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Abstract 

In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG) 

is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto 

geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and 

hazard functions are derived. Various structural properties of the new model are derived including; quantile 

function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni 

curves. The estimation of the model parameters is performed by maximum likelihood method and inference 

for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some 

other distributions are shown via an application to a real data set. We hope that the new model will be an 

adequate model for applications in various studies.  

Keywords: Exponentiated Lomax distribution, Geometric distribution, Maximum 

likelihood estimation. 

1. Introduction 

Lomax (1954) introduced an important and widely used lifetime model, the so-called 

Lomax distribution, and it used for stochastic modeling of decreasing failure rate.It has 

been applied in studies of income, size of cities, wealth inequality, engineering, queuing 

theory and biological analysis. 

 
Studies about Lomax distribution have been discussed by several authors. Some 

properties and moments for the Lomax distribution have been discussed by Balakrishnan 

and Ahsanullah (1994). The discrete Poisson-Lomax distribution has been provided by 

Al-Awadhi and Ghitany (2001). The Bayesian and non-Bayesian estimation of the 

reliability has been studied by Abd-Elfattah et al. (2007). Ghitany et al. (2007) introduced 

Marshall-Olkin extended Lomax. Hassan and Al-Ghamdi (2009) determined the optimal 

times of changing stress level for simple stress plans under a cumulative exposure model 

for the Lomax distribution. Hassan et al. (2016) discussed the optimal times of changing 

stress level for k-level step stress accelerated life tests based on adaptive type-II 

progressive hybrid censoring with product's life time following Lomax distribution. 

 

Some extensions of the Lomax distribution have been constructed by several authors. 

Abdul-Moniem and Abdel-Hameed (2012) introduced the exponentiated Lomax (EL) by 

adding a new shape parameter to the Lomax distribution. Lemonte and Cordeiro (2013) 

investigated beta Lomax, Kumaraswamy Lomax and McDonald Lomax distributions. 

The gamma-Lomax distribution has been suggested by Cordeiro et al. (2013). Five-
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parameter beta Lomax distribution has been investigated by Rajab et al. (2013). The 

Weibull Lomax and Gumbel-Lomax distributions have been introduced by Tahir et al. 

(2015a) and (2015 b). 

 

The cumulative distribution function (cdf) of Lomax distribution with shape parameter 
and scale parameter  is given by 

( ; , ) 1 (1 ) , , , 0. (1)G x x x         
 

The probability density function (pdf) of Lomax distribution is as follows 
( 1)( ; , ) (1 ) , , , 0. (2)g x x x          

 

The exponentiated Lomax has been introduced by Abdul-Moniem and Abdel-Hameed 

(2012) by adding shape parameter to the cdf (1). The cdf of the EL takes the following 

form 

( ; , , ) [1 (1 ) ] , , , , 0. (3)G x x x            
 

The corresponding pdf is as follows: 
( 1)( ; , , ) (1 ) [1 (1 ) ] , , , , 0. (4)g x x x x                  

 

Also, a discrete random variable, N  is a member of a zero-truncated geometric random 

variable independent of ' ,X s with probability mass function (pmf) given by: 
1( ; ) (1 ) , 1,2,3..., (0,1). (5)nP N n p p p n p      

 

Recently, various compounding probability distributions have been proposed by several 

authors for modeling lifetime data in several areas. Adamidis and Loukas (1998) 

proposed a two-parameter exponential-geometric distribution. In a similar manner, some 

examples as, the Weibull geometric, exponentiated exponential geometric and Lindley 

geometric distributions have been suggested by Barreto-Souza et al. (2010), Rezaei et al. 

(2011) and Zakerzadeh and Mahmoudi (2012) respectively. Recently, exponentiated 

Lomax Poisson, Lomax-logarithm, and extended Lomax Poisson distributions have been 

given, respectively by, Ramos et al. (2013), Al-Zahrani and Sagor (2014), and Al-Zahrani 

(2015). 

 

In this article, a new compound distribution is introduced by mixing EL and geometric 

distributions. We hope that this new model will serve as a suitable model in several areas. 

The density, cumulative, survival and hazard rate functions of the new model are 

obtained in Section 2. Section 3 devotes with some mathematical properties such as; 

quantile, probability weighted moments, entropy and order statistics. Section 4 discusses 

the estimation of the unknown parameters by maximum likelihood method and inference 

for large sample is presented. In Section 5, applications to real data sets are given. 

