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Abstract

In this paper, a new four-parameter lifetime distribution, called the exponentiated Lomax geometric (ELG)
is introduced. The new lifetime distribution contains the Lomax geometric and exponentiated Pareto
geometric as new sub-models. Explicit algebraic formulas of probability density function, survival and
hazard functions are derived. Various structural properties of the new model are derived including; quantile
function, Re'nyi entropy, moments, probability weighted moments, order statistic, Lorenz and Bonferroni
curves. The estimation of the model parameters is performed by maximum likelihood method and inference
for a large sample is discussed. The flexibility and potentiality of the new model in comparison with some
other distributions are shown via an application to a real data set. We hope that the new model will be an
adequate model for applications in various studies.

Keywords: Exponentiated Lomax distribution, Geometric distribution, Maximum
likelihood estimation.

1. Introduction

Lomax (1954) introduced an important and widely used lifetime model, the so-called
Lomax distribution, and it used for stochastic modeling of decreasing failure rate.It has
been applied in studies of income, size of cities, wealth inequality, engineering, queuing
theory and biological analysis.

Studies about Lomax distribution have been discussed by several authors. Some
properties and moments for the Lomax distribution have been discussed by Balakrishnan
and Ahsanullah (1994). The discrete Poisson-Lomax distribution has been provided by
Al-Awadhi and Ghitany (2001). The Bayesian and non-Bayesian estimation of the
reliability has been studied by Abd-Elfattah et al. (2007). Ghitany et al. (2007) introduced
Marshall-Olkin extended Lomax. Hassan and Al-Ghamdi (2009) determined the optimal
times of changing stress level for simple stress plans under a cumulative exposure model
for the Lomax distribution. Hassan et al. (2016) discussed the optimal times of changing
stress level for k-level step stress accelerated life tests based on adaptive type-Il
progressive hybrid censoring with product's life time following Lomax distribution.

Some extensions of the Lomax distribution have been constructed by several authors.
Abdul-Moniem and Abdel-Hameed (2012) introduced the exponentiated Lomax (EL) by
adding a new shape parameter to the Lomax distribution. Lemonte and Cordeiro (2013)
investigated beta Lomax, Kumaraswamy Lomax and McDonald Lomax distributions.
The gamma-Lomax distribution has been suggested by Cordeiro et al. (2013). Five-
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parameter beta Lomax distribution has been investigated by Rajab et al. (2013). The
Weibull Lomax and Gumbel-Lomax distributions have been introduced by Tahir et al.
(2015a) and (2015 b).

The cumulative distribution function (cdf) of Lomax distribution with shape parameter 6
and scale parameter 4 is given by

G(x;4,0)=1-(1+1x)"?, x,1,6>0. 1)

The probability density function (pdf) of Lomax distribution is as follows
g(x;4,0) =101+ Ax) "D x,1,0>0. (2)

The exponentiated Lomax has been introduced by Abdul-Moniem and Abdel-Hameed
(2012) by adding shape « parameter to the cdf (1). The cdf of the EL takes the following
form

G(x;4,0,a)=[1-(1+Ax)"°1*, x,4,a,6>0. (3)

The corresponding pdf is as follows:
g(x;4,0,a)=al0l+Ax) PP -1+ x) ], x,A,a,6>0. (4)

Also, a discrete random variable, N is a member of a zero-truncated geometric random
variable independent of X 's, with probability mass function (pmf) given by:

P(N :n;p):(l_ p)pn—l’ n=123.., p 6(011) (5)

Recently, various compounding probability distributions have been proposed by several
authors for modeling lifetime data in several areas. Adamidis and Loukas (1998)
proposed a two-parameter exponential-geometric distribution. In a similar manner, some
examples as, the Weibull geometric, exponentiated exponential geometric and Lindley
geometric distributions have been suggested by Barreto-Souza et al. (2010), Rezaei et al.
(2011) and Zakerzadeh and Mahmoudi (2012) respectively. Recently, exponentiated
Lomax Poisson, Lomax-logarithm, and extended Lomax Poisson distributions have been
given, respectively by, Ramos et al. (2013), Al-Zahrani and Sagor (2014), and Al-Zahrani
(2015).

In this article, a new compound distribution is introduced by mixing EL and geometric
distributions. We hope that this new model will serve as a suitable model in several areas.
The density, cumulative, survival and hazard rate functions of the new model are
obtained in Section 2. Section 3 devotes with some mathematical properties such as;
quantile, probability weighted moments, entropy and order statistics. Section 4 discusses
the estimation of the unknown parameters by maximum likelihood method and inference
for large sample is presented. In Section 5, applications to real data sets are given.
Finally, concluding remakes are outlined in Section 6.

