (n = 100, T = 3) 

λ  = 0 coefficient 

2

  2  4 6 
 

0  (true value 5)  Mean MSE Mean MSE Mean MSE 

OLS 5.01 0.12 5.00 0.12 5.00 0.12 

OLS 0.49 0.06 0.50 0.06 0.50 0.06 

1 (true value 0.5) WG 0.50 0.03 0.50 0.05 0.50 0.08 

λ  = 1 coefficient 

OLS 5.00 0.13 5.00 0.12 5.00 0.12 0  (true value 5) 

OLS 0.50 0.06 0.50 0.06 0.50 0.06 

1 (true value 0.5) WG 0.50 0.03 0.50 0.05 0.50 0.08 

λ  = 2 coefficient 

OLS 5.00 0.13 5.00 0.13 5.00 0.12 0  (true value 5) 

OLS 0.49 0.06 0.50 0.06 0.50 0.06 

1 (true value 0.5) WG 0.50 0.03 0.50 0.05 0.50 0.08 

λ  = 3 coefficient 

OLS 4.99 0.13 5.00 0.13 5.00 0.12 0  (true value 5) 

OLS 0.50 0.06 0.50 0.06 0.50 0.06 

1 (true value 0.5) WG 0.50 0.03 0.50 0.05 0.50 0.08 
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Table 2 (a):   Mean and MSE under DGP1I (n = 50, T = 3) 

λ  = 0 coefficient 

2

  2  4 6 
 

0  (true value 5)  Mean MSE Mean MSE Mean MSE 

OLS 5.01 0.49 5.00 0.49 5.02 0.49 

OLS 0.49 0.21 0.49 0.21 0.49 0.21 

1 (true value 0.5) WG 0.49 0.09 0.50 0.19 0.50 0.28 

λ  = 1 coefficient 

OLS 4.99 0.49 5.01 0.49 5.01 0.50 0  (true value 5) 

OLS 0.51 0.21 0.50 0.21 0.50 0.21 

1 (true value 0.5) WG 0.50 0.09 0.51 0.19 0.50 0.28 

λ  = 2 coefficient 

OLS 5.00 0.50 5.00 0.50 5.00 0.49 0  (true value 5) 

OLS 0.50 0.21 0.50 0.21 0.51 0.21 

1 (true value 0.5) WG 0.50 0.09 0.50 0.19 0.51 0.28 

λ  = 3 coefficient 

OLS 5.02 0.50 5.00 0.50 5.01 0.50 0  (true value 5) 

OLS 0.49 0.22 0.50 0.21 0.50 0.21 

1 (true value 0.5) WG 0.49 0.09 0.50 0.19 0.51 0.28 

Table 2 (b):   Mean and MSE under DGP1I (n = 100, T = 3) 

λ  = 0 coefficient 

2

  2  4 6 
 

0  (true value 5)  Mean MSE Mean MSE Mean MSE 

OLS 5.00 0.25 5.01 0.25 5.00 0.25 

OLS 0.50 0.11 0.49 0.11 0.50 0.11 

1 (true value 0.5) WG 0.50 0.05 0.49 0.09 0.50 0.14 

λ  = 1 coefficient 

OLS 4.99 0.25 5.01 0.25 5.00 0.25  

OLS 0.51 0.11 0.49 0.11 0.50 0.11 

1 (true value 0.5) WG 0.50 0.05 0.49 0.09 0.51 0.14 

λ  = 2 coefficient 

OLS 5.01 0.25 5.01 0.25 4.99 0.25  

OLS 0.49 0.11 0.50 0.11 0.51 0.11 

1 (true value 0.5) WG 0.50 0.05 0.50 0.09 0.50 0.14 

λ  = 3 coefficient 

OLS 4.99 0.25 5.00 0.25 5.01 0.25  

OLS 0.51 0.11 0.50 0.11 0.49 0.11 

1 (true value 0.5) WG 0.50 0.05 0.50 0.09 0.50 0.14 



Afshan Saeed, Muhammad Aslam 

Pak.j.stat.oper.res.  Vol.XII  No.4 2016  pp589-608 602 

Table 3 (a): 95% Confidence Interval: Coverage and Length (n = 50, T = 3) under 

DGP I 

2

  =  2   

 
 