Finally, concluding remakes are outlined in Section 6. 
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2.   Construction of the Distribution 

In this section, following the same approach of Adamidis and Loukas (1998), we 

introduce and study the exponentiated Lomax geometric distribution. The probability 

density function, distribution function, reliability and hazard rate function are obtained. 
 

Let 1 2, ,..., NX X X  be a random sample of size N from the Exponentiated Lomax 

distribution with cdf(3) and N be a zero-truncated geometric random variable 

independent of ' ,X s with pmf (5). 

 

Define (1) 1 2min{ , ,..., },NX X X X  then the conditional probability density function of 

(1)X N is obtained as follows: 

(1)

( 1) 1 1( ; , , ) (1 ) (1 (1 ) ) [1 (1 (1 ) ) ] .n

X N
f x n n x x x                     

 
 

The joint probability density function of 𝑋 andN is obtained as follows: 

(1)

1 ( 1) 1 1( ; , , ) (1 ) (1 ) (1 (1 ) ) [1 (1 (1 ) ) ] .n n

X Nf xn n p p x x x                       
 

 

The probability density of exponentiated Lomax geometric isdefined as the marginal 

density of X, i.e. 
( 1) 1

2

(1 ) (1 ) (1 (1 ) )
( ; ) , 0, , , 0, (6)

{1 [1 [1 (1 ) ] ]}

p x x
f x x

p x

  

 

  
   



   



   
  

     
where 0 1,p 

 
and ( , , , ),p     is the set of parameters. A random variable X 

with density function (6) shall be denoted by ( ; ).X ELG x 
 Furthermore, the 

cumulative distribution function of ELG corresponding to (6) is derived as follows: 

[1 (1 ) ]
( ; ) , 0. (7)

1 [1 [1 (1 ) ] ]

x
F x x

p x

 

 










 
 

   
 

 

Based on cdf (7), some special distributions arisefrom the ELG distribution as 

follows: 

1. As 0,p  the exponentiated Lomax (EL) is a limiting case of the ELG 

distribution.  

2. For 1  and when 0,p  the exponentiated Lomax geometric reduces to 

Lomax distribution. 

3. When 0,p   and 1,  the exponentiated Lomax geometric reduces to 

exponentiated Pareto (see Gupta et al. (1998)). 

4. The exponentiated Lomax geometric reduces to Lomax geometric when 1.   

5. The exponentiated Lomax geometric reduces to exponentiated Pareto geometric 

when 𝜆=1. 
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Figure (1) gives some possible shapes of the density (6) for some selected parameter 

values.  

 

 

 
Figure 1: Plots of the ELG densities function for some parameter values 

 

 

In addition, the reliability and hazard rate functions of ELG distribution are as follows: 

 (1 ) 1 [1 (1 ) ]
( ; ) ,

1 [1 [1 (1 ) ] ]

p x
R x

p x

 

 










   


     

and,

 

( 1) 1(1 ) (1 (1 ) )
( ; ) ,

{1 [1 [1 (1 ) ] ]}[1 [1 (1 ) ] ]

x x
x

p x x
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where 0, 0, 0,     and 0 1.p   Figure (2) illustrates the graphical behavior 

of hazard rate function for ELG for some selected values of parameters. 

 

 

Figure. 2:   Plots of the ELGhazard  function for some parameter values 

Figure 2 shows that the shapes of the hazard rate are increasing, decreasing and constant 

at some selected values of parameters. 

2. Some Statistical Properties 

In this section, some of statistical properties of the ELG distribution including, expansion 
for pdf (6) and cdf (7), quantile function, rth moment, and probability weighted moments 
are derived. Furthermore, Re'nyi entropy, distribution of order statistics, Bonferroni and 
Lorenz curves are provided. 
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3.1. Usefuel expansions 

In this subsection, two useful expansions for the pdf (6) and cdf (7) are derived. We show 

that the pdf of ELG can be expressed as linear combinations of EL distributions. Also the 

two expansions are used to determine some mathematical properties of the ELG 

distribution. 

 

Firstly, the pdf (6) of ELG can be expressed as linear combinations of EL distributions. 