546 Pak.j.stat.oper.res. Vol.XI1l No.3 2017 pp545-566



Exponentiated Lomax Geometric Distribution: Properties and Applications

2. Construction of the Distribution

In this section, following the same approach of Adamidis and Loukas (1998), we
introduce and study the exponentiated Lomax geometric distribution. The probability
density function, distribution function, reliability and hazard rate function are obtained.

Let X,X,,..,X be a random sample of size N from the Exponentiated Lomax

distribution with cdf(3) and N be a zero-truncated geometric random variable
independent of X 's, with pmf (5).

Define X,
X | N is obtained as follows:

(x| m;,4,0) =nadf(L+ Ax) P (L= L+ Ax) ) L= (- L+ Ax) )T

=min{X,X,,.., X}, then the conditional probability density function of

f
XN

The joint probability density function of X andN is obtained as follows:
fron OMa4,60) =n(L-p)p" af(L+ Ax) P (L= (L+ ) ") 1~ (1~ (2+ %) )T

The probability density of exponentiated Lomax geometric isdefined as the marginal
density of X, i.e.

F(x4) = (1- p)atd(l+ ﬂ,x)‘w”) (1—(1+Ax) %)~
| {1- plL-[1- L+ )T T¥
where 0< p <1, and ¢=(a,1,6,p), is the set of parameters. A random variable X

with density function (6) shall be denoted byX [J ELG(X;@). Furthermore, the
cumulative distribution function of ELG corresponding to (6) is derived as follows:

. -@+ax)T
e - ey 1 )

,X>0,a,4,0>0, (6)

Based on cdf (7), some special distributions arisefrom the ELG distribution as
follows:

1. As p — 0,the exponentiated Lomax (EL) is a limiting case of the ELG
distribution.

2. For aa=1and when p — 0,the exponentiated Lomax geometric reduces to
Lomax distribution.

3. When p —0, and A =1the exponentiated Lomax geometric reduces to
exponentiated Pareto (see Gupta et al. (1998)).

4. The exponentiated Lomax geometric reduces to Lomax geometric when o = 1.

The exponentiated Lomax geometric reduces to exponentiated Pareto geometric
when A1=1.
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Figure (1) gives some possible shapes of the density (6) for some selected parameter
values.
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Figure 1: Plots of the ELG densities function for some parameter values

In addition, the reliability and hazard rate functions of ELG distribution are as follows:
(1- p){I-[1- L+ Ax)]*}
1-p[A-[L-@Q+Ax)’]"]

R(x;¢) =

and,
a1+ Ax) DA - (1+ Ax) )
{L-pll-[1- @+ ) T~ [L- @+ 2x) 1T

v(X;¢) =
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where a>0,4>0,0>0,and 0< p <1. Figure (2) illustrates the graphical behavior
of hazard rate function for ELG for some selected values of parameters.
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Figure. 2: Plots of the ELGhazard function for some parameter values

Figure 2 shows that the shapes of the hazard rate are increasing, decreasing and constant
at some selected values of parameters.

2. Some Statistical Properties

In this section, some of statistical properties of the ELG distribution including, expansion
for pdf (6) and cdf (7), quantile function, rth moment, and probability weighted moments
are derived. Furthermore, Re'nyi entropy, distribution of order statistics, Bonferroni and
Lorenz curves are provided.
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3.1. Usefuel expansions

In this subsection, two useful expansions for the pdf (6) and cdf (7) are derived. We show
that the pdf of ELG can be expressed as linear combinations of EL distributions. Also the
two expansions are used to determine some mathematical properties of the ELG
distribution.

Firstly, the pdf (6) of ELG can be expressed as linear combinations of EL distributions.
Using the following series expansions

1-z)™ :2% 2] <1k >0. (8)

Then, the pdf (6) can be written as follows

f(x;¢)= Z( j+0)p! (1-p)adfL+ %) P-4 %) T HL-[1- (1+ %) °]°Y. Then, by using
j=0
the binomial expansion for the previous pdf, then it can be

written as

i)=Y (—1)k(j+1)[i]p (L-PladfiLs 2x) - (L 20) T, ()
where, pdf (9) Iejél(cj:; to the following infinite linear combination

f(x:9) :E:Ow N (X3 2,0), (10)
where, |

W, =<—1)k(; J a-p), YW, =

and h, ;,(X;4,60) denotes the pdf of EL with parameters 4, a(k +1), and 6.