λ =  0 λ =  1 λ =  2 λ =  3  

Coverage Length Coverage Length Coverage Length Coverage Length 

OLS 90.34 0.91 88.56 0.91 87.92 0.91 87.72 0.91 

WG 95.56 0.73 94.22 0.73 94.16 0.73 94.94 0.73 

HC0 89.00 0.73 86.90 0.73 87.84 0.74 88.40 0.73 

HC3 89.86 0.75 87.94 0.75 88.56 0.75 89.00 0.75 

HC4 89.88 0.75 87.94 0.75 88.60 0.75 89.02 0.75 

HC5 89.88 0.75 87.94 0.75 88.60 0.75 89.02 0.75 

RB(t) 95.74 0.92 94.54 0.93 94.62 0.93 95.12 0.93 

WB(t) 95.56 0.93 94.92 0.93 94.42 0.93 95.16 0.93 

Table 3 (b): 95% Confidence Interval: Coverage and Length (n = 100, T = 3) 

under DGP I 

2

  =  2   

 
 

λ =  0 λ =  1 λ =  2 λ =  3  

Coverage Length Coverage Length Coverage Length Coverage Length 

OLS 90.48 0.92 88.78 0.93 88.50 0.94 87.08 0.94 

WG 94.48 0.64 94.90 0.64 94.26 0.64 95.04 0.64 

HC0 88.26 0.52 88.98 0.52 88.08 0.52 88.68 0.52 

HC3 88.64 0.53 89.36 0.53 88.42 0.53 89.08 0.52 

HC4 88.64 0.53 89.34 0.53 88.44 0.53 89.14 0.53 

HC5 88.64 0.53 89.34 0.53 88.44 0.53 89.14 0.53 

RB(t) 94.54 0.66 95.20 0.66 94.36 0.66 95.24 0.66 

WB(t) 94.50 0.66 95.24 0.66 94.12 0.66 95.04 0.66 

Table 4 (a):  95% Confidence Interval: Coverage and Length (n = 50, T = 3) under 

DGP II 

2

  =  2   

 
 

λ =  0 λ =  1 λ =  2 λ =  3  

Coverage Length Coverage Length Coverage Length Coverage Length 

OLS 94.30 1.79 88.98 1.80 88.46 1.81 86.92 1.81 

WG 94.46 1.19 94.96 1.19 94.68 1.19 94.48 1.19 

HC0 87.18 0.95 88.08 0.95 87.60 0.95 87.82 0.95 

HC3 88.28 0.98 88.98 0.97 88.44 0.98 88.84 0.98 

HC4 88.70 0.99 89.26 0.99 88.82 0.99 89.22 1.00 

HC5 88.70 1.00 89.28 0.99 88.84 0.99 89.24 1.00 

RB(t) 94.64 1.22 95.26 1.22 95.14 1.21 94.94 1.22 

WB(t) 94.60 1.24 94.92 1.23 94.94 1.23 94.80 1.24 

Table 4 (b): 95% Confidence Interval: Coverage and Length (n = 100, T = 3) 

under DGP II 

2

  =  2   

 
 

λ =  0 λ =  1 λ =  2 λ =  3  

Coverage Length Coverage Length Coverage Length Coverage Length 

OLS 92.40 1.27 89.26 1.28 88.06 1.29 87.28 1.29 

WG 94.20 0.84 94.64 0.84 94.56 0.84 94.58 0.84 

HC0 87.32 0.68 87.90 0.68 87.64 0.68 88.78 0.68 

HC3 87.98 0.69 88.36 0.69 88.08 0.69 89.22 0.69 

HC4 88.22 0.70 88.52 0.69 88.28 0.69 89.44 0.70 

HC5 88.24 0.70 88.56 0.70 88.30 0.69 89.46 0.70 

RB(t) 94.36 0.86 94.92 0.86 94.52 0.86 94.80 0.86 

WB(t) 94.00 0.86 94.46 0.86 94.32 0.86 94.68 0.86 
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Table 5 (a):   NRR of quasi-t test for n = 50, T = 3 under DGP I 

 