Using the following series expansions 

0

( )
(1 ) , 1, 0. (8)

( ) !

j
k

j

k j z
z z k

k j






 
   




 

 
Then, the pdf (6) can be written as follows 

( 1) 1

0

( ; ) ( 1) (1 ) (1 ) [1 (1 ) ] {1 [1 (1 ) ] } .j j

j

f x j p p x x x        


    



         Then, by using 

the binomial expansion for the previous pdf, then it can be 

written as  

( 1) ( 1) 1

, 0

( ; ) ( 1) ( 1) (1 ) (1 ) [1 (1 ) ] , (9)k j k

j k

j
f x j p p x x

k

     


    



 
       

 


 
where, pdf (9) leads to the following infinite linear combination

 
, ( 1)

, 0

( ; ) ( ; , ), (10)j k k

j k

f x W h x  






 
 

where,

 
,

1
( 1) (1 ),

1

k j

j k

j
W p p

k

 
   

 
,

, 0

1,j k

j k

W






 
and ( 1) ( ; , )kh x    

denotes the pdf  of EL with parameters , ( 1),k    and .  

 

Secondly; an expansion for [ ( ; )]sF x  is derived from cdf (7) through the expansions 

defined in (8) as follows 

  ( )

, 0

1
[ ( ; )] 1 [1 (1 ) ] . (11)

1

hs i i s

i h

i s i
F x p x

h s

  


 



   
     

  
  

3.2 Quantile measures 

The quantile function of ELG distribution, denoted by, 
1( ) ( )Q u F u  of X  is derived 

as follows: 
1

1

1 (1 )
( ) 1 1 , (12)

(1 )

u p
Q u

up
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where 𝑢 is a uniform random variable on the unit interval (0,1).  In particular the median 

of the ELG distribution, denoted by ,m  is obtained by substituting 0.5u    in (12) as 

follows 

 

1
1

1 0.5(1 )
1 1 .

(1 0.5 )

p
m

p






 
             
    

 

The Bowleyskewness (see Kenney and Keeping (1962)) based on quantiles can be 

calculated by 

3 1 1
2

4 2 4
.

3 1

4 4

Q Q Q

B

Q Q

     
      

     
   

   
   

 

 

Further, the Moors kurtosis (see Moors (1988)) is defined as 

7 5 3 1

8 8 8 8
,

6 2

8 8

Q Q Q Q

M

Q Q

       
         

       
   

   
   

 

where Q(.) denotes the quantile function. Plots of the skewness and kurtosis for some 

choices of the parameter  as function of p, and for some choices of the parameter p as 

function of  are shown in Figures 3 and 4. We can detect from these figures that the 

skewness and kurtosis for p decreases as 𝛼 increases from 0.5 to 2.5. Also, the skewness 

and kurtosis for 𝛼 decreases as p increases from 0.1 to 0.7 

 

 

 
(a) 

 
(b) 

 

Figure 3:  Skewness of the ELG distribution. (a) As function of p for some values of 

 with 0.5   and 1  (b) As function of  for some values of p with 1.5   and 
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(a) 

 

 

(b) 

Figure 4: Kurtosis of the ELG distribution.(a) As function of p for some values of 
with 0.5   and 1   (b) As function of  for some values of  p with 1.5   and 1   

3.3 Moments 

The moments of any probability distribution are necessary and important in any statistical 

analysis especially in applied work. Some of the most important features and 

characteristics of a distribution can be studied through moments such as; dispersion, 

skewness and kurtosis. 

 

An explicit expression for the rth moment of ELG distribution about the origin is 

obtained by using pdf (10) as follows: 

'

, ( 1)

, 0 0

( ; , ) ,r

r j k k

j k

W x h x dx  






    

' ( 1) ( 1) 1

,

, 0 0

( 1) (1 ) [1 (1 ) ] .r k

r j k

j k

W k x x x dx      


    



     
 

Let, (1 )y x    , and using binomial expansion then the above integral is reduced to 

1 1
( )

' ( 1) 1

,

, 0 00

( 1)
( 1) [1 ]

r r m
m k

r j k r
j k m

rk
W y y dy

m







 
 

 

 
   

 
   

'

,

, 0 0

1
( 1) ( 1) 1 ( ) , ( 1)

,

m

r

r j k r
j k m

r
k r m k

m
W
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where, (.,.) stands for beta function. Hence the rth moment for ELG distribution takes 

the following form: 