Secondly; an expansion for [F(x;@)J is derived from cdf (7) through the expansions
defined in (8) as follows

0 b -1
[FGET =D (-1) (h](SH Jp [1—(L+Ax) 7170, (12)

i,h=0

3.2 Quantile measures

The quantile function of ELG distribution, denoted by, Q(u) = F~*(u) of X is derived
as follows:

-1
1\o

_L), {u@-p) ||
Q(U)—ﬂ 1 {(1_up)} 1+, (12)
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where u is a uniform random variable on the unit interval (0,1). In particular the median
of the ELG distribution, denoted bym, is obtained by substitutingu =0.5 in (12) as

follows

1\o

m = 1 1_[MT -1
A (1-0.5p)

The Bowleyskewness (see Kenney and Keeping (1962)) based on quantiles can be
calculated by

3 1 1
212 = =
2 [4) 2 [zjm (4j
B = 3 1 .
2(3)-2(3)
Further, the Moors kurtosis (see Moors (1988)) is defined as
7 5 3 1
°(g)-2(5)+2(5)-2(5)
M = 6 2 ’
2(5)-2(5)
where Q(.) denotes the quantile function. Plots of the skewness and kurtosis for some
choices of the parameter « as function of p, and for some choices of the parameter p as
function of « are shown in Figures 3 and 4. We can detect from these figures that the

skewness and kurtosis for p decreases as a increases from 0.5 to 2.5. Also, the skewness
and kurtosis for a decreases as p increases from 0.1 to 0.7

T T T T 0.75 T T T T
— =0.5
== a=1.5
X 0.7'ﬂ-.-.-.-,_--;
1 Ler PR
ﬁ 8 EV"
s S o6 & -
° ¥ [
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06F %ew*” =+ p=0.3 [
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=+ p=0.7
055 ! ! ! I
0 2 4 6 8 10
p a
(@) (b)

Figure 3: Skewness of the ELG distribution. (a) As function of p for some values of
awithd=05 and 1=1(b) As function of ¢ for some values of p with =15 and
A=1
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Figure 4: Kurtosis of the ELG distribution.(a) As function of p for some values of «
with §=0.5 and 1=1 (b) As function of & for some values of p with #=15and 1=1

3.3 Moments

The moments of any probability distribution are necessary and important in any statistical
analysis especially in applied work. Some of the most important features and
characteristics of a distribution can be studied through moments such as; dispersion,
skewness and kurtosis.

An explicit expression for the rth moment of ELG distribution about the origin is
obtained by using pdf (10) as follows:

0 0

fy = ZWj,kJ.tha(k+1)(X;/1’9)dX ,

j k=0 0
/ur = ZWj,k Ia(k +1)19X r (1+/1X )—(0+1) [1_ (1+ﬂ,x )—H]a(k+1)—1dx '

j k=0 5
Let,y = (1+Ax)™?, and using binomial expansion then the above integral is reduced to

L& k +1) t < () heem) kD).
e S0, S [T ey

jok= 0 m=0

() alk +1)(;JB(1—(;(r —m)j,a(k +1)j
ﬂ'r = Z Z\Nj,k 1 '

jk=0m=0

552 Pak.j.stat.oper.res. Vol. X111 No.3 2017 pp545-566



Exponentiated Lomax Geometric Distribution: Properties and Applications

where, B(.,.)stands for beta function. Hence the rth moment for ELG distribution takes
the following form:

L. a(k +D)TA=2(r —m)C(a(k +1))
M = Z ZDj,k,m 1 0 ! (13)
o T2 (r -m) +alk +1)

where,

r
m (_1)m (m}/\/k,j'

Furthermore, it is easy to show that, the moment generating M, (t) function can be
written as follows:

tr
Mx(t) Z lurl
rO

where, ' is the rth moment. Then by using (13), the moment generating function of
ELG distribution can be written as follows:

. tra(k + D= (r —m) ek +1))
MX(t): Z ZDj,k,m 16 '
jhreonss FAT(@- 5 (r=m)+a(k +1)

3.4 The probability weighted moments

Probability weighted moments (PWMs) were devised by Greenwood et al. (1979)
primarily as an aid to estimate the parameters of distributions that are analytically
expressible only in inverse form. PWMs are the expectations of certain functions of a
random variable defined when the ordinary moments of the random variable exist.

