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Abstract
In this paper, fundamental results of the joint distribution of the bivariate exponential distributions
are established. The positive support multivariate distribution theory is important in reliability and
survival analysis, and we applied it to the case where more than one failure or survival is
observed in a given study. Usually, the multivariate distribution is restricted to those with marginal
distributions of a specified and familiar lifetime family. The family of exponential distribution
contains the absolutely continuous and discrete case models with a nonzero probability on a set
of measure zero. Examples are given, and estimators are developed and applied to simulated
data. Our findings generalize substantially known results in the literature, provide flexible and
novel approach for modeling related events that can occur simultaneously from one based event.

Keywords and phrases: bivariate exponential, Dirac delta, reliability models,
survival analysis.

1. Introduction
The multivariate exponential distribution plays an important role in survival and
reliability analysis as suggested in Walker and Stephens (1999), Kotz et al.
(2000), Lawless (2003), Marshall and Olkin (1967), Joe (1997), Ghosh and
Gelfand (1998), and Hougaard (2000), to mention a few. Such researchers have
presented many problems related to the bivariate exponential distribution. This
study provides generalization of substantially known results, with a flexible and
novel approach for modeling related events that can occur proportionally from
one based event. For example, in medical science, our model provides a valid
response to an important question in the estimation and modeling of data from
patients with left and right kidney failures after a given event such as gastric
surgery or transplant. In reliability analysis, the model can be used for failure
times of machinery components. So the paper is concerned with a class of
multivariate data of systems with multiple components. The multiple components
share the same onset factor. Simple variable transformations are not sufficient to
achieve tractable and efficient modeling and estimation result. Normal and
independence assumptions will also be inefficient as we consider the sample
sizes not large enough to consider such assumptions. In this article, we propose
a bivariate exponential that will greatly improve precision in the estimation of
parameters. After describing the model in Section 2, we study some of its
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associated properties. In Section 3, we present the estimation technique. In
many cases, the bivariate distributions are considered as the results are more
meaningful. In that sense, we explore the bivariate exponential distributions and
we provide a simulation example with results in higher dimensions in Section 4
with the distribution having exponential marginals. A final discussion concludes
the article.

2. The Bivariate Exponential Model
In this section, we focus on the bivariate exponential distribution, where at each
level a linearly associated exponential survival distribution with specified
exponential marginal distribution model is considered. More specifically, we
consider the bivariate 1X and 2X be fixed marginally as exponential random
variables with hazard rates 1 and 2 , respectively. Then by introducing two
types of latent non-negative variables, 0 ,X and 1Z and 2Z , statistically
independent between themselves and of 0X , a linear relationship is formed
between 0X and 1 2,X X as follows:

0=i i iX a X Z (1)

where ia 's are fixed nonnegative constants and iZ s are independent of 0X for
= 1, 2i . Note that 1 2Z and Z are considered latent, unobservable random

variables, that generate the observable bivariate vector 1 2= ( , ) .X X X 

Our goal is to characterize 1Z and 2Z , and use their form to write the join density
of the distribution of 0X , 1X and 2 ,X using the fact that 1X and 2X follow an
exponential distribution. Once the joint density is obtained, then we can deduce
estimator for 0 .X

By computing the mean square error (MSE) for the parameter associated with
0 ,X we show the improvement obtained by comparing it with with estimators in

the exponential case as proposed in Lawless (2003).

This parametrization is a convenient method to describe the relation between
right and left kidney failures ( 1X and 2X ) after the occurrence of gastric surgery
( 0X ) as we have motivated in the previous section. The dependence structure is
given through the joint density function. Our objective is on the description,
derivation and characterization of the joint distribution for 1 2( , )X X based on the
class of distributions for 1Z and 2Z , that produce the specified marginal
distributions of 1X and 2X , respectively. We derive and study estimators of the
parameters under the resulting dependence structure.

Note that our model possesses the property of conditional independence given a
random latent effect or frailty models, commonly used in describing dependent
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events. Hougaard (2000) considered the random latent effect as parameter.
However, we are treating this random effect as latent variable where there is a
nonzero probability of simultaneous or proportional occurrence capturing the idea
of fatal shock. This idea is not new. Marshall and Olkin (1967) proposed a
multivariate exponential distribution that is not absolutely continuous.

Our intent is to describe a general class of linearly related bivariate model, and
one could lay out the higher variate version. We study the statistical properties of
the bivariate MLE's. The models are formulated with independent exponential
distributions.