'

, ,

, 0 0

1
( 1) (1 ( )) ( ( 1))

, (13)
1

(1 ( ) ( 1))

r

r j k m
rj k m

k r m k

D

r m k

 


 




 

     



    
 

 

where, 

, , ,( 1) .m

j k m k j

r
D W

m

 
   

   
 

Furthermore, it is easy to show that, the moment generating ( )XM t function can be 

written as follows: 

0

( ) ',
!

r

X r

r

t
M t

r






  

where, 'r  is the rth moment.  Then by using (13), the moment generating function of 

ELG distribution can be written as follows: 

 

, ,

, , 0 0

1
( 1) (1 ( )) ( ( 1))

( ) .
1

! (1 ( ) ( 1))

r
r

X j k m
rj k r m

t k r m k

M t D

r r m k

 


 




 

     



    
 

 

3.4 The probability weighted moments 

Probability weighted moments (PWMs) were devised by Greenwood et al. (1979) 

primarily as an aid to estimate the parameters of distributions that are analytically 

expressible only in inverse form. PWMs are the expectations of certain functions of a 

random variable defined when the ordinary moments of the random variable exist.  

The PWMs of a random variable X are formally defined by 

, [ F( ) ] f( )(F( )) . (14)r s r s

r s E X x x x x dx




  
 

The PWMs of ELG distribution is obtained by subsituting pdf (10) and cdf (11) in (14) as 

follows: 

 

 

 

where 

 , , , ,

1
1 .

1

h i

j k i h j k

i s i
p W

h s


   
    

    

( 1) ( 1) 1

, , , ,

, , , 0 0

( 1) (1 ) [1 (1 ) ] ,r k s h

r s i j k m

j k i h

x k x x dx       
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Let (1 ) ,y x     and using binomial expansion then ,r s  takes the following form: 

1

( 1) 1

, , , ,

, , , 0 0 0

( 1) ( 1)
[1 ]

m rmr
k s h

r s i j k h r
i j k h m

k
z z dz

 


   
    

 

 
   

 

Then  

, , , ,

, , , 0 0

( 1) ( 1) ( )
1 , ( 1)

mr

r s i j k hr
i j k h m

k r m
k s h


  

 



 

   
      

 
 

 
 

Hence, the PWMs of ELG distribution can be expressed as:

 

, , , , ,

, , , 0

( )
( 1) (1 ) ( ( 1))

,
( )

( ( 1) 1 )

r

r s i j k m h
ri j k h m

r m
k k s h

r m
m s h

 
 

 







      




     
 

, , , ,

1 1
( 1) (1 ).

1 1

k m h j i

j k m i h

j i s i
p p

k h s
   

     
     

      

3.5  Re'nyi entropy  

The entropy of a random variable Xis a measure of uncertainty variation. If X is a random 

variable which distributed as ELG, then the Re'nyi entropy, for 0  and 1  is defined 

by: 

 
0

1
( ) log ( ; ) .

(1 )
bI x f x dx



 





 

 
 

Then by using pdf (6), the Re'nyi entropy of ELG can be written as follows:

 ( 1) 1

2

0

1 (1 ) (1 ) (1 (1 ) )
( ) log .

(1 ) {1 [1 [1 (1 ) ] ]}
b

p x x
I x dx

p x


  

  

  

 

    



    
  

     


 

Let

 

 
( 1) ( 1)

2

0

(1 ) (1 (1 ) )
(1 ) .

{1 [1 [1 (1 ) ] ]}

x x
IP p dx

p x

    


  

 




    



  
 

   
 

 

By using the series expansion (8), then the above integration IP can be written as follows 

  ( 1) ( 1)

, 0 0

2 1
( 1) (1 ) [1 (1 ) ] (1 )

2 1

i j i

i j

j j
IP p p x x dx

i

      


  



    



   
       

  
 

 

 

Let, (1 )y x    , then the IP is reduced to  

 )

1
, 0

2 1 ( 1) (1 ) ( 1) 1
, ( 1) 1 .

2 1 ( )

i j

i j

j j p p
IP i

i
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Therefore, the Re'nyi entropy of ELG distribution is as follows

 
 

1

,

, 0

( 1) 1
( 1) 1

( ) (1 ) log ,
( 1) 1

( 1) 1
R b i j

i j

i

I x L

i

 
  




 
  








  
     
  

  
     
 



 
where, 

 
, 1

2 1 ( 1) (1 )
.