The PWMs of a random variable X are formally defined by

0

7, =E[X"F(x)]= I x " f(x)(F(x)) dx. (14)

—00

The PWMs of ELG distribution is obtained by subsituting pdf (10) and cdf (11) in (14) as
follows:

= 3 kK + RO D) L (L D)
0

j ki h=0

where
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Let y = (1+Ax)?, and using binomial expansion then 7, ; takes the following form:

i |thz k+1)'[ ( j[l Z] a(k+s+h+1) 1dz

i,jk h=0 0

Then

frs = Z i(_l)mj&’(i,j,k,h]?’(l_(r ;m),(l(k +S+h+1)j

0
ijkh=0m=0

Hence, the PWMs of ELG distribution can be expressed as:

r a(k +)A= "Nk +5 +h+1))

Tr,s:_z Zni,j,k,m,h (r—m) ,
. kohm=0 AT(a(m+s+h+1)+1- )

caman [ 1LY )(s+1-1) . .
77j,|<,m,i,h:(_1) (k +J[hj( s_1 Jpj (- p).

3.5 Re'nyi entropy

The entropy of a random variable Xis a measure of uncertainty variation. If X is a random
variable which distributed as ELG, then the Re'nyi entropy, for p > 0and p # lis defined

by:

|, (x)= log, j (f (x;4))dx.

@ p)
Then by using pdf (6), the Re'nyi entropy of ELG can be written as follows:

00 g J| G PRI GG b de
a-p) "3l A-pR-I-@+ )T

Let

I(1+/1x)f’<9+1>(1 1+ Ax) %) e

s—0X.
pL—[1- 1+ Ax) T

=(A-p)aro)

By using the series expansion (8), then the above integration IP can be written as follows

P = |JZ:0 [ j(zg;il J j((l— D)Otw)pf[l—(lwlx)9]P(“1)+ﬂi (L+ 2% ) "Dy

Let, y =(1+Ax)?, then the IP is reduced to

20+ -1\(I\ (D" p' (A-p)a)’ (p(O+)-1 .
"o JZOL 2p-1 ][.] (02)" B( 0 ’“'+p(“_l)+lj'
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Therefore, the Re'nyi entropy of ELG distribution is as follows

F[p(eﬂ')_ljl“(ai +p(a—-1)+1)

_ ~ %
12 () =(@-p) " log, 3L, ,
Bl F(pw;})_l+ai +p(a—1)+1j

where,

L :(J'j(Zpﬂ' —1] (=D'p’ (- p)a)”l
L)L 2p-1 (OA)*

3.6 Order statistics

In this subsection, a closed form expression for the pdf of the rth order statistics of the
ELG distribution will be derived. Let X;, X5, ..., X,, be a simple random sample from ELG
distribution and let X1:n, X2mn,..., Xn:n denote the order statistics obtained from this sample.
According to David (1981), the pdf of rth order statistics is as follows

1

frn(Xig)= B(r,n—r+1)[F(X;¢] T[1-Fxig] f (x5,

where B(.,.) stands for beta function. Using the binomial series expansion of

[1-F(x;¢]"" then, f .. (X;@), can be written as:

i =g 2 )( ]F( A i)

Substituting cdf (7), then the probability density function of rth order statistics X.n from

ELG distribution is derived as follows

1 _%n—r]{ (L L+ Ax))"

f.(xg)= B b M)_@]aJ f(xg). (19

Using the power series (8) and binomial expansion, then (15) takes the following form

B ) ) (—1)'*“(.” rj[;j(r::’ , ]p (-4 AX) T (),

Then, by substituting pdf (6), using the series expansion (8) and binomial expansion in
the previous equation,we have

A T % |+k J r+i+j_ j a(k+r+i-1)
fra(xid)= B(rn—r+1 .Z,Zo [ )[kj[ i ] [1- (14 AX) "
ZZ( ] "(h+1)p" (- p)adf+Ax ) PI[L- (1+ Ax) ]

h=0 m=0
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Therefore, the pdf of rth order statistics of ELG can be expressed as follows

n-r 0

(X ¢ z Z élhjkm a(m+k+r+i) (X l 0) 0<x <, (16)

i=0 j k,m,h=0

_ (_1)i+k+m(h+1) n-r\(j)(r+i+j-2)(h B hj
éi‘h“"k‘m_B(r,n—r+1)(m+k+r+i)(i j[k][ ) j[mj(l 2

and h, .0y (X;4,0) denotes the pdf of EL with parameters A,a(m +k +r +1i),
and 6.