2

  =  2    

  1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

2

  
 

λ = 0 λ = 1 λ = 2  λ = 3  

OLS 2.88 9.66 16.56 3.58 11.44 18.46 4.24 12.08 19.02 4.08 12.28 20.06 

WG 0.90 4.44 9.70 1.06 5.78 11.12 1.42 5.84 10.66 1.14 5.06 9.98 

HC0 3.64 11.00 18.30 4.40 13.10 19.68 4.98 12.16 19.70 4.04 11.60 18.70 

HC3 3.14 10.14 17.38 4.00 12.06 18.70 4.46 11.44 18.68 3.64 11.00 17.74 

HC4 3.14 10.12 17.34 3.98 12.06 18.62 4.44 11.40 18.64 3.64 10.98 17.74 

HC5 3.14 10.12 17.34 3.98 12.06 18.62 4.44 11.40 18.64 3.64 10.98 17.74 

RB(t) 0.82 4.26 9.18 1.06 5.46 10.88 1.26 5.38 10.32 0.68 4.88 9.66 

WB(t) 0.88 4.44 8.92 0.90 5.08 10.56 1.16 5.58 10.28 1.06 4.84 9.82 

RB(p) 0.76 4.10 9.30 0.88 5.36 10.84 1.10 5.58 10.36 0.86 4.88 9.70 

WB(p) 0.98 4.64 8.84 0.90 5.30 10.74 1.36 5.52 10.36 1.08 4.88 9.74 

RB(k) 1.20 7.62 10.24 1.48 8.92 11.60 1.92 9.12 11.18 1.22 7.90 10.54 

WB(k) 1.22 7.28 9.22 1.40 8.70 11.32 1.62 8.58 11.02 1.36 8.04 10.40 

Table 5 (b): NRR of quasi-t test for n = 100, T = 3 under DGP I 

 

2

  =  2    

  1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

2

  
 

λ = 0 λ = 1 λ = 2  λ = 3  

OLS 2.92 9.52 15.90 3.32 11.22 18.10 3.88 11.50 18.84 4.60 12.92 20.32 

WG 1.16 5.52 10.46 1.16 5.10 9.76 1.18 5.74 10.70 0.90 4.96 10.04 

HC0 4.18 11.74 18.48 3.78 11.02 17.92 4.72 11.92 19.42 3.84 11.32 19.24 

HC3 3.90 11.36 18.10 3.62 10.64 17.36 4.50 11.58 18.76 3.66 10.92 18.58 

HC4 3.88 11.36 18.06 3.62 10.66 17.32 4.48 11.56 18.78 3.66 10.86 18.58 

HC5 3.88 11.36 18.06 3.62 10.66 17.32 4.48 11.56 18.78 3.66 10.86 18.58 

RB(t) 1.00 5.46 9.92 1.00 4.80 9.68 1.24 5.64 10.18 0.88 4.76 9.96 

WB(t) 1.06 5.50 10.28 1.30 4.76 9.44 1.22 5.88 10.34 1.08 4.96 10.06 

RB(p) 0.94 5.40 10.30 1.00 4.76 9.42 1.28 5.66 10.52 0.84 4.90 9.56 

WB(p) 1.12 5.32 10.46 1.34 4.92 9.60 1.16 5.90 10.20 1.04 5.14 9.86 

RB(k) 1.44 8.74 11.00 1.42 8.14 10.20 1.56 9.02 11.12 1.20 8.32 10.84 

WB(k) 1.54 9.02 11.00 1.56 8.04 10.10 1.74 8.86 10.88 1.28 8.06 10.62 

Table 6 (a): NRR of quasi-t test for n = 50, T = 3 under DGP II 

 

2

  =  2    

  1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

2

  
 