2 1 ( )

i j

i j

j j p p
L

i





 

  

     
   

    

3.6  Order statistics 

In this subsection, a closed form expression for the pdf of the rth order statistics of the 

ELG distribution will be derived. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a simple random sample from ELG 

distribution and let X1:n, X2:n,..., Xn:n denote the order statistics obtained from this sample. 

According to David (1981), the pdf of rth order statistics is as follows 

   
1

:

1
( ; ) ( ; 1 ( ; ( ; ),

( , 1)

r n r

r nf x F x F x f x
B r n r

   
 

 
   

where (.,.)B  stands for beta function. Using the binomial series expansion of

 1 ( ;
n r

F x 


 , then, : ( ; ),r nf x 
 
can be written as: 

 
1

:

0

1
( ; ) ( 1) ( ; ) ( ; ).

( , 1)

n r
r ii

r n

i

n r
f x F x f x

iB r n r
  


 



 
   

   
  

 

Substituting cdf (7), then the probability density function of rth order statistics Xr:n from 

ELG distribution is derived as follows 

1

:

0

1 (1 (1 ) )
( ; ) ( 1) ( ; ). (15)

( , 1) 1 [1 [1 (1 ) ] ]

r i
n r

i

r n

i

n r x
f x f x

iB r n r p x

 

 


 



 





     
     

        


 

Using the power series (8) and binomial expansion, then (15) takes the following form 

( 1)

:

0 , 0

21
( ; ) ( 1) [1 (1 ) ] ( ; ).

2( , 1)

n r
i k j k r i

r n

i j k

n r j r i j
f x p x f x

i k r iB r n r

   
 

    

 

      
      

      
 

 

Then, by substituting pdf (6), using the series expansion (8) and binomial expansion in 

the previous equation,we have
 

( 1)

:

0 , 0

( 1) ( 1)

0 0

21
( ; ) ( 1) [1 (1 ) ]

2( , 1)

( 1) ( 1) (1 ) (1 ) [1 (1 ) ]

n r
i k j k r i

r n

i j k

m h m

h m

n r j r i j
f x p x

i k r iB r n r

h
h p p x x

m
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Therefore,  the pdf of rth order statistics of ELG can be expressed as follows 

: , , , , ( )

0 , , , 0

( ; ) ( ; , ), 0 , (16)
n r

r n i h j k m m k r i

i j k m h

f x h x x   
 

  

 

    
 

where, 

, , , ,

2( 1) ( 1)
(1 ) ,

2( , 1)( )

i k m
h j

i h j k m

n r j r i j hh
p n p

i k r i mr n r m k r i


 


        
     

           
 

and ( ) ( ; , )m k r ih x      
denotes the pdf of EL with parameters , ( ),m k r i      

and .  
 

In particular, the pdf of the smallest order statistic X1:n is obtained by substituting r=1 in 

(16) as follows 
1

1: , , , , ( 1)

0 , , , 0

, , , ,

( ; ) , 0 ,

1 1( 1) ( 1)
(1 ) ,

1( 1)

n

n i h j k m m k i

i j k m h

i k m
h j

i j k m h

f x h x

n j i j hh
p n p

i k i mm k i

 



 

  

 

 


   

       
     

       

 
 

and ( 1 ) ( ; , )m k ih x      
denotes the pdf of EL with parameters , ( 1 ),m k i      and

.  

 

Also, the pdf of the largest order statistic Xn:n is obtained by substituting r=n in (16), as 

follows 

 

: , , , ( )

, , , 0

, , ,

( ; ) ( ; , ), 0 ,

2( 1) 1
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f x h x x
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and again ( 1 ) ( ; , )m k ih x      
denotes the pdf of EL with parameters

, ( 1 ),m k i      and .  