Ghosh and Gelfand (1998) described a multivariate time to event data model.
Focusing on the bivariate case, they use a Bayesian approach for inference
using simulation. We focus on the exponential class of distributions because of
its importance in the literature. This class is large and includes the continuous
and discontinuous cases. We also study the bivariate case approach where 0X

is unobserved and missing. The intent is to increase the applicability of the
method, as we know that failure of kidneys could occur without the occurrence of
a predetermined event as gastric surgery. Moreover, the multivariate lifetime
distribution by Hougaard (2000), has a dependence created by an unobservable
quantity. Hougaard (1986) proposed a continuous multivariate lifetime distribution
where the marginal distributions are Weibull (continuous) whose form does not
allow the property of simultaneous or proportional failures of individuals or
components. We want to retain that property in our model.We also lay out the
joint density function along with the joint survival function. Estimators for the
parameters associated with the model have also been developed. Carpenter et
al. (2006) defined a similar approach at the univariate level. They characterize it
through Laplace transforms, the distribution of the latent variable in the
exponential case as mixture of a point mass at zero and an exponential with
hazard rate i . Note that when = 0,iZ there is a positive probability that iX is
proportional to 0X with proportionality constant ia , i.e. 0( = ) > 0i iP X a X , for

= 1, 2i .

The proposed bivariate model has many resemblance with multivariate models
that are suggested. However, as mentioned by Karlis (2003), extensions of
univariate distributions have not been applied in many practical situations mainly
due to a non straightforward method of generalizing univariate to multivariate
models and a lack of inferential procedures. The different multivariate
exponential procedures that have been proposed are summarized in Kotz et al.
(2000). They include the so called Gumbel distribution and the Marshall-Olkin
distribution. Statistical inference is complicated by the fact that there is no burden
free density forms.

The bivariate (and multivariate) survival data of the experiment gives multiple
events and involves several members or components in a system. There is no
simple expression in the density as given in Mathai and Moschopoulos (1992).
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Definition 2.1 Let 0 1 2, ,X X X be exponential random variables as in (1) with
scale parameters i for = 0,1, 2.i Let , = 1, 2,iZ i be independent random
variables satisfying (1) with fixed positive constants 1a and 2a . We define the
joint distribution of 1 2= ( , )X X X as the bivariate exponential distribution. Our goal
is to understand the distribution of ,iZ and the joint distribution of 1X and 2 .X

Thus, for = 1, 2i :

0

0

, , . = 0,

= , 1 , . > 0.
i i i

i i i i i

a X with probability p i e Z

X a X Z with probability p i e Z


  



The mean of X is given as

1 2( ) = (1 ,1 ) ,E X    (2)

and its variance/covariance matrix is given as
2 2
0 1 1 2

2 2 2
0 2 1 0 2= 1 .

a a

a a

 
  
 
 

  
 
 

(3)

From Carpenter et al. (2006) and Equation (1), the LST of iZ is

0( ) = (1 ) ( ), = , = 1,2.Z i i X i i ii i
L s p p L s with p a i  

That is iZ is a mixture of a Bernoulli random variable with probability ip and an
exponential random variable with parameter i for i=1,2.

To describe the exact form of the distribution of , = 1, 2,iZ i we introduce the Dirac
delta function at the point c , as a point mass distribution denoted c , and we
say that a random variable X has point mass c distribution at c if its pmf is
given by

( | ) = ( ) = ( ) = 0 = , ( | ) =1.cf x c x x c if x c and f x c dx 



  (4)

More details on the Dirac function are given in Khuri (2004), Au and Tam (1999)
and Pazman and Pronzato (1996). It is well known that the Heaviside step
function is an antiderivative of the Dirac distribution. The Heaviside step function,
also called unit step function, see for example Abramowitz and Stegun (1972), is
a discontinuous function defined as

0, 0;

( ) = ( ) = 1, > 0.
x

if x

H x t dt if x








 (5)
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Iyer et al. (2002) studied the case of positive fixed ia 's in the one dimensional
case assuming that 0X and iX are exponential with parameters 0 and

, , = 1, 2,i i respectively.

Carpenter et al. (2006) showed that the density of iZ is then expressed as:

( >0)( ) = ( ) (1 ) ( ) ,Z i i X zi i
f z p z p f z I   (6)

where 0= ( = 0) = , = 1, 2,i i i ip P Z a i  and  is the Dirac delta function defined
as in (4).