λ = 0 λ = 1 λ = 2  λ = 3  

OLS 1.08 5.70 11.36 3.22 11.02 17.76 3.82 11.54 19.22 4.36 13.08 20.74 

WG 1.10 5.54 10.60 1.16 5.04 10.00 1.08 5.32 10.40 1.26 5.52 10.32 

HC0 4.80 12.82 19.76 4.52 11.92 18.70 4.54 12.40 19.68 4.62 12.18 19.58 

HC3 4.32 11.72 18.54 4.02 11.02 17.36 4.04 11.56 18.50 4.10 11.16 18.16 

HC4 4.18 11.30 18.22 3.84 10.74 16.84 3.86 11.18 17.98 3.86 10.78 17.50 

HC5 4.18 11.30 18.22 3.84 10.72 16.76 3.82 11.16 17.94 3.84 10.76 17.42 

RB(t) 1.16 5.36 10.60 0.98 4.74 9.54 0.84 4.86 10.30 1.06 5.06 10.08 

WB(t) 1.32 5.40 10.18 1.16 5.08 9.76 1.00 5.06 9.96 1.34 5.20 9.76 

RB(p) 1.00 5.32 10.34 1.08 4.92 9.78 0.94 4.84 10.04 1.00 5.14 10.06 

WB(p) 1.16 5.10 9.96 1.14 5.16 9.64 1.02 5.10 10.00 1.54 5.08 9.74 

RB(k) 1.44 8.74 11.20 1.58 8.50 10.28 1.30 8.78 10.72 1.50 8.48 10.60 

WB(k) 1.52 8.54 10.70 1.66 8.08 10.26 1.28 8.30 10.56 1.68 8.16 10.22 
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Table 6 (b): NRR of quasi-t test for n = 100, T = 3 under DGP II 

 

2

  =  2    

  1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

2

  
 

λ = 0 λ = 1 λ = 2  λ = 3  

OLS 1.84 7.60 14.28 3.52 10.74 17.94 3.96 11.94 18.74 4.60 12.72 19.50 

WG 1.02 5.80 11.14 0.82 5.36 10.96 1.08 5.44 10.58 1.12 5.42 9.86 

HC0 4.62 12.68 19.44 4.06 12.10 19.48 4.60 12.36 19.22 4.26 11.22 17.46 

HC3 4.20 12.02 18.82 3.64 11.64 18.94 4.30 11.92 18.40 3.90 10.78 16.70 

HC4 4.08 11.78 18.38 3.56 11.48 18.56 4.22 11.72 17.98 3.72 10.56 16.50 

HC5 4.08 11.76 18.38 3.56 11.44 18.50 4.22 11.70 17.94 3.70 10.54 16.48 

RB(t) 0.92 5.64 10.88 0.58 5.08 10.46 1.04 5.48 9.98 0.86 5.20 9.30 

WB(t) 1.04 6.00 10.88 1.00 5.54 10.82 1.34 5.68 10.64 0.98 5.32 9.82 

RB(p) 0.82 5.56 10.84 0.68 5.24 10.60 0.98 5.36 9.94 0.90 5.24 9.52 

WB(p) 1.20 5.94 10.72 0.84 5.60 10.70 1.24 5.64 10.72 1.12 5.68 9.64 

RB(k) 1.36 9.64 11.70 1.12 9.00 11.24 1.56 8.62 10.62 1.32 8.38 10.10 

WB(k) 1.62 9.18 11.60 1.30 8.82 11.30 1.70 8.92 11.32 1.44 8.46 10.12 

 

Figure 3 (a) Empirical power of test at 5% LOS (DGP I; n = 50, T = 3)  
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Figure 3 (b) Empirical power of test at 5% LOS (DGP I; n = 100, T = 3) 
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Figure 4 (a) Empirical power of test at 5% LOS (DGP II; n = 50, T = 3)  
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Figure 4 (b) Empirical power of test at 5% LOS (DGP II; n = 100, T = 3) 

7. Conclusion 

We have considered the heteroscedastic FEM and tried to draw robust inference using 

quasi t-test based on the HCCME and bootstrap estimators. It is clear from the results 

given above that performance of the HC5 is the best among all the HCCMEs in the 

presence of heteroscedasticity and leverage data points and the similar results can be seen 

by Cribari-Neto et al. (2007) for linear regression model. Performance of the kernel 

bootstrap estimators is better than the bootstrap estimators in respect of coverage, 

empirical sizes and empirical power. It is concluded that the WB (k) outperforms all the 

HCCMEs and bootstrap estimators in the presence of severe heteroscedasticity. It is 

justification of our new formulation for the PDM. 
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