3.7 Bonferroni and Lorenz curves 

Bonferroni and Lorenz curves are income inequality measures that are also useful and 

applicable to other areas including reliability, demography, medicine and insurance. The 

Bonferroni curve is calculated by the following form: 

0

1
[ ( )] ( )

( )

x

FB F x uf u du
F x

   

Then by using pdf (10), the Bonferroni curve can be expressed as follows:

 
( 1) ( 1) 1

,

, 0 0

1
[ ( )] ( 1) (1 ) [1 (1 ) ] .(17)

( )

x

k

F j k

j k

B F x W u k u u du
F x
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Let, (1 )z u    , then the integrated part  in (17) can be written as follows 

(1 ) 1

( 1) 1

,

, 0 1

( 1)
( 1)[1 ] .

x

k

j k

j k

k
I W z z dz








 
 




   

 

Using the series expansion, then the previous integeral is as follows 
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For simplicity, put  , , ,

( 1) 1( 1)
1

h

j k h j k

kk
Q W
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, then the Bonferroni 

curve can be written as follows 
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Also, the Lorenz curve is calculated by the following form 

0

1
[ ] ( ) .

z

L Z xf x dx


 
 

The Lorenz curve of ELG distribution takes the following form 
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4.   Parameter Estimation  

In this section, estimation of the ELG model parameters; is obtained by using maximum 
likelihood method of estimation. 
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Let 1 2, ,... nX X X  be a simple random sample from the ELG distribution with set of 
parameters ( , , , ).p   

 The log-likelihood function, denoted by ,lnl  based on the 
observed random sample of size n from density (6) is given by: 

     

   

1

1 1

( ; ) ln 1 ln 1 ln 1
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i

i
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i

i i
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where,  1 1 .i iS x





 
 
The partial derivatives of the log-likelihood function with 

respect to the unknown parameters are given by: 
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The maximum likelihood estimators of the model parameters are determined by solving 

numerically the non-linear equations 0
lnl







, 0

lnl







, 0

lnl







 and 0

lnl

p






simultaneously. 
 

For interval estimation and hypothesis tests on the model parameters, the observed 

Fisher’s information matrix must be obtained. The 4×4 unit observed information matrix 

( )I  is given as follows 

( ) ,

p

p

p

p p p pp

I I I I

I I I I
I

I I I I

I I I I

   

   

   

  



 
 
 

   
 
 
 

 

where,
2 .

i j i jI lnl       The entries of Fisher’s information matrix for ELG are 

given in the Appendix. 
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The approximate 100(1 )%  two sided confidence intervals for , , , p    are 

respectively, given by: 

2 2 2

ˆ ˆ ˆ ˆˆ ˆvar( ), var( ), var( )Z Z Z          ,
2

ˆ ˆvar( )p Z p  

 

Here, 
2

Z  is the upper 2 th  percentile of the standard normal distribution and var (.)’s 

denote the diagonal elements of 1( )I 

 corresponding to the model parameters. 

5.   Applications 

In this section, the flexibility of ELG model is examined by comparing it with some other 

distributions. Two real data sets are used to show that ELG distribution can be applied in 

practice and can be a better model than some others. 
 

For the two sets of data; the ELG is compared to Lomax (L), exponentiated Lomax, 

kumaraswamy Lomax (KL), Weibull Lomax (WL) and exponentiated Pareto (EP) 

distributions. The density functions for kumaraswamy Lomax, Weibull Lomax and 

exponentiated Pareto distributions are as follows; 

1 1( ; , , , ) (1 ) [1 (1 ) ] exp[ [(1 ) 1] ],b b b

KLf x a b ab x x a x               
( 1) 1 1( ; , , , ) (1 ) [1 (1 ) ] [1 [1 (1 ) ] ,a b

WLf x a b ab x x x                  
( 1)( ; , ) (1 ) [1 (1 ) ] .EPf x x x          

 
The first data set represents 84 observations of failure times (in hours) for a particular 

wind shield model reported by (Murthy et al. (2004)): 

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 

1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 

2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82, 3, 4.035, 1.281, 2.085, 2.890, 

4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 

1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 

2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652,2.300, 

3.344, 4.602, 1.757, 2.324, 3.376, 4.663. 
 