where,

In particular, the pdf of the smallest order statistic X1 is obtained by substituting r=1 in

(16) as follows
n-1

f i (X:9) = Z z glhjkm a(mk +i 1)1 0<X <o,

i=0 j,k,mh=0

(<) (h+1)(n-1)(j)(i+j-1)(h he]
biikmn = (m+k+i+1)[i j(k)[ i -1 J[mj(l_p)”p |

and h, 0.0y (X5 4,60) denotes the pdf of EL with parameters 4,c(m +k +1+1i), and
0.

Also, the pdf of the largest order statistic Xn:n is obtained by substituting r=n in (16), as
follows

fn:n(X;¢): z nj,k,m,hha(k+n+i+m)(x;ﬂ”a)’ O<X <o,

j k.m,h=0

D" (h+1)(j)(n+]j-2)(h R
Tiam > mm[ n-2 ][mja PP

and again N, ... (X;4,60) denotes the pdf of EL with parameters
A,a(m +k +1+1), and 6.

3.7 Bonferroni and Lorenz curves

Bonferroni and Lorenz curves are income inequality measures that are also useful and
applicable to other areas including reliability, demography, medicine and insurance. The
Bonferroni curve is calculated by the following form:

1 X
BF[F(X)]:ﬂF X).!uf (u)du

Then by using pdf (10), the Bonferroni curve can be expressed as follows:

Be[F(x)]= o )ijkjua(k +D) A0+ ) I 1+ Au) 1%V du.(17)
H j.k=0
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Let, z =(1+ /iu)‘e, then the integrated part in (17) can be written as follows
o (L+ax)™? -1
(Z(k +1) (Z Vi

j k=0 1

~D[1-z ] Mz,

Using the series expansion, then the previous integeral is as follows

< alk +1) (a(k +1) -1 @07 1
I = Z (_l)th,k %( h j (z 9-z"),
j k,h=0 )
_ N (—1)hW alk +1) (a(k +1)—-1) || 1+ Ax )ﬂ(h*g#)_l @+ ax )y _q
- jin=0 e A h h—i—i—l h+1 ’
o

For simplicity, put Q; :(_1)th,k

alk +1)(ak +1)-1
p) h

j, then the Bonferroni

curve can be written as follows

i Q.. (1+/1x)79[h71]—1 {(1+/1x )y g
1K,

i k=0 h—£+1 h+1
0

}}[1—(“ X))

B, [F ()] = - . .
[1- p[l—[l—(1+/lx)'9]“]( YW, alk +1[B(1—6,a(k +1)) - B(L a(k +1))j]

K.j=0

Also, the Lorenz curve is calculated by the following form

L[Z]:l]xf (x )dx.
HY

The Lorenz curve of ELG distribution takes the following form

5 Q| B

i ich-o h->+1
0

(14 Ax )_g(h_?lj = { (L4 Ax ) 0D —1_}

L[Z]=

( SW, a(k +1(B(1—;,a(k +1)) - B, a(k +1)))

K,j=0

4. Parameter Estimation

In this section, estimation of the ELG model parameters; is obtained by using maximum
likelihood method of estimation.
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Let X,,X,,..X  be a simple random sample from the ELG distribution with set of
parameters ¢ = Z ,A4,0,p). The log-likelihood function, denoted by Inl, based on the
observed random sample of size n from density (6) is given by:

Inl(x;¢)=nIn(1-p)+n Ina+nln/1+nln0—(0+1)iln(1+}txi )+
(05—1)ilnsi —Zznlln{l— p+pS“},

where, S, =1—(1+Ax, ). The partial derivatives of the log-likelihood function with
respect to the unknown parameters are given by:

S“InS
8In|zﬂ ZIS_ZZp ( )’
a T 71-p+pS”

L (1-S)In(L+Ax;,) & pas “H(1-S; )In(1+ Ax,)

A0 i1 ax, )+ o)y 2> )

a0 0 3 i1 i i1 1_p+psa
onl X n 0x.(1+/1x.)'(6+1) 1, pdasS “x, (144, ) ¢
—=——(0+1 ! -1 ' i )
TRyl ) % 1-p+ps°
oinl -n o 1-S°

o (1-p 21:1 p+pS

The maximum likelihood estimators of the model parameters are determined by solving

numerically the non-linear equations @—O olnl =0, olnl =0 and ﬂ—O
oa 00 oA op

simultaneously.