From Equation (??), the conditional survival function of iX given 0X , is obtained
as

0 0 0 0 0 0( | ) = ( > | ) = ( > | ) = ( > | )i i i i iS t x P X t x P a x Z t x P Z t a x x 

0 0

= ( ) = [ ( ) (1 ) ]
zi

Z i i iit a x t a xi i

f z dz p z p e dz
 

  

 
  

0 0

= ( ) (1 )
zi

i it a x t a xi i

p z dz p e dz


  

 
  

( )0
0= (1 ( )) (1 ) , = 1, 2,

t a xi i
i i ip H t a x p e i

    

where H is the Heaviside function defined in Equation (5).

Also using the fact that

0 1 2 0 1 2( , , ) = ( ) ( ) ( ),f x z z f x f z f z we have that

0 1 2 0 1 1 0 2 2 01 2
( , , ) = ( ) ( ) ( ),Z Zf x x x f x f x a x f x a x or  (7)

1 2 0 1 0 2 01 2
( , | ) = ( | ) ( | ),Z Zf x x x f x x f x x (8)

and then 1 2( , )X X is conditionally independent given 0 .X

From property (8), the joint conditional survival function is
2

( )0
1 2 0 0

=1

( , | ) = [ (1 ( )) (1 ) ].
x a xi i i

i i i i
i

S x x x p H x a x p e
     (9)

The distribution of the minimum lifetime distribution (1) 1 1 2 2= { , }X min X a X a can be
derived directly from (??) and from properties of the Heaviside function in
Equation (5). It is given as

2 2

(1) 0 0 0
=1 =1

( > | ) = ( > | ) = ( > | )i i i i
i i

P X t x P X a t x P X a t x 
2

( )0
0

=1

= [ (1 ( )) (1 ) ].
a x xi i i

i i i
i

p H x x p e
    
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Note that,

(0,0) = 1 ( , ) = 0.S and S  

Taking the derivative of the thi survival function in Equation (??), and using
Equation (5), the conditional density is given by

( )0
| 00

( ) = ( ) (1 ) , = 1, 2.
t a xi i

X X i i i ii
f t p t a x p e i

      (10)

and from (4), the conditional expectation is

| |0 00
( ) = ( )X X i X Xi i

E X tf t dt



( )0

00 0

= ( ) (1 )
t a xi i

i i i ia xi

p t t a x dt p te dt
 

      

0 0 0= (1 )(1 ) = (1 )1 , = 1, 2.i i i i i i i ip a x p a x a x p i     

Note that taking the expectation of the above with respect to 0X gives

| 0 00 0 0
( ) = ( ) = [ (1 )(1 )]i X X X i X i i i i ii

E X E E X E p a x p a x  

0 0= (1 )(1 )i i i i ip a p a    

0= (1 )1i i ia p  

= 1 , = 1, 2,i i

since 0= ,i i ip a   confirming earlier results in Equation (1) and in Carpenter et al.
(2006).

Although the joint density of 0 1 2( , , )X X X  was easily found in (??), the density of

1 2( , )X X  is not obvious. However, we can study the density of 0 1 2( , , )X X X 

through the latent variables 1 2, ,Z Z with relative ease. Using the independence of
the iZ 's, = 1, 2i , between each other and of 0X , and result (??), we have that:

2
( )0 0 0

0 1 2 0 0 ( > )0
=1

( , , ) = [ ( ) (1 ) ].
x x a xi i i

i i i i i x a xi i
i

f x x x e p x a x p e I
        (11)

Hence (??) can be written as:

0 0
0 1 2 0 1 2 1 1 0 2 2 0( , , ) = [ ( ) ( )

x
f x x x e p p x a x x a x

    
( )1 1 1 0

1 2 1 ( > = )1 1 0 2 2
(1 )

x a x

x a x x ap p e I
   

( )2 2 2 0
1 2 2 ( > = )2 2 0 1 1
(1 )

x a x

x a x x ap p e I
   

( )0 1 1 2 21 1 2 2
1 2 1 2 ( > )0

(1 )(1 ) ]
x a ax x

xp p e e e I
  

      

where 1 1 2 2= { , }min x a x a .
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Therefore the joint density of the bivariate exponential 1 2( , )X X  is obtained by
integrating the above expression with respect to 0x , giving

0 2 2
1 2 1 2 0 1 2 ( )1 1 2 2

( , ) =
x a

x a x af x x p p a a e
 



*
1 1 2 2

1 2 2 0 1 ( > )1 1 2 2
(1 ) 1

x x

x a x ap p a e e e I
        

*
1 1 2 2

1 2 1 0 2 ( > )2 2 1 1
(1 )1

x x

x a x ap p a e e e I
        

** 1 1 2 2
1 2 0 1 2(1 )(1 ) (1 ),

x x
p p e e e

            

*
1 1 2 2 0 1 1 2 2= ( , ) = .where min x a x a and a a     

The proof of the above result is shown in the Appendix section.