The maximum likelihood method is employed to obtain the point estimates of the model 

parameters. To compare the fitted models, some selected measures are applied. The 

selected measures include; -2log-likelihoodfunction evaluated at the parameter estimates, 

Akaike information criterion (AIC), Bayesian information criterion (BIC), consistent 
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Akaike information criterion (CAIC), Hannan-Quinn information criterion (HQIC) and 

the Kolmogorov-Smirnov (k-s) statistic. The mathematical form of these measures is as 

follows 

 

2 ( 1)
2 2ln , ,

1

p p
AIC p L CAIC AIC

n p


   

 
 

  ln( ) 2ln , 2 ln ln( ) 2ln ,BIC k n L HQIC p n L   
 

 
 sup ( ) ( ) ,y nk s F y F y    

where k  is the number of models parameter, n  is the sample size and Lln  is the 

maximized value of the log- likelihood function under the fitted models. The better model 

is corresponding to the lower values of, AIC, CAIC, BIC, and k-s statistics. The results for 

the previous measures to the mentioned models are listed in Table 1. 

Table1:   Measurements for all models based on the first data set 

 

Models 

Statistics 

-2logl AIC CAIC BIC HQIC k-s 

ELG 256.718 264.718 265.212 274.441 268.627 0.073 

EL 326.846 330.846 330.991 335.708 332.801 0.965 

EP 389.005 395.005 395.297 402.297 397.936 0.309 

KL 599.38 607.380 607.873 617.103 611.288 0.528 

WL 260.277 268.277 268.771 278.00 272.186 0.812 

L 322.473 326.473 326.618 331.335 328.427 0.185 

 

The values in Table1 indicate that the most fitted distribution to the data is ELG 

distribution compared to other distributions considered here (EL, EP, KL, WL, L). 
 

Plots of the estimated cumulative and estimated densities of the fitted models for the first 

set of data are described below, 
 

 

 

 

 

 

 

Figure 5.  Estimated densitiesof models for the first data set 
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Figure 6.   Estimated cumulative densities for the first data set 

Again from Figures 5 and 6 we can notice that the most fitted distribution compared with 

the other models, to the first set of data is ELG. 

 

The second data set contains 100 observations on breaking stress of carbon fibers (in 

Gba) studied by Nichols and Padgett (2006). The second set of data are as follows: 

 
3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42,2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 

1.87, 3.15, 4.9, 3.75, 2.43,2.95, 2.97, 3.39, 2.96,2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2,3.33, 

2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55,2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 

1.41, 3.68, 2.97, 1.36,0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73,1.59, 2, 

1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,1.69,1.25, 4.38, 1.84, 0.39, 3.68, 

2.48, 0.85, 1.61, 2.79, 4.7,2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82, 

2.05,3.65. 

 

The same models (ELG, EL, EP, KL, WL, L) are fitted for the second set of data, and the 

values of the measurements are listed in Table 2. It is clearfrom Table 2, that the ELG is 

the most fitted distribution compared with the other distributions for fitting the second set 

of data. 
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Table2:   Measurements for all models based on the second data set 

 

Models 

Statistics 

-2logl AIC CAIC BIC HQIC k-s 

ELG 283.042 291.042 291.454 301.463 295.259 0.067 

EL 394.113 389.113 398.234 403.323 400.222 0.965 

EP 339.575 405.198 405.443 408.361 408.361 0.334 

KL 669.575 677.575 677.987 681.792 681.792 0.519 

WL 287.229 295.229 295.642 299.477 299.477 0.811 

L 318.588 322.588 322.709 327.798 324.696 0.055 

 

Furthermore, the graphical comparison corresponding to these fittedmodelsto conform 

our claim is illustrated in Figures 7 and 8. 
 

 

Figure 7.   Estimated densities of models for the second data  

 

 

Figure 8.   Estimated cumulative densities for the second data set 
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Again, Figures 7 and 8show that ELG model is the best fitted model for the second data 

set. 

6. Conclusion 

In the present study, we propose a new distribution called exponentiated Lomax 

geometric distribution. The subject distribution is derived by compounding exponentiated 

Lomax and geometric distributions. The density function of ELG can be expressed as a 

mixture of EL density functions. The ELG distribution includes the Lomax geometric and 

exponentiated Pareto geometric as new distributions. Explicit expressions for moments, 

probability weighted moments, Bonferroni and Lorenz curves, order statistics and 

R´enyi’s entropy are derived. The estimation of parameters along with the information 

matrix is derived. Applications of the exponentiated Lomax geometric distribution to 

realdata show that the new distribution can be used quite effectively to provide better fits 

as compared to Lomax, exponentiated Lomax, Kumaraswamy Lomax, Weibull Lomax 

and exponentiated Pareto distributions. 
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Appendix: Entries of Observed Information Matrix for ELG. 
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