For interval estimation and hypothesis tests on the model parameters, the observed
Fisher’s information matrix must be obtained. The 4x4 unit observed information matrix

| (@) is given as follows

Iaa Iaﬂ Iaﬁ Iap
I/la Iﬂ/l |/16’ I/lp

1(#)=-

low 1w oo lop

IPO! IWL IP9 Ipp_

where, IM

given in the Appendix.

=o°Inl /8¢|8¢j .The entries of Fisher’s information matrix for ELG are

558 Pak.j.stat.oper.res. Vol.XI1l No.3 2017 pp545-566



Exponentiated Lomax Geometric Distribution: Properties and Applications

The approximate 100(1-y)% two sided confidence intervals for «,1,0,p are
respectively, given by:

diz%«/var(o?), iiz%\/var(i), éiz%\/var(é) P iz%,/var(ﬁ)

Here, Zy/ is the upper »/2 " percentile of the standard normal distribution and var (.)’s
2

denote the diagonal elements of | ‘1(¢) corresponding to the model parameters.

5. Applications

In this section, the flexibility of ELG model is examined by comparing it with some other
distributions. Two real data sets are used to show that ELG distribution can be applied in
practice and can be a better model than some others.

For the two sets of data; the ELG is compared to Lomax (L), exponentiated Lomax,
kumaraswamy Lomax (KL), Weibull Lomax (WL) and exponentiated Pareto (EP)
distributions. The density functions for kumaraswamy Lomax, Weibull Lomax and
exponentiated Pareto distributions are as follows;

f (x;a,b,4,0)=abA0+Ax ) [L— L+ Ax )T *exp[-a[(L + Ax)’ -1I"],

f (x;a,b,4,0)=abA0L+Ax) I L— L+ Ax) T -[1- 1+ Ax) T,

fo(X;0,0) = O(L+x) “P[L-(1+x) ]~

The first data set represents 84 observations of failure times (in hours) for a particular
wind shield model reported by (Murthy et al. (2004)):

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557,
1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981,
2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82, 3, 4.035, 1.281, 2.085, 2.890,
4121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255,
1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615,
2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652,2.300,
3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

The maximum likelihood method is employed to obtain the point estimates of the model
parameters. To compare the fitted models, some selected measures are applied. The
selected measures include; -2log-likelihoodfunction evaluated at the parameter estimates,
Akaike information criterion (AIC), Bayesian information criterion (BIC), consistent
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Akaike information criterion (CAIC), Hannan-Quinn information criterion (HQIC) and
the Kolmogorov-Smirnov (k-s) statistic. The mathematical form of these measures is as

follows

AIC =2p—2InL, CAIC =AIC +%+11),
n—p-—

BIC =k In(n)—2InL,HQIC =2pIn[In(n)]-2InL,

k —s =sup, [F,(y)-F(y)].
wherek is the number of models parameter, n is the sample size and InL is the
maximized value of the log- likelihood function under the fitted models. The better model
is corresponding to the lower values of, AIC, CAIC, BIC, and k-s statistics. The results for
the previous measures to the mentioned models are listed in Table 1.

Tablel: Measurements for all models based on the first data set
Statistics
Models | -2logl AlC CAIC BIC HQIC k-s
ELG 256.718 | 264.718 | 265212 | 274.441 | 268.627 0.073
EL 326.846 | 330.846 | 330.991 | 335.708 | 332.801 0.965
EP 389.005 | 395.005 | 395.297 | 402.297 | 397.936 0.309

KL 599.38 607.380 607.873 617.103 611.288 0.528
WL 260.277 268.277 268.771 278.00 272.186 0.812
L 322.473 326.473 326.618 331.335 328.427 0.185

The values in Tablel indicate that the most fitted distribution to the data is ELG
distribution compared to other distributions considered here (EL, EP, KL, WL, L).

Plots of the estimated cumulative and estimated densities of the fitted models for the first
set of data are described below,

0.4
Data
ELG

L

0.3
WL

=== EP

0.2

Densities

0.1

;-

0

Figure 5. Estimated densitiesof models for the first data set
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”
0.5000000002

Cumulative distribution function

e
3.7609063013<10 10l=

Figure 6. Estimated cumulative densities for the first data set

Again from Figures 5 and 6 we can notice that the most fitted distribution compared with
the other models, to the first set of data is ELG.