Similarly, to get the unconditional survival function, one would derive it from (??),
and therefore compute

2

1 2 0 0 000
=1

( , ) = ( | ) ( )i X
i

S x x S x x f x dx



2

( )0 0 0
0 0 00

=1

= [ (1 ( )) (1 ) ] .
x a x xi i i

i i i i
i

p H x a x p e e dx
 

      

As we can see, we cannot interchange integration and product in the above
expression. This problem will be discussed at in the next section.

3. Estimation Technique for the Bivariate Exponential Model
In this section, we study the estimation techniques for the bivariate exponential
distribution of the previous section. The bivariate exponential distribution from
Definition 2.1 can be expressed as:

1 1 0 1

2 2 0 2

= ;

= .

X a X Z

X a X Z


 

(12)

Then, from Carpenter et al. (2006), the joint density of 0 1( , )X X is given by

1 0 1 1 00
0 1

1 0 1 1 0 ( > )0 1 1 1 0

( ) ( = )
( , ) =

(1 ) ( ) ( ) ,

X

X X x a x

p f x x a x
f x x

p f x f x a x I


  

0 0
1 0 0 1 1

( )0 0 1 1 1 0
1 0 1 0 1 1

, =
=

(1 ) , < ,

x

x x a x

p e if x x a

p e e if x x a



 



 



  






where 1 1 1 0=p a   . Similarly based on the expression 2 2 0 2=X a X Z , we have for

2 2 2 0=p a   ,
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2 0 2 2 00
0 2

2 0 2 2 0 ( > )0 2 2 2 0

( ) ( = )
( , ) =

(1 ) ( ) ( ) ,

X

X X x a x

p f x x a x
f x x

p f x f x a x I


  

0 0
2 0 0 2 2

( )0 0 2 2 2 0
2 0 2 0 2 2

, =
=

(1 ) , < .

x

x x a x

p e if x x a

p e e if x x a



 



 



  






Hence, using the independence between 0 1 2, ,X Z Z , the joint density of

0 1 2( , , )X X X based on (??), is shown in the Appendix and is given by:
0 0

0 1 2 1 2 0 ( ) ( )1 1 0 2 2 0
( , , ) =

x

x a x x a xf x x x p p e
  

 

0 0
1 2 0 2 2 0 ( )2 1 1 0
(1 ) ( )

x

X x a xp p e f x a x
 

  

0 0
1 2 0 1 1 0 ( )1 2 2 0

(1 ) ( )
x

X x a xp p e f x a x
 

  

0 0
1 2 0 1 1 0 2 2 0 ( > , > )1 2 1 1 0 2 2 0

(1 )(1 ) ( ) ( ) .
x

X X x a x x a xp p e f x a x f x a x I
     

The expression 0 1 2( , , )f x x x is one way to obtain an estimate for 0x or the
parameter associated with it, 0 . The above likelihood equations can be used to
estimate 0 1,  and 2 if the 0ix 's, 1 ,i n  were known. We develop estimators
of these latent terms. It is worth noting that no approximations has been used
here.

To develop the unconditional estimators, we would like to avoid the problem of
the large sample sizes needed raised in Bowman and Shenton (2002). We
integrate out 0x from the joint density 0 1 2( , , ).f x x x

Based on a random sample of size n denoted 11 21 12 22 1 2( , ), ( , ), , ( , ),n nx x x x x x let's
define for 1 ,i n 

1 1 2 2= ( , )i i imin x a x a and

0 1 1 2 2
(1)

1 1 2 2

1, = ;

= 0, > ,
i i i

i i i

if x x a x a

r if x a x a







and
0 2 2 1 1

(2)
2 2 1 1

1, = ;

= 0, > .
i i i

i i i

if x x a x a

r if x a x a







Then
(1) (2) (1) (2) (2)

0 2 2 2 21 = 1 (1 ) 1 (1 ) .i i i i i i i
i i i

a x r r n r r n a r n       

The details are given in the Appendix. This estimator is for the parameter
associated with the unknown latent variable 0x based on the minimum of 1 1/x a

and 2 2/ .x a
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We have proposed a very general bivariate exponential class of distributions. We
have described the form of the joint distribution functions. Estimations of the
parameters are given based on the likelihood equation. We have done all that
retaining the form of the marginal exponential distribution, and the fatal shock
idea as in Marshall and Olkin (1967).

In the next section, we examine a simulated example to illustrate our proposed
model.

4. Simulation Example
In this section, we perform, as in Minhajuddin et al. (2003), a simulation study of
the bivariate exponential to examine the properties of estimator of the parameter
from the latent distribution, 0 . We focus on 0 because it is an important portion
of the correlation structure, and all of the parameters associated with 1X and 2X

can be easily estimated marginally, since they are the observed diseases or
events that occurred after the primary event 0X . We assess the performance of
the proposed model by computing the errors in the estimation differences.

Simulation Design

Based on 10,000 replications of sample size 50 each, of 1 2( , ) ,X X  we choose all

ia 's to be 1, 0 to be 1, and solving for i w.r.t. , we have that 0= = ,i ia   
for = 1, 2.i Separate simulations are done for

= 0.05,0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90 0.95.and

Results for the bias and MSE are presented in Figure 1 and Figure 2,
respectively. 20Bias and 20Mse represent the bias and MSE for  0 0= 1/ x , where

0 0=1
= ,

n

ii
x x if the latent unobservable values, 01 0, , nx x , were actually known. It

is important to point out that  0 is not observable. However, if these values were
observable, then  0 would be MLE and the best unbiased estimator for 0 .

Therefore, the performance of  0 serves as a good benchmark. More precisely,
if we denote minx to be the minimum of 1 1 2 2{ / , / }x a x a as we suggested on (??),
then:

0 0 00 =1 1 =1 , .minBias x and Bias x  

The MSE are
2 20 = 0 1 = 1Mse Bias and Mse Bias

Simulation Results
Figure 1 summarizes the results of our simulation. Our proposed estimator
compares very well with the true value, in both univariate and bivariate case. As
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the correlation  increases, the bivariate case bias improves significantly. Also,
as  increases, the estimate of 0x becomes more efficient. It is also observable
that the bias becomes satisfactory with higher correlation for the bivariate.

Figure 1: Bias of 0 for different correlations

Figure 2: MSE of 0 for different correlations

We also present the MSE of the estimates in Figure 2. These estimated values
show the effectiveness of the proposed estimation techniques developed. As we
see from the Figure 2 of MSE, the difference does appear to be consistently
small, although the high values of correlations do appear to give lower MSE's.
The algorithm of the proposed estimation was implemented using the SAS 

program.
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5. Conclusion
In this article, we have defined and characterized a new bivariate generalized
exponential distribution with potential applications in survival and reliability
modeling. This family possesses exponential marginals and it contains absolutely
continuous classes, as well as, the Marshall Olkin type of distributions with a
positive probability mass on a set of measure zero. The variables making up the
bivariate vector were made linearly related indirectly through a collection of latent
random variables. Also, the bivariate distribution is not necessarily restricted to
those with exponential marginal distributions. Estimators based on the EM
algorithm idea were proposed for the unknown parameters, and, in addition,
methods were given to estimate the latent terms in the model. We have shown
that our approach generalizes cases of the models proposed by Iyer et al.
(2002). The possible implication of this work is enormous. It takes into account
the non identically and independently distributed properties of small sample size
data. Assuming that ia 's are unknown in their structures will add a lot more
applications to the model. This and other related issues are topics for further
research.
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Appendix

Based on the independence between 0 1 2, ,X Z Z and using (??), the joint density
of 0 1 2( , , )X X X is given by:

0 0
0 1 2 0 1 1 1 0 1 1 1 0 ( > )1 1 1 0

( , , ) = [ ( ) (1 ) ( ) ]
x

X x a xf x x x e p x a x p f x a x I
     

2 2 2 0 2 2 2 0 ( > )2 2 2 0
[ ( ) (1 ) ( ) ]X x a xp x a x p f x a x I    

0 0
1 2 0 ( ) ( )1 1 0 2 2 0

=
x

x a x x a xp p e
  

 
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0 0
1 2 0 2 2 0 ( )2 1 1 0
(1 ) ( )

x

X x a xp p e f x a x
 

  

0 0
1 2 0 1 1 0 ( )1 2 2 0

(1 ) ( )
x

X x a xp p e f x a x
 

  

0 0
1 2 0 1 1 0 2 2 0 ( > , > )1 2 1 1 0 2 2 0

(1 )(1 ) ( ) ( ) .
x

X X x a x x a xp p e f x a x f x a x I
     

The expression 0 1 2( , , )f x x x is one way to obtain an estimate for 0x or the
parameter associated with it, 0 . Let's assume that

1 1 2 2 1 1 2 2= ( , ) =min x a x a x a x a  .