The second data set contains 100 observations on breaking stress of carbon fibers (in
Gba) studied by Nichols and Padgett (2006). The second set of data are as follows:

3.7,2.74,2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11,4.42,2.41, 3.19, 3.22, 1.69, 3.28, 3.09,
1.87,3.15, 4.9, 3.75, 2.43,2.95, 2.97, 3.39, 2.96,2.53,2.67, 2.93, 3.22, 3.39, 2.81, 4.2,3.33,
2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55,2.59,2.38, 2.81, 2.77, 2.17, 2.83, 1.92,
1.41, 3.68, 2.97, 1.36,0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73,1.59, 2,
1.22,1.12,1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,1.69,1.25, 4.38, 1.84, 0.39, 3.68,
248, 0.85, 1.61, 2.79, 4.7,2.03, 1.8, 1.57, 1.08, 2.03, 1.61, 2.12,1.89, 2.88, 2.82,
2.05,3.65.

The same models (ELG, EL, EP, KL, WL, L) are fitted for the second set of data, and the
values of the measurements are listed in Table 2. It is clearfrom Table 2, that the ELG is
the most fitted distribution compared with the other distributions for fitting the second set
of data.
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Table2: Measurements for all models based on the second data set

Statistics

Models -2logl AlIC CAIC BIC HQIC k-s

ELG 283.042 291.042 291.454 301.463 | 295.259 0.067
EL 394.113 389.113 398.234 403.323 | 400.222 0.965
EP 339.575 405.198 405.443 408.361 | 408.361 0.334
KL 669.575 677.575 677.987 681.792 | 681.792 0.519
WL 287.229 295.229 295.642 299.477 | 299.477 0.811
L 318.588 322.588 322.709 327.798 | 324.696 0.055

Furthermore, the graphical comparison corresponding to these fittedmodelsto conform
our claim is illustrated in Figures 7 and 8.

0.4—~—~

Data
—— ELG
—_L
—EL H
KL
WL
--=- EP

Densities

data

Cumulative distribution funetion

Figure 8. Estimated cumulative densities for the second data set
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Again, Figures 7 and 8show that ELG model is the best fitted model for the second data
set.

6. Conclusion

In the present study, we propose a new distribution called exponentiated Lomax
geometric distribution. The subject distribution is derived by compounding exponentiated
Lomax and geometric distributions. The density function of ELG can be expressed as a
mixture of EL density functions. The ELG distribution includes the Lomax geometric and
exponentiated Pareto geometric as new distributions. Explicit expressions for moments,
probability weighted moments, Bonferroni and Lorenz curves, order statistics and
R’enyi’s entropy are derived. The estimation of parameters along with the information
matrix is derived. Applications of the exponentiated Lomax geometric distribution to
realdata show that the new distribution can be used quite effectively to provide better fits
as compared to Lomax, exponentiated Lomax, Kumaraswamy Lomax, Weibull Lomax
and exponentiated Pareto distributions.

References

1. Abd-Elfattah, A. M., Alaboud, F. M. and Alharby, A. H. (2007). On sample size
estimation for Lomax distribution, Australian Journal of Basic and Applied
Sciences, 1, 373-378.

2. Abdul-Moniem, I. B. and Abdel-Hameed, H. F. (2012). On exponentiated Lomax
distribution, International Journal of Mathematical Education, 33 (5), 1-7.

3. Adamidis K., and Loukas, S. (1998). A lifetime distribution with decreasing
failure rate, Statistics and Probability Letters, 39, 35-42.

4. Al-Awadhi, S. A. and Ghitany, M. E. (2001). Statistical properties of Poisson-
Lomax distribution and its application to repeated accidents data, Journal of
Applied Statistical Science, 10 (4), 365-372.

5. Al-Zahrani, B. (2015). An extended Poisson-Lomax distribution, Advances in
Mathematics: Scientific Journal 4(2), 79-89.

6. Al-Zahrani, B. and Sagor, H. (2014). Statistical analysis of the Lomax-
Logarithmic distribution. Journal of Statistical Computation and Simulation, 85,
1883-1901.

7. Balakrishnan, N. and Ahsanullah, M. (1994). Relations for single and product
moments of record values from Lomax distribution, Sankhya B 56, 140-146.

8. Barreto-Souza, W., Morais, A.L., and Cordeiro, G.M. (2010). The Weibull-
geometric distribution, Journal of Statistical Computation and Simulation, 81,
645-657.