Also, set 1(1)
( =0) ( = )1 1 1 0

1

1 , = 0
= = =

0 , = 0,
i

i z x a xi
i

if z
r I I

if z





and 2(2)
( =0) ( = )2 2 2 0

2

1 , = 0
= = =

0 , = 0.
i

i z x a xi
i

if z
r I I

if z





Then, the full likelihood function based on a random sample of size n is the
product of n contributed likelihoods and is given as:

(1) (2)
0 0

0 1 2 1 2 0
=1

( , , ) = [ ]
n

x r ri i i

i

L p p e
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a x x r ri i i ip p e e
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a a x x x r ri i i i ip p e e e
               
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(1) (2) (2) (1) (2)(1 ) (1 ) ( ) (1 )0 1 1 0

1 2 1 2 0 0 1 1( ) ( )
r r r a x r ri i i i i i

i i ia a a e
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Hence,
(2) (1) (1) (2)

0 0
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Hence the log likelihood is
(2) (1)

0 1 2 1 2 1 2 0( , , ) = log( ) log( ) log( )i i
i i
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(2) (1)

0 1 1 0 2 2log( ) (1 ) log( ) (1 )i i
i i
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(1) (2) (1) (2)
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1 1 2 2(1 ) (1 )i i i i
i i
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0 1 1 2 2 0( ) (1 )(1 ),i i i
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Similarly
(2) (2) (2)

1 1 1 0 1 1 1 0 1= (1 ) (1 ) (1 )i i i i i
i i i
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So setting 1 = 0LL   gives
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Now setting 0 = 0LL   , and substituting values for (2)
0 1 1(1 )ii
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0 2 2(1 )ii
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0 1 1 2 2 2 2 0 21 = 1 1 { (1 ) (1 )}i i i i

i

a a x r a x r a n      
(2) (2) (1) (2)

1 1 0 1 0{ (1 ) (1 )} (1 )i i i i i i i
i i

x r a x r a n x r r n      
(2) (1) (1) (2)

1 1 2 2 1 1 2 2 0= 1 1 (1 ) (1 ) (1 )i i i i i i i
i i i

a a z r a n z r a n x r r n         
(2) (1) (1) (2)

1 1 1 2 2 2 0= 1 (1 (1 ) ) 1 (1 (1 ) ) (1 ) .i i i i i i i
i i i
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The above likelihood equations can be used to estimate 0 1,  and 2 if the 0ix 's,
1 ,i n  were known. We develop estimators of these latent terms. It is worth
noting that no approximations has been used here.

To develop the unconditional estimators, we would like to avoid the problem of
the large sample sizes needed raised in Bowman and Shenton (2002). We
integrate out 0x from the joint density 0 1 2( , , ),f x x x and we have that:

1 2 0 1 2 0
0

( , ) = ( , , )
x

f x x f x x x dx
0 0

1 2 0 ( ) ( ) 01 1 0 2 2 0
=

x

x a x x a xp p e dx
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 
0 0

1 2 0 2 2 0 ( > ) ( ) 02 2 2 0 1 1 0
(1 ) ( )

x

X x a x x a xp p e f x a x I dx
 

  
0 0

1 2 0 1 1 0 ( > ) ( ) 01 1 1 0 2 2 0
(1 ) ( )

x

X x a x x a xp p e f x a x I dx
 
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0 0

1 2 0 1 1 0 2 2 0 ( > , > ) 01 2 1 1 0 2 2 0
(1 )(1 ) ( ) ( )

x

X X x a x x a xp p e f x a x f x a x I dx
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1 2 1 1 2 2= (1 )p p PartA p p PartA 
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Hence the expression for the joint density becomes:
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In order to obtain estimators, the log likelihood is:
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A similar formula can be obtained by taking 2l   and setting it equal to zero.
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