9. Cordeiro G. M., Ortega, E. M. M., and Popovi¢, B. V. (2013). The gamma-Lomax
distribution. Journal of Statistical Computation and Simulation 85(2), 305-319.

10. David, H. A. (1981). Order Statistics, 2" ed., Wiley, New York.

Pak.j.stat.oper.res. Vol.XII1 No.3 2017 pp545-566 563


https://www.researchgate.net/journal/1464-5211_International_Journal_of_Mathematical_Education
https://www.researchgate.net/journal/1067-5817_Journal_of_Applied_Statistical_Science
https://www.researchgate.net/journal/1067-5817_Journal_of_Applied_Statistical_Science

Amal Soliman Hassan, Marwa Abd-Allah

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

564

Ghitany, M. E., Al-Awadhi, F. A. and Alkhalfan, L. A. (2007). Marshall-Olkin
extended Lomax distribution and its application to censored data,
Communications in Statistics—Theory and Methods, 36, 1855-1866.

Greenwood, J.A., Landwehr, J.M., Matalas, N.C., and Wallis, J.R. (1979).
Probability weighted moments: definition and relation to parameters of several
distributions expressible in inverse form, Water Resources Research, 15(5), 1049-
1054.

Gupta, R. C., Gupta, R. D. and Gupta, P. L. (1998). Modeling failure time data by
Lehman alternatives, Communications in Statistics—Theory and Methods, 27(4),
887-904.

Hassan, A. S., and Al-Ghamdi, A. S. (2009). Optimum step stress accelerated life
testing for Lomax distribution, Journal of Applied Sciences Research, 5(12):
2153-2164.

Hassan, A. S., Assar, S. M. and Shelbaia, A. (2016). Optimum step stress
accelerated life test plan for Lomax distribution with an adaptive type-II
progressive hybrid censoring, British Journal of Mathematics & Computer
Science. 13(2), 1-19.

Kenney, J. F. and Keeping, E. (1962). Mathematics of Statistics. D. Van Nostrand
Company.

Lemonte, A. J. and Cordeiro, G. M. (2013). An extended Lomax distribution,
Statistics: A Journal of Theoretical and Applied Statistics, 47, 800-816.

Lomax, K. S. (1954). Business failures: another example of the analysis of failure
data, Journal of American Statistics Association, 49, 847-852.

Murthy, D. N. P., Xie, M. and Jiang, R. (2004). Weibull Models, John Wiley and
Sons, New Jersey.

Moors, J. J. A. (1988). A quantile alternative for kurtosis, Journal of the Royal
Statistical Society. Series D (The Statistician), 37(1), 25-32.

Nichols, M. D., and Padgett, W.J. (2006). A bootstrap control chart for Weibull
percentiles, Quality and Reliability Engineering International, 22, 141-151.

Rajab, M., Aleem, M., Nawaz, T., and Daniyal, M. (2013). On five parameter
beta Lomax distribution, Journal of Statistics, 20, 102-118.

Ramos, M. W. A., Marinho, P. R. D., da Silva R. V. and Cordeiro, G. M. (2013).
The exponentiated Lomax Poisson distribution with an application to lifetime
data, Advances and Applications in Statistics, 34, 107-135.

Rezaei, S., Nadarajah, S. and Tahghighnia, N. (2011). A new three-parameter
lifetime distribution, Statistics: Journal of Theoretical and Applied Statistics,
.DOI.10.1080/02331888.2011.627587.

Tahir, M. H., Cordeiro, G. M., Mansoor, M. and Zubair, M. (2015 a). The
Weibull-Lomax distribution: properties and applications. Hacettepe Journal of
Mathematics and Statistics, 44 (2), 461-480.

Pak.j.stat.oper.res. Vol. X111 No.3 2017 pp545-566



Exponentiated Lomax Geometric Distribution: Properties and Applications

26.  Tahir, M. H., Hussain, M. A., Cordeiro, G. M, Hamedani, G. G., Mansoor, M. and
Zubair, M. (2015 b). The Gumbel-Lomax distribution: properties and
applications, Journal of Statistical Theory and 15 (1), 61-79.

27.  Zakerzadeh, H. and Mahmoudi, E. (2012). A new two parameter lifetime
distribution: model and properties, arXiv:1204.4248 [stat.CO]

Appendix: Entries of Observed Information Matrix for ELG